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Abstract. We determine analytically the modulus of the second eigenvalue for
the web hyperlink matrix used by Google for computing PageRank. Specifically,
we prove the following statement:

“For any matrix A = [cP + (1 — ¢)E]T, where P is an n x n row-stochastic
matrix, E is a nonnegative n x n rank-one row-stochastic matrix,and 0 < ¢ < 1,
the second eigenvalue of A has modulus |A2| < c. Furthermore, if P has at least
two irreducible closed subsets, the second eigenvalue Ay = ¢.”

This statement has implications for the convergence rate of the standard PageR-
ank algorithm as the web scales, for the stability of PageRank to perturbations to
the link structure of the web, for the detection of Google spammers, and for the
design of algorithms to speed up PageRank.

1 Theorem

Theorem 1. Let P be an n x n row-stochastic matrix. Let ¢ be a real number such that
0 < ¢ < 1. Let E be the n x n rank-one row-stochastic matrix E = ev”, where e
is the n-vector whose elements are all e; = 1, and v is an n-vector that represents a
probability distribution®.

Define the matrix A = [cP + (1 — ¢)E]T. Its second eigenvalue |Xz| < c.

Theorem 2. Further, if P has at least two irreducible closed subsets (which is the case
for the web hyperlink matrix), then the second eigenvalue of A is given by A, = c.

2 Notation and Preliminaries

P is an n x n row-stochastic matrix. E is the n x n rank-one row-stochastic matrix
E = ev”, where e to be the n-vector whose elements are all e; = 1. Aisthen x n
column-stochastic matrix:

A=[cP+(1-c)E)T (1)
We denote the ith eigenvalue of A as )\;, and the corresponding eigenvector as x;.
A.’l}i = )\ia:z- (2)

Lj.e., a vector whose elements are nonnegative and whose L1 norm is 1.



By convention, we choose eigenvectors z; such that ||z;||: = 1. Since A is column-
stochastic, \; = 1,1 > |[A2| > ... > |As| > 0.

We denote the ith eigenvalue of P” as v;, and its corresponding eigenvector as y;:
PTy; = ~;y;. Since PT is column-stochastic, v; = 1,1 > || > ... > |y,| > 0.

We denote the ith eigenvalue of ET as u;, and its corresponding eigenvector as z;:
ET2; = p;z;. Since ET is rank-one and column-stochastic, iy = 1,0 = ... = i, =
0.

An n x n row-stochastic matrix M can be viewed as the transition matrix for a Markov
chain with n states.

For any row-stochastic matrix M, Me = e.

A set of states .S is a closed subset of the Markov chain corresponding to M if and only
ifi € Sandj ¢ S implies that M;; = 0.

A set of states .S is an irreducible closed subset of the Markov chain corresponding to
M if and only if S is a closed subset, and no proper subset of S is a closed subset.
Intuitively speaking, each irreducible closed subset of a Markov chain corresponds to
a leaf node in the strongly connected component (SCC) graph of the directed graph
induced by the nonzero transitions in the chain.

Note that £, P, and A” are row stochastic, and can thus be viewed as transition matrices
of Markov chains.

3 Proof of Theorem 1

We first show that Theorem 1 is true forc = 0 and ¢ = 1.

CAsSEl:c=0
If ¢ = 0, then, from equation 1, A = ET. Since E is a rank-one matrix, A, = 0. Thus,
Theorem 1 is proved for c=0.

CAase2:c=1
If ¢ = 1, then, from equation 1, A = PT. Since PT is a column-stochastic matrix,
|A2| < 1. Thus, Theorem 1 is proved for c=1.

CAsE3:0<c<1
We prove this case via a series of lemmas.

Lemma 1. The second eigenvalue of A has modulus || < 1.

Proof. Consider the Markov chain corresponding to A”. If the Markov chain corre-
sponding to A7 has only one irreducible closed subchain S, and if S is aperiodic, then
the chain corresponding to A” must have a unique eigenvector with eigenvalue 1, by the
Ergodic Theorem [3]. So we simply must show that the Markov chain corresponding
to AT has a single irreducible closed subchain S, and that this subchain is aperiodic.



Lemma 1.1 shows that A” has a single irreducible closed subchain S, and Lemma 1.2
shows this subchain is aperiodic.

Lemma 1.1 There exists a unique irreducible closed subset S of the Markov chain cor-
responding to AT

Proof. We split this proof into a proof of existence and a proof of uniqueness.
Existence. Let the set U be the states with nonzero components in v. Let S consist of
the set of all states reachable from U along nonzero transitions in the chain. S trivially
forms a closed subset. Further, since every state has a transition to U, no subset of S
can be closed. Therefore, S forms an irreducible closed subset.

Uniqueness. Every closed subset must contain U, and every closed subset containing U
must contain S. Therefore, S must be the unique irreducible closed subset of the chain.

Lemma 1.2 The unique irreducible closed subset .S is an aperiodic subchain.

Proof. From Theorem 5 in the Appendix, all members in an irreducible closed subset
have the same period. Therefore, if at least one state in S has a self-transition, then
the subset S is aperiodic. Let u be any state in U. By construction, there exists a self-
transition from v to itself. Therefore, S must be aperiodic.

From Lemmas 1.1 and 1.2, and the Ergodic Theorem, |A2| < 1 and Lemma 1 is proved.
Lemma 2. The second eigenvector o of A is orthogonal to e: e” x5 = 0.

Proof. Since |A\z| < |A1] (by Lemma 1), the second eigenvector x of A is orthogo-
nal to the first eigenvector of A™ by Theorem 3 in the Appendix. From Section 2, the
first eigenvector of A7 is e. Therefore, x» is orthogonal to e.

Lemma3. ETz, =0

Proof. By definition, E = ev”, and ET = wveT. Thus, ETz, = veTx,. From
Lemma 2, eTxo = 0. Therefore, ETa5 = 0.

Lemma 4. The second eigenvector x5 of A must be an eigenvector y; of P7, and
the corresponding eigenvalue is v; = A2 /c.

Proof. From equation 1 and equation 2;
cPTxy + 1- c)ET:vz = \aT2 (3)
From Lemma 3 and equation 3, we have:
cPTxy = Moo 4

We can divide through by ¢ to get:

PTil:g = —T2 (5)



If we let y; = 2 and v; = Az /¢, we can rewrite equation 4.
Ply; = viy; (6)

Therefore, x5 is also an eigenvector of PT, and the relationship between the eigenval-
ues of A and PT that correspond to x4 is given by:

)\2 = CY; (7)

Lemmab. [\| <c¢
Proof. We know from Lemma 4 that A\, = ¢v;. Because P is stochastic, we have that

|vi| < 1. Therefore, |A2| < ¢, and Theorem 1 is proved.

4  Proof of Theorem 2
Recall that Theorem 2 states: If P has at least two irreducible closed subsets, As = c.

Proof.
CAsElic=0
This is proven in Case 1 of Section 3.

CAsSE2:c=1
This is proven trivially from Theorem 3 in the Appendix.

CasE3:0<cec<1

We prove this as follows. We assume P has at least two irreducible closed subsets. We
then construct a vector z; that is an eigenvector of A and whose corresponding eigen-
value is \; = c. Therefore, [\z| > ¢, and there exists a A; = ¢. From Theorem 1,
X2 < ¢. Therefore, if P has at least two irreducible closed subsets, A» = c.

Lemma 1. Any eigenvector y; of PT that is orthogonal to e is an eigenvector z; of
A. The relationship between eigenvalues is A\; = ¢v;.

Proof. It is given that eTy; = 0. Therefore,
ETy; =vely; =0 (8)
By definition,
Ply; = viys 9)
Therefore, from equations 1, 8, and 9,

Ay; = cPTy; + 1- C)ETyi = cPTy; = cyiy; (10)



Therefore, Ay; = ¢y;y; and Lemma 1 is proved.
Lemma 2. There exists a \; = c.

Proof. We construct a vector x; that is an eigenvector of P and is orthogonal to e.
From Theorem 3 in the Appendix, the multiplicity of the eigenvalue 1 for P is equal
to the number of irreducible closed subsets of P. Thus we can find two linearly inde-
pendent eigenvectors y; and y, of PT corresponding to the dominant eigenvalue 1.
Let

k‘l = lee (11)
ko =y2Te (12)

Ifky = 0, letx; = yq,elseif ke = 0, let x; = yo. If k1, ks > 0, then let
x; = y1/k1 — ya/ko. Note that x; is an eigenvector of PT with eigenvalue exactly 1
and that z; is orthogonal to e. From Lemma 1, x5 is an eigenvector of A corresponding
to eigenvalue c. Therefore, the eigenvalue A; of A corresponding to eigenvector x; is
/\i =C.

Therefore, |A2] > ¢, and there exists a \; = c¢. However, from Theorem 1, A < c.
Therefore, Ay = ¢ and Theorem 2 is proved.?

5 Implications

The matrix A is used by Google to compute PageRank, an estimate of web-page im-
portance used for ranking search results [11]. PageRank is defined as the stationary
distribution of the Markov chain corresponding to the n x n stochastic transition matrix
AT The matrix P corresponds to the web link graph; in making P stochastic, there
are standard techniques for dealing with web pages with no outgoing links [6]. Further-
more, the web graph has been empirically shown to contain many irreducible closed
subsets [1], so that Theorem 2 holds for the matrix A used by Google.

Theorem 1 has implications for the rate of convergence of PageRank, for the stabil-
ity of PageRank to perturbations to the link structure, and for the design of algorithms
to speed up PageRank computations. Furthermore, it has broader implications in areas
ranging from graph partitioning to reputation schemes in peer-to-peer networks. We
briefly discuss these implications in this section.

Convergence of PageRank. The PageRank algorithm uses the power method to com-
pute the principal eigenvector of A. The rate of convergence of the power method is
given by % [13,2]. For PageRank, the typical value of ¢ has been given as 0.85; for
this value of ¢, Theorem 2 thus implies that the convergence rate of the power method
[A2/A1| for any web link matrix A is 0.85. Therefore, the convergence rate of PageRank

will be fast, even as the web scales.

2 Note that there may be additional eigenvalues with modulus ¢, such as —c.



Stability of PageRank to Perturbations in the Link Structure. The modulus of the non-
principal eigenvalues also determines whether the corresponding Markov chain is well-
conditioned. As shown by Meyer in [9], the greater the eigengap |A1| — | A2, the more
stable the stationary distribution is to perturbations in the Markov chain. Our analysis
provides an alternate explanation for the stability of PageRank shown by Ng et al. [10].

Accelerating PageRank Computations. Previous work on accelerating PageRank com-
putations assumed A2 was unknown [6]. By directly using the equality Ao = ¢, im-
proved extrapolation techniques may be developed as in [6].

Spam Detection. The eigenvectors corresponding to the second eigenvalue A, = c are
an artifact of certain structures in the web graph. In particular, each pair of leaf nodes
in the SCC graph for the chain P corresponds to an eigenvector of A with eigenvalue c.
These leaf nodes in the SCC are those subgraphs in the web link graph which may have
incoming edges, but have no edges to other components. Link spammers often generate
such structures in attempts to hoard rank. Analysis of the nonprincipal eigenvectors of
A may lead to strategies for combating link spam.

Broader Implications. This proof has implication for spectral methods beyond web
search. For example, in the field of peer-to-peer networks, the EigenTrust reputation
algorithm given in [7] computes the principal eigenvector of a matrix of the form de-
fined in equation 1. This result shows that EigenTrust will converge quickly, minimizing
network overhead. In the field of image segmentation, Perona and Freeman [12] present
an algorithm that segments an image by thresholding the first eigenvector of the affinity
matrix of the image. One may normalize the affinity matrix to be stochastic as in [8]
and introduce a regularization parameter as in [11] to define a matrix of the form given
in equation 1. The benefit of this is that one can choose the regularization parameter
¢ to be large enough so that the computation of the dominant eigenvector is very fast,
allowing the Perona-Freeman algorithm to work for very large scale images.
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Appendix

This appendix contains theorems that are proven elsewhere and are used in proving
Theorems 1 and 2 of this paper.

Theorem 3. (from page 126 of [5]) If P is the transition matrix for a finite Markov
chain, then the multiplicity of the eigenvalue 1 is equal to the number of irreducible
closed subsets of the chain.

Theorem 4. (from page 4 of [13]) If ; is an eigenvector of A corresponding to the
eigenvalue )\;, and y; is an eigenvector of AT corresponding to \;, then z;Ty; = 0 (if
Ai # Aj).

Theorem 5. (from page 82 of [4]) Two distinct states belonging to the same class (ir-
reducible closed subset) have the same period. In other words, the property of having
period d is a class property.



