Primality testing (13117^9151-1)/13116 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Calling Brillhart-Lehmer-Selfridge with factored part 29.63% (13117^9151-1)/13116 is PRP! (115.3047s+0.0012s)
realprecision = 10018 significant digits (10000 digits displayed) Welcome to the CHG primality prover! ------------------------------------ Input file is: 13117_9151.in Certificate file is: 13117_9151.out Found values of n, F and G. Number to be tested has 37679 digits. Modulus has 11166 digits. Modulus is 29.634095778965868862% of n. NOTICE: This program assumes that n has passed a BLS PRP-test with n, F, and G as given. If not, then any results will be invalid! Square test passed for F >> G. Using modified right endpoint. Search for factors congruent to 1. Running CHG with h = 6, u = 2. Right endpoint has 4182 digits. Done! Time elapsed: 43520ms. Running CHG with h = 5, u = 1. Right endpoint has 3342 digits. Done! Time elapsed: 20330ms. Running CHG with h = 5, u = 1. Right endpoint has 2961 digits. Done! Time elapsed: 25840ms. Running CHG with h = 5, u = 1. Right endpoint has 2105 digits. Done! Time elapsed: 32240ms. Running CHG with h = 5, u = 1. Right endpoint has 488 digits. Done! Time elapsed: 27370ms. A certificate has been saved to the file: 13117_9151.out Running David Broadhurst's verifier on the saved certificate... Testing a PRP called "13117_9151.in". Pol[1, 1] with [h, u]=[5, 1] has ratio=5.358859357070458499 E-2656 at X, ratio=3.866583952329853871 E-3143 at Y, witness=13. Pol[2, 1] with [h, u]=[4, 1] has ratio=2.2471341023966250040 E-1618 at X, ratio=4.370762972034567292 E-1618 at Y, witness=11. Pol[3, 1] with [h, u]=[5, 1] has ratio=0.07904323746801880062 at X, ratio=1.4455000008714257753 E-856 at Y, witness=11. Pol[4, 1] with [h, u]=[4, 1] has ratio=2.2059668080930449452 E-381 at X, ratio=2.2249896383119031638 E-381 at Y, witness=11. Pol[5, 1] with [h, u]=[6, 2] has ratio=1.0875863470447360695 E-841 at X, ratio=7.042634925429985100 E-1682 at Y, witness=2. Validated in 1 sec. Congratulations! n is prime! Goodbye!A copy of the CHG certificate
13117_9151.out
(5MB) is
included in:
13117_9151.zip
.
Phi(4575,13117)/(18301*202425451*3298012754602867624201) Phi(61,13117)/(536923*875930477) 66588391935055415770064522768125739150761852824869155218090020812163901511697322634031725438859212271396551 8077458632589958405750524879682688205550156155936627395015194169768142042253500961801 225096632082012785072419904838087410245149515275911799771955416304311652379144601 1323829692008386144567258119627481506062791 945809283662098476256081169854254168277 693529892556880192642520943613145169601 480039449608721898362811177895914001 4177418263561126795188298808706601 18630061069807433557489051 1824629218052394624529801 46140414426134931540151 35166018204130007159701 3902471271055368093151 3298012754602867624201 2406854939170653028201 243827303962766334691 180481060021764970051 79173504567283368161 35497733915382568831 6544463180390908601 5198955439221151 122122081261151 49994704326631 28126208866351 2795826653101 1337984167951 1252103443561 334546928701 41294117351 40921211941 27121518661 25602891511 10511644441 2527126951 975051991 875930477 202425451 147659651 88532351 50453101 8439961 6021601 2775991 1619551 1294621 1085801 840601 536923 494101 122611 81421 68443 65881 49411 25321 18301 13537 9151 6833 4027 3391 2851 2551 2113 1831 1009 937 733 367 281 223 151 31 19 13 11 7 3 2
Phi(4575,13117)/(18301*202425451*3298012754602867624201)
(9849 digits) is included in:
13117_9151.zip
.