
Estimating Sum by Weighted Sampling

Rajeev Motwani1, Rina Panigrahy2, and Ying Xu1?

1 Dept of Computer Science, Stanford University, USA
2 Microsoft Research, Mountain View, CA, USA

{rajeev,xuying}@cs.stanford.edu, rina@microsoft.com

Abstract. We study the classic problem of estimating the sum of n
variables. The traditional uniform sampling approach requires a linear
number of samples to provide any non-trivial guarantees on the esti-
mated sum. In this paper we consider various sampling methods besides
uniform sampling, in particular sampling a variable with probability pro-
portional to its value, referred to as linear weighted sampling. If only
linear weighted sampling is allowed, we show an algorithm for estimat-
ing sum with Õ(

√
n) samples, and it is almost optimal in the sense that

Ω(
√

n) samples are necessary for any reasonable sum estimator. If both
uniform sampling and linear weighted sampling are allowed, we show
a sum estimator with Õ(3

√
n) samples. More generally, we may allow

general weighted sampling where the probability of sampling a variable
is proportional to any function of its value. We prove a lower bound of
Ω(3
√

n) samples for any reasonable sum estimator using general weighted
sampling, which implies that our algorithm combining uniform and linear
weighted sampling is an almost optimal sum estimator.

1 Introduction

We consider the classic problem of estimating the sum (or equivalently, the
average) of n non-negative variables. This problem has numerous important
applications in various areas of computer science, statistics and engineering.
Measuring the exact value of each variable incurs some cost, so people want to
get a reasonable estimator of the sum while measure as few variables as possible.

In the traditional setting, only uniform sampling is used, i.e. each time we
can sample one variable uniformly at random and ask its value. Under this set-
ting it is easy to see that any reasonable estimator requires a linear sample size
if the underlying distribution is arbitrary. Consider the following two instances
of inputs: in the first input all variables are 0, while in the second input all are
0 except one variable x1 is a large number. Any sampling scheme cannot distin-
guish the two inputs until it sees x1, and with uniform sampling it takes linear

? Rajeev Motwani is supported in part by NSF Grants EIA-0137761 and ITR-0331640,
and grants from Media-X and SNRC. Rina Panigrahy’s work was done when he was
at Stanford, and he was supported by Stanford Graduate Fellowship. Ying Xu is
supported in part by a Stanford Graduate Fellowship and NSF Grants EIA-0137761
and ITR-0331640.

samples to hit x1. We defer the formal definition of “reasonable estimator” to
Section 2, but intuitively we cannot get a good estimator if we cannot distinguish
the two inputs.

In this paper, we study the problem of estimating sum using other sampling
methods besides uniform sampling. For example, suppose we now allow sam-
pling a variable with probability proportional to its value, which we refer to as
linear weighted sampling; in Section 1.1 we will discuss applications where such
sampling is feasible. Using linear weighted sampling one sample is sufficient to
distinguish the above two inputs, and it seems plausible that generally we can get
good sum estimators with less samples using such sampling method. In this paper
we show an algorithm for sum estimation with Õ(

√
n) samples using only linear

weighted sampling, and it is almost optimal in the sense that Ω(
√

n) samples
are necessary for any reasonable estimator using only linear weighted sampling.
Our algorithm assumes no prior knowledge about the input distribution.

Next, if we use both uniform sampling and linear weighted sampling, we can
further reduce the number of samples needed. We present a sum estimator with
Õ(3
√

n) samples using a combination of the two sampling methods, and prove a
lower bound of Ω(3

√
n) samples.

More generally, we may allow sampling where the probability of sampling a
variable can be proportional to any function of its value (the function does not
depend on n), referred as to (general) weighted sampling. While we are not sure
whether general sampling is feasible in real applications, we show a negative
result that such extra power does not provide a better estimator: we prove a
lower bound of Ω(3

√
n) samples for any reasonable sum estimator, using any

combination of general weighted sampling methods. This implies that combining
uniform and linear weighted sampling gives an almost optimal sum estimator (up
to a poly-log factor), hence there is no need to pursue fancier sampling methods
in this family for the purpose of estimating sum.

1.1 Applications

The problem of estimating sum is a classic problem with wide applications in
various areas, and linear weighted sampling is a natural sampling method feasi-
ble in many applications. In particular, if we want to estimate the total number
of some objects in a system and those objects fall into disjoint classes, then the
problem becomes estimating the sum of variables with each variable indicating
the number of objects in one class; if uniform sampling of the objects is possi-
ble, then linear weighted sampling can be implemented by sampling an object
uniformly at random and returning the class of the sampled object.

One such application is estimating search engine index sizes or the web size,
which has aroused interests in both academic and industrial world in recent
years (see for example [12, 13, 10, 6, 4]). One method used in those papers is to
partition the search index (web) into domains (web servers), and estimate the
sum of those domain (server) sizes. It is relatively easy to get the total domain
(web server) number n (either by uniformly sampling IP space or people publish
this number periodically). For example in 1999 Lawrence and Giles estimated the

number of web servers to be 2.8 million by randomly testing IP addresses; then
they exhaustively crawled 2500 web servers and found that the mean number of
pages per server was 289, leading to an estimate of the web size of 800 million
[13]. Lawrence and Giles essentially used uniform sampling to estimate the sum,
however, the domain size distribution is known to be highly skewed and uniform
sampling has high variance for such inputs. We can also do linear weighted
sampling: uniformly sample a page from the web or a search engine index (the
technique of uniform sampling a page from the web/index has been studied in
for example [11, 3]) and take the domain of the page, then the probability of
sampling a domain is proportional to its size. Then we can apply the techniques
in this paper, which shall provide a more accurate estimate than using only
uniform sampling.

1.2 Related Work

Estimating the sum of n variables is a classical statistical problem. For the
case where all the variables are between [0, 1], an additive approximation of the
mean can be easily computed by taking a random sample of size O(1

ε2 lg 1
δ) and

computing the mean of samples; [7] proves a tight lower bound on the sample
size. However, uniform sampling works poorly on heavily tailed inputs when the
variables are from a large range, and little is known beyond uniform sampling.

Weighted sampling is also known as “importance sampling”. General meth-
ods of estimating a quantity using importance sampling have been studied in
statistics (see for example [14]), but the methods are either not applicable here
or less optimal. To estimate a quantity hπ =

∑
π(i)h(i), importance sampling

generates independent samples i1, i2, . . . , iN from a distribution p. One estima-
tor for hπ is µ̂ = 1

N

∑
h(ik)π(ik)/p(ik). For the sake of estimating sum, π(i) = 1

and h(i) is the value of ith variable xi. In linear weighted sampling, p(i) = xi/S,
where S is exactly the sum we are trying to estimate, therefore we are not able
to compute this estimator µ̂ for sum. Another estimator is

µ̃ =
∑

h(ik)π(ik)/p̃(ik)∑
π(ik)/p̃(ik)

,

where p̃ is identical to p up to normalization and thus computable. However, the
variance of µ̃ is even larger than the variance using uniform sampling.

A related topic is priority sampling and threshold sampling for estimating
subset sums proposed and analyzed in [9, 1, 16]. But their cost model and ap-
plication are quite different: they aim at building a sketch so that the sum of
any subset can be computed (approximately) by only looking at the sketch; in
particular their cost is defined as the size of the sketch and they can read all
variables for free, so computing the total sum is trivial in their setting.

There is extensive work in estimating other frequency moments Fk =
∑

xk
i

(sum is the first moment F1), in the random sampling model as well as in the
streaming model (see for example [2, 8, 5]). The connection between the two
models is discussed in [5]. Note that their sampling primitive is different from
ours, and they assume F1 is known.

2 Definitions and Summary of Results

Let x1, x2, . . . , xn be n variables. We consider the problem of estimating the
sum S =

∑
i xi, given n. We also refer to variables as buckets and the value of a

variable as its bucket size.
In (general) weighted sampling we can sample a bucket xi with probability

proportional to a function of its size f(xi), where f is an arbitrary function of xi

(f independent on n). Two special cases are uniform sampling where each bucket
is sampled uniformly at random (f(x) = 1), and linear weighted sampling where
the probability of sampling a bucket is proportional to its size (f(x) = x). We
assume sampling with replacement.

We say an algorithm is an (ε, δ)-estimator (0 < ε, δ < 1), if it outputs an
estimated sum S′ such that with probability at least 1 − δ, |S′ − S| ≤ εS. The
algorithm can take random samples of the buckets using some sampling method
and learn the sizes as well as the labels of the sampled buckets. We measure
the complexity of the algorithm by the total number of samples it takes. The
algorithm has no prior knowledge of the bucket size distribution.

The power of the sum estimator is constrained by the sampling methods it is
allowed to use. This paper studies the upper and lower bounds of the complexities
of (ε, δ)-estimators under various sampling methods. As pointed out in Section 1,
using only uniform sampling there is no (ε, δ)-estimator with sub-linear samples.

First we show an (ε, δ)-estimator using linear weighted sampling with Õ(
√

n)
samples. While linear weighted sampling is a natural sampling method, to derive
the sum from such samples does not seem straightforward. Our scheme first
converts the general problem to a special case where all buckets are either empty
or of a fixed size; now the problem becomes estimating the number of non-empty
buckets and we make use of birthday paradox by examining how many samples
are needed to find a repeat. Each step involves some non-trivial construction
and the detailed proof is presented in Section 3.

In Section 4 we consider sum estimators where both uniform and linear
weighted sampling are allowed. Section 4.1 proposes an algorithm with Õ(3

√
n)

samples which builds upon the linear weighted sampling algorithm in Section
3. Section 4.2 gives a different algorithm with Õ(

√
n) samples: although it is

asymptotically worse than the former algorithm in terms of n, it has better de-
pendency on ε and a much smaller hidden constant; also this algorithm is much
neater and easier to implement.

Finally we present lower bounds in Section 5. We prove that the algorithms in
Section 3 and 4.1 are almost optimal in terms of n up to a poly-log factor. More
formally, we prove a lower bound of Ω(

√
n) samples using only linear weighted

sampling (more generally, using any combination of general weighted sampling
methods with the constraint f(0) = 0); a lower bound of Ω(3

√
n) samples using

any combination of general weighted sampling methods.
All algorithms and bounds can be extended to the case where the number

of buckets n is only approximately known (with relative error less than ε). We
omit the details for lack of space.

3 An Õ(
√

n) Estimator using Linear Weighted Sampling

Linear weighted sampling is a natural sampling method, but to efficiently derive
the sum from such samples does not seem straightforward. Our algorithm first
converts the general problem to a special case where all buckets are either empty
or of a fixed size, and then tackle the special case making use of the birthday
paradox, which states that given a group of

√
365 randomly chosen people, there

is a good chance that at least two of them have the same birthday.
Let us first consider the special case where all non-zero buckets are of equal

sizes. Now linear weighted sampling is equivalent to uniform sampling among
non-empty buckets, and our goal becomes estimating the number of non-empty
buckets, denoted by B (B ≤ n). We focus on a quantity we call “birthday
period”, which is the number of buckets sampled until we see a repeated bucket.
We denote by r(B) the birthday period of B buckets; its expected value E[r(B)]
is Θ(

√
B) according to the birthday paradox. We will estimate the expected

birthday period using linear weighted sampling, and then use it to infer the
value of B. Most runs of birthday period take O(

√
B) = O(

√
n) samples, and we

can cut off runs which take too long; lg 1
δ runs are needed to boost confidence,

thus in total we need O(
√

n) samples to estimate B.
Now back to the general problem. We first guess the sum is an and fix a

uniform bucket size εa. For each bucket in the original problem, we round its
size down to kεa (k being an integer) and break it into k buckets. If our guess of
sum is (approximately) right, then the number of new buckets B is approximately
n/ε; otherwise B is either too small or too large. We can estimate B by examining
the birthday period as above using O(

√
n/ε) samples, and check whether our

guess is correct. Finally, since we allow a multiplicative error of ε, a logarithmic
number of guesses suffice.

Before present the algorithm, we first establish some basic properties of birth-
day period r(B). The following lemma bounds the expectation and variance of
r(B); property (3) shows that birthday period is “gap preserving” so that if the
number of buckets is off by an ε factor, we will notice a difference of cε in the
birthday period. We can write out the exact formula for E[r(B)] and var(r(B)),
and the rest of the proof is merely algebraic manipulation. The detailed proof
can be found in the Appendix.

Lemma 1. (1) E[r(B)] monotonically increases with B;
(2) E[r(B)] = Θ(

√
B);

(3) E[r((1 + ε)B)] > (1 + cε)E[r(B)], where c is a constant.
(4) var(r(B)) = O(B);

Lemma 2 tackles the special case, stating that with
√

b samples we can tell
whether the total number of buckets is at most b or at least b(1 + ε). The idea
is to measure the birthday period and compare with the expected period in the
two cases. We use the standard “median of the mean” trick: first get a constant
correct probability using Chebyshev inequality, then boost the probability using
Chernoff bound. See details in the algorithm BucketNumber. Here c is the
constant in Lemma 1(3); c1 and c2 are constants.

BucketNumber(b, ε, δ)
1. Compute r = E[r(b)];
2. for i = 1 to k1 = c1 lg 1

δ

3. for j = 1 to k2 = c2/ε2

4. sample until see a repeated bucket; let rj be the number of samples

5. if
Pk2

j=1 rj/k2 ≤ (1 + cε/2)r then si = true, else si = false

6. if more than half of si are true then output “≤ b buckets”
else output “≥ b(1 + ε) buckets”

Lemma 2. If each sample returns one of B buckets uniformly at random, then
the algorithm BucketNumber tells whether B ≤ b or B ≥ b(1+ ε) correctly with
probability at least 1− δ; it uses Θ(

√
b lg 1

δ /ε2) samples.

Proof. We say the algorithm does k1 runs, each run consisting of k2 iterations.
We first analyze the complexity of the algorithm. We need one small trick to
avoid long runs: notice that we can cut off a run and set si = false if we have
already taken (1 + cε/2)rk2 samples in this run. Therefore the total number of
samples is at most

(1 + cε/2)rk2k1 = (1 + cε/2)E[r(b)]
c2

ε2
c1 lg

1
δ

= Θ(

√
b lg 1

δ

ε2
).

The last equation uses Property (2) of Lemma 1.
Below we prove the correctness of the algorithm. Consider one of the k1

runs. Let r′ be the average of the k2 measured birthday periods rj . Because each
measured period has mean E[r(B)] and variance var(r(B)), we have E[r′] =
E[r(B)] and var(r′) = var(r(B))/k2.

If B ≤ b, then E[r′] = E[r(B)] ≤ r. By Chebyshev inequality [15],

Pr[r′ > (1+
cε

2
)r] ≤ Pr[r′ > E[r(B)]+

rcε

2
] ≤ var(r(B))/k2

(rcε/2)2
≤ O(b)ε2/c2

(Θ(
√

b)cε/2)2
=

O(1)
c2

If B ≥ b(1 + ε), then E[r′] ≥ E[r(b(1 + ε))] ≥ (1 + cε)r by Lemma 1.

Pr[r′ < (1 +
cε

2
)r] ≤ Pr[r′ < (1− cε

4
)E[r′]] ≤ var(r(B))/k2

(E[r(B)]cε/4)2
=

O(1)
c2

We choose the constant c2 large enough such that both probabilities are no
more than 1/3. Now when B ≤ b, since Pr[r′ > (1+ cε/2)r] ≤ 1/3, each run sets
si = false with probability at most 1/3. Our algorithm makes wrong judgement
only if more than half of the k1 runs set si = false, and by Chernoff bound
[15], this probability is at most e−c′k1 . Choose appropriate c1 so that the error
probability is at most δ. Similarly, when B ≥ (1 + ε)b, each run sets si = true
with probability at most 1/3, and the error probability of the algorithm is at
most δ.¤

Algorithm LWSE (stands for Linear Weighted Sampling Estimator) shows
how to estimate sum for the general case. The labelling in step 3 is equivalent to
the following process: for each original bucket, round its size down to a multiple

of ε1a and split into several “standard” buckets each of size ε1a; each time
sampling returns a standard bucket uniformly at random. The two processes
are equivalent because they have the same number of distinct labels (standard
buckets) and each sampling returns a label uniformly at random. Therefore by
calling BucketNumber(n(1 + ε1)/ε1, ε1, δ1) with such samples, we can check
whether the number of standard buckets B ≤ n(1+ ε1)/ε1 or B ≥ n(1+ ε1)2/ε1,
allowing an error probability of δ1.

LWSE(n, ε, δ)
1. get a lower bound L of the sum: sample one bucket using linear weighted sam-

pling and let L be the size of the sampled bucket;
2. for a = L/n, L(1 + ε1)/n, . . . , L(1 + ε1)

k/n, . . . (let ε1 = ε/3)
3. for each sample returned by linear weighted sampling, create a label as

follows: suppose a bucket xi of size s = mε1a+ r is sampled (m is an integer
and r < ε1a); discard the sample with probability r/s; with the remaining
probability generate a number l from 1..m uniformly at random and label
the sample as il;

4. call BucketNumber(n(1+ε1)/ε1, ε1, δ1), using the above samples in step 4 of
BucketNumber. If BucketNumber outputs “≤ n(1 + ε1)/ε1”, then output
S′ = an as the estimated sum and terminate.

Theorem 1. LWSE is an (ε, δ)-estimator with O(
√

n(1
ε)

7
2 log n(log 1

δ + log 1
ε +

log log n)) samples, where n is the number of buckets.

Proof. We first show that the algorithm terminates with probability at least
1 − δ1. S must fall in [a0n, a0n(1 + ε1)] for some a0, and we claim that the
algorithm will terminate at this a0, if not before: since S ≤ a0n(1+ ε1), the sum
after rounding down is at most a0n(1 + ε1) and hence the number of standard
buckets B ≤ n(1+ ε1)/ε1; by Lemma 2 it will pass the check with probability at
least 1− δ1 and terminate the algorithm.

Next we show that given that LWSE terminates by a0, the estimated sum
is within (1 ± ε)S with probability 1 − δ1. Since the algorithm has terminated
by a0, the estimated sum cannot be larger than S, so the only error case is
S′ = an < (1− ε)S. The sum loses at most naε1 after rounding down, so

B ≥ S − anε1
aε1

≥
an
1−ε − anε1

aε1
=

n

(1− ε)ε1
− n ≥ n

1− ε1
(1− ε)ε1

≥ n
(1 + ε1)2

ε1

The probability that it can pass the check for a fixed a < a0 is at most δ1;
by union bound, the probability that it passes the check for any a < a0 is at
most δ1 log1+ε

S
L . Combining the two errors, the total error probability is at most

δ1(log1+ε
S
L + 1). Choose δ1 = δ/(log1+ε

S
L + 1), then with probability at least

1− δ the estimator outputs an estimated sum within (1± ε)S.
Now we analyze the complexity of LWSE. Ignore the discarded samples for

now and count the number of valid samples. By Lemma 2, for each a we need

N1 = O(
log 1

δ1
∗

√
n(1+ε1)

ε1

ε21
) = O(

√
n(

1
ε
)

5
2 (log

1
δ

+ log
1
ε

+ log log
S

L
))

samples, and there are log1+ε
S
L = O(log S

L/ε) as. As for the discarded samples,
the total discarded size is at most anε1, and we always have S ≥ an if the
algorithm is running correctly, therefore the expected probability of discarded
samples is at most ε1 = ε/3 ≤ 1/3. By Chernoff bound, with high probability
the observed probability of discarded samples is at most half, i.e. the discarded
samples at most add a constant factor to the total sample number.

Finally, the complexity of the estimator has the term log S
L . Had we simply

started guessing from L = 1, the cost would depend on log S. The algorithm
chooses L to be the size of a sampled bucket using linear weighted sampling.
We claim that with high probability L ≥ S/n2: otherwise L < S/n2, then the
probability that linear weighted sampling returns any bucket of size no more
than L is at most n ∗ L/S < 1/n.

Summing up, the total sample number used in LWSE is

N1 ∗O(
log n2

ε
) = O(

√
n(

1
ε
)

7
2 log n(log

1
δ

+ log
1
ε

+ log log n)).¤

4 Combining Uniform and Linear Weighted Sampling

In this section we design sum estimators using both uniform sampling and linear
weighted sampling. We present two algorithms. The first algorithm uses LWSE
in Section 3 as a building block and only needs Õ(3

√
n) samples. The second

algorithm is self-contained and easier to implement; its complexity is worse than
the first algorithm in terms of n but has better dependency on ε and a much
smaller hidden constant.

4.1 An Estimator with Õ(3
√

n) Samples

In this algorithm, we split the buckets into two types: Θ(3
√

n2) large buckets and
the remaining small buckets. We estimate the partial sum of the large buckets
using linear weighted sampling as in Section 3; we stratify the small buckets into
different size ranges and estimate the number of buckets in each range using
uniform sampling.

Theorem 2. CombEst is an (ε, δ)-estimator with O(n1/3(1
ε)

9
2 log n(log 1

δ +log 1
ε +

log log n)) samples, where n is the number of buckets.

Proof. We analyze the error of the estimator. Denote by Slarge(Ssmall) the actual
total size of large (small) buckets; by ni the actual bucket number in level i.

In Step 2, since we are using linear weighted sampling, the expected fraction
of large buckets in the samples equals to Slarge/S. If Slarge/S > ε1, then by
Chernoff bound the observed fraction of large buckets in the sample is larger
than ε1/2 with high probability, and we will get S′large within (1± ε1)Slarge with
probability at least 1 − δ/2 according to Theorem 1; otherwise we lose at most
Slarge = ε1S by estimating S′large = 0. Thus, with probability at least 1 − δ/2,
the error introduced in Step 2 is at most ε1S.

CombEst(n, ε, δ)
1. find t such that the number of buckets whose sizes are larger than t is Nt =

Θ(n2/3) (we leave the detail of this step later); call a bucket large if its size is
above t, and small otherwise

2. use linear weighted sampling to estimate the total size of large buckets S′large:
if the fraction of large buckets in the sample is less than ε1/2, let S′large = 0;
otherwise ignore small buckets in the samples and estimate S′large using
LWSE(Nt, ε1, δ/2), where ε1 = ε/4

3. use uniform sampling to estimate the total size of small buckets S′small:
divide the small bucket sizes into levels [1, 1 + ε1), . . . , [(1 + ε1)

i, (1 +
ε1)

i+1), . . . , [(1 + ε1)
i0 , t); we say a bucket in level i (0 ≤ i ≤ i0) if its size

∈ [(1 + ε1)
i, (1 + ε1)

i+1)
make k = Θ(n1/3 log n/ε41) samples using uniform sampling; let ki be the
number of sampled buckets in level i. Estimate the total number of buckets
in level i to be n′i = kin/k and S′small =

P
i n′i(1 + ε1)

i

4. output S′small + S′large as the estimated sum

In Step 3, it is easy to see that n′i is an unbiased estimator of ni. For a fixed
i, if ni ≥ ε21n

2/3 then by Chernoff bound the probability that n′i deviates from
ni by more than an ε1 fraction is

Pr[|n′i − ni| ≥ ε1ni] ≤ exp(−ckε21ni/n) ≤ exp(−c′
n1/3 log n

ε41
ε21

ε21n
2/3

n
) = n−c′

This means that for all ni ≥ ε1n
2/3, with high probability we estimate ni almost

correctly, introducing a relative error of at most ε1.
We round all bucket sizes of small buckets down to the closest power of 1+ε1;

this rounding introduces a relative error of at most ε1.
For all levels with ni < ε21n

2/3, the total bucket size in those levels is at most

∑

0≤i≤i0

ni(1+ε1)i+1 < ε21n
2/3

∑

i

(1+ε1)i+1 < ε21n
2/3 t

ε1
= ε1tn

2/3 < ε1Slarge < ε1S

The errors introduced by those levels add up to at most ε1.
Summing up, there are four types of errors in our estimated sum, with prob-

ability at least 1 − δ each contributing at most ε1S = εS/4, so S′ has an error
of at most εS.

Now we count the total number of samples in CombEst. According to The-
orem 1, Step 2 needs O(

√
n2/3(1

ε)
7
2 log n2/3(log 1

δ +log 1
ε +log log n2/3)) samples

of large buckets, and by our algorithm the fraction of large buckets is at least
ε1/2. Step 3 needs Θ(n1/3 log n/ε41) samples, which is dominated by the sample
number of Step 2. Therefore the total sample number is

O(n1/3(
1
ε
)

9
2 log n(log

1
δ

+ log
1
ε

+ log log n)).¤

There remains to be addressed the implementation of Step 1. We make
n1/3 log n samples using uniform sampling and let t be the size of the 2 log n-th
largest bucket in the samples. Let us first assume all the sampled bucket have

different sizes. Let Nt be the number of buckets with size at least t; we claim
that with high probability n2/3 ≤ Nt ≤ 4n2/3. Otherwise if Nt < n2/3, then
the probability of sampling a bucket larger than t is Nt/n < n−1/3 and the
expected number of such buckets in the samples is at most log n; now we have
observed 2 log n such buckets, by Chernoff bound the probability of such event
is negligible. Similarly the probability that Nt ≥ 4n2/3 is negligible. Hence t
satisfies our requirement. Now if there is a tie at position 2 log n, we may cut off
at any position c log n instead of 2 log n, and Nt will still be Θ(n2/3) using the
same argument. In the worst case where all of them are ties, let t be this size,
define those buckets with sizes strictly larger than t as large buckets and those
with sizes strictly less than t as small, estimating Slarge and Ssmall using Steps
2 and 3; estimate separately the number of buckets with size exactly t using
uniform sampling – since the number is at least Θ(n2/3 log n), O(n1/3) samples
are sufficient. Finally we only know the approximate number of large buckets,
denoted by N ′

t , and have to pass N ′
t instead of Nt when call LWSE. Fortunately

an approximate count of n suffices for LWSE, and a constant factor error in n
only adds a constant factor in its complexity.

4.2 An Estimator with Õ(
√

n) Samples

Next we present a sum estimator using uniform and weighted sampling with
Õ(
√

n) samples. Recall that uniform sampling works poorly for skewed distri-
butions, especially when there are a few large buckets that we cannot afford to
miss. The idea of this algorithm is to use weighted sampling to deal with such
heavy tails: if a bucket is large enough it will keep appearing in weighted sam-
pling; after enough samples we can get a fairly accurate estimate of its frequency
of being sampled, and then infer the total size by only looking at the size and
sampling frequency of this bucket. On the other hand, if no such large bucket
exists, the variance cannot be too large and uniform sampling performs well.

CombEstSimple(n, ε, δ)
1. Make k = c1

√
n log 1

δ
/ε2 samples using linear weighted sampling. Suppose the

most frequently sampled bucket has size t and is sampled k1 times (breaking ties
arbitrarily). If k1 ≥ k/2

√
n, output S′ = tk/k1 as estimated sum and terminate.

2. Make l =
√

n/δε2 samples using uniform sampling and let a be the average of
sampled bucket sizes. Output S′ = an as estimated sum.

Theorem 3. CombEstSimple is an (ε, δ)-estimator with O(
√

n/ε2δ) samples.

Proof. Obviously CombEstSimple uses k + l = O(
√

n/ε2δ) samples. Below we
prove the accuracy of the estimator.

We first prove that if Step 1 outputs an estimated sum S′, then S′ is within
(1±ε)S with probability 1−δ/2. Consider any bucket with size t whose frequency
of being sampled f ′ = k1/k is more than 1/2

√
n. Its expected frequency of being

sampled is f = t/S, so we can bound the error |f ′ − f | using Chernoff bound.

Pr[f − f ′ > εf] ≤ exp(−ckfε2) ≤ exp(−ckf ′ε2) = exp(Θ(c1) log
1
δ
) = δΘ(c1)

Pr[f ′ − f > εf] ≤ exp(−ckfε2) ≤ exp(−ck
f ′ε2

1 + ε
) = exp(Θ(c1) log

1
δ
) = δΘ(c1)

Choose c1 large enough to make Pr[|f − f ′| > εf] less than δ/2, then with
probability 1 − δ/2, f ′ = k1/k is within (1 ± ε)t/S, and it follows that the
estimated sum tk/k1 is within (1± ε)S.

We divide the input into two cases, and show that in both cases the estimated
sum is close to S.

Case 1, the maximum bucket size is greater than S/
√

n. The probability that
the largest bucket is sampled less than k/2

√
n times is at most exp(−ck 1√

n
) <

δ/2; with the remaining probability, Step 1 outputs an estimated sum, and we
have proved it is within (1± ε)S.

Case 2, the maximum bucket size is no more than S/
√

n. If Step 1 outputs an
estimated sum, we have proved it is close to S. Otherwise we use the estimator
in Step 2. a is an unbiased estimator of the mean bucket size. The statistical
variance of xi is

var(x) ≤ E[x2] =
∑

i x2
i

n
≤

(S√
n
)2
√

n

n
=

S2

n
√

n

and the variance of a is var(x)/l. Using Chebyshev inequality, the probability
that a deviates from the actual average S/n by more than an ε fraction is at
most var(a)/(εS/n)2 =

√
n/lε2 = δ.¤

5 Lower Bounds

Finally we prove lower bounds on the sample number of sum estimators. Those
lower bound results use a special type of input instances where all bucket sizes
are either 0 or 1. The results still hold if all bucket sizes are strictly positive,
using similar counterexamples with bucket sizes either 1 or a large constant b.

Theorem 4. There exists no (ε, δ)-estimator with o(
√

n) samples using only
linear weighted sampling, for any 0 < ε, δ < 1.

Proof. Consider two instances of inputs: in one input all buckets have size 1; in
the other, (1 − ε)n/(1 + ε) buckets have size 1 and the remaining are empty. If
we cannot distinguish the two inputs, then the estimated sum deviates from the
actual sum by more than an ε fraction.

For those two instances, linear weighted sampling is equivalent to uniform
sampling among non-empty buckets. If we sample k = o(

√
n) buckets, then the

probability that we see a repeated bucket is less than 1 − exp(−k(k − 1)/((1−
ε)n/(1 + ε))) = o(1) (see the proof of Lemma 1). Thus in both cases with high
probability we see all distinct buckets of the same sizes, so cannot distinguish
the two inputs in o(

√
n) samples.¤

More generally, there is no estimator with o(
√

n) samples using any combina-
tion of general weighted sampling methods with the constraint f(0) = 0. Recall

that weighted sampling with function f samples a bucket xi with probability pro-
portional to a function of its size f(xi). When f(0) = 0, it samples any empty
bucket with probability 0 and any bucket of size 1 with the same probability,
thus is equivalent to linear weighted sampling for the above counterexample.

Theorem 5. There exists no (ε, δ)-estimator with o(3
√

n) samples using any
combination of general weighted sampling (the sampling function f independent
on n), for any 0 < ε, δ < 1.

Proof. Consider two instances of inputs: in one input n2/3 buckets have size 1
and the remaining buckets are empty; in the other, 3n2/3 buckets have size 1
and the remaining are empty. If we cannot distinguish the two inputs, then the
estimated sum deviates from the actual sum by more than 1

2 . We can adjust the
constant to prove for any constant ε.

We divide weighted sampling into two types:
(1) f(0) = 0. It samples any empty bucket with probability 0 and any bucket

of size 1 with the same probability, thus it is equivalent to uniform sampling
among non-empty buckets. There are at least n2/3 non-empty buckets and we
only make o(n1/3) samples, with high probability we see o(n1/3) distinct buckets
of size 1 for both inputs.

(2) f(0) > 0. The probability that we sample any non-empty buckets is

f(1)cn2/3

f(1)cn2/3 + f(0)(n− cn2/3)
= Θ(n−1/3),

so in o(n1/3) samples with high probability we only see empty buckets for both
inputs, and all these buckets are distinct.

Therefore whatever f we choose, we see the same sampling results for both
inputs in the first o(n1/3) samples, i.e. we cannot distinguish the two inputs with
o(n1/3) samples using any combination of weighted sampling methods.¤

6 Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable
comments, especially for pointing out an implicit assumption in the proof.

References

1. N. Alon, N.G. Duffield, C. Lund, M. Thorup. Estimating arbitrary subset sums
with few probes. PODS 2005.

2. N. Alon, Y. Matias and M. Szegedy. The space complexity of approximating the
frequency moments. JCSC 58:137-147, 1999.

3. Z. Bar-Yossef and M. Gurevich. Random sampling from a search engine’s index.
WWW 2006.

4. Z. Bar-Yossef and M. Gurevich. Efficient search engine measurements. WWW
2007.

5. Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms: lower bounds
and applications. STOC 2001.

6. A. Broder, M. Fontura, V. Josifovski, R. Kumar, R. Motwani, S. Nabar, R. Pani-
grahy, A. Tomkins, Y. Xu. Estimating corpus size via queries. CIKM 2006.

7. R. Canetti, G. Even, and O. Goldreich. Lower Bounds for Sampling Algorithms
for Estimating the Average. Information Processing Letters, 53:17-25, 1995.

8. M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. Towards estimation
error guarantees for distinct values. PODS 2000.

9. N.G. Duffield, C. Lund, and M. Thorup. Learn more, sample less: control of vol-
ume and variance in network measurements. IEEE Trans. on Information Theory,
51:1756-1775, 2005.

10. A. Gulli and A. Signorini. The indexable Web is more than 11.5 billion pages.
WWW 2005.

11. M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On near-uniform
URL sampling. WWW 2000.

12. S. Lawrence and C. Giles. Searching the World Wide Web. Science 280:98-100,
1998.

13. S. Lawrence and C. Giles. Accessibility of information on the web. Nature 400:107-
109, 1999.

14. J. Liu. Metropolized independent sampling with comparisons to rejection sampling
and importance sampling. Statist. Comput. 6:113-119, 1996.

15. R. Motwani and P. Raghavan. Randomized Algorithm. 1995.
16. M. Szegedy. The DLT priority sampling is essentially optimal. STOC 2006.

7 Appendix

Proof of Lemma 1
(1) r(B) > i when there is no repeated buckets in the first i samples.

Pr[r(B) > i] =
B

B

B − 1
B

. . .
B − (i− 1)

B
= (1− 1

B
) . . . (1− i− 1

B
)

E[r(B)] =
∑

1<i≤B+1

Pr[r(B) = i]∗i =
∑

1<i≤B+1

Pr[r(B) ≥ i] =
∑

1≤i≤B

Pr[r(B) > i]

Pr[r(B) > i] monotonically increases with B for all i, so E[r(B)] also mono-
tonically increases with B.

(2) First bound Pr[r(B) > i] using the fact e−2x < 1− x < e−x:

Pr[r(B) > i] ≤ e−
1
B e−

2
B . . . e−

i−1
B = e−

i(i−1)
2B

Pr[r(B) > i] ≥ e−
2
B e−

4
B . . . e−

2(i−1)
B = e−

i(i−1)
B

Using the first inequality,

E[r(B)] =
∑

1≤i≤B

Pr[r(B) > i] ≤
∑

1≤i≤B

exp(− i(i− 1)
2B

)

≤
∫ B

1

exp(− i(i− 1)
2B

)di

=

√
Bπ

2
exp(

1
8B

)erf(
2 ∗B − 1

2
√

2B
)−

√
Bπ

2
exp(

1
8B

)erf(
2 ∗ 1− 1
2
√

2B
)

≤
√

Bπ

2
exp(

1
8B

) = O(
√

B)

Similarly, using the second inequality we can prove

E[r(B)] ≥
∑

1≤i≤B

exp(− i(i− 1)
B

= Ω(
√

B)

Therefore E[r(B)] = Θ(
√

B).

(3) Let bi = B−i
B , b′i = (1+ε)B−i

(1+ε)B ; let ai =
∏

j=1..i−1 bj , a′i =
∏

j=1..i−1 b′j .
It is easy to see E[r(B)] =

∑
1≤i≤B ai and E[r((1 + ε)B)] =

∑
1≤i≤(1+ε)B a′i,

therefore E[r((1 + ε)B)]−E[r(B)] ≥ ∑
1≤i≤B a′i− ai. We will prove that ∆ai =

a′i−ai ≥ c′ε for all i ∈ [
√

B, 2
√

B], which gives a lower bound on E[r((1+ε)B)]−
E[r(B)].

Notice that ai = ai−1bi−1 < ai−1. Let ∆bi = b′i − bi = εi
(1+ε)B > 0.

For i ∈ [
√

B, 2
√

B], a′i > ai > exp(− i(i−1)
B) > e−4, therefore

a′i − ai = a′i−1b
′
i−1 − ai−1bi−1 = ai−1(b′i−1 − bi−1) + b′i−1(a

′
i−1 − ai−1)

> ai−1∆bi−1 + bi−1∆ai−1

> ai−1∆bi−1 + bi−1(ai−2∆bi−2 + bi−2∆ai−2)
> ai(∆bi−1 + ∆bi−2) + bi−1bi−2∆ai−2

. . .

> ai(∆bi−1 + ∆bi−2 + . . . + ∆b1) = ai
ε

(1 + ε)B
∗ i(i− 1)

2

> e−4 ε

2(1 + ε)
= Θ(ε)

Finally

E[r((1 + ε)B)]− E[r(B)] >
∑

i∈[
√

B,2
√

B]

∆ai = Θ(ε
√

B) = Θ(ε)E[r(B)]

(4)

var(r(B)) = E[r(B)2]− E[r(B)]2 ≤ E[r(B)2]

=
∑

2≤i≤B+1

Pr[r(B) = i]i2 =
∑

2≤i≤B+1

B

B

B − 1
B

. . .
B − (i− 2)

B
∗ i− 1

B
∗ i2

<
∑

2≤i≤B+1

i3

B
exp(− (i− 1)(i− 2)

2B
)

≤ (
9

16B
e−

5
2B

√
2πB(4B + 3)erf(

2x− 3
2
√

2B
)− 1

4
e−

x2−3x+2
2B (4x2 + 6x + 8B + 9))|B+1

2

= O(B)

