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Abstract. PageRank, the popular link-analysis algorithm for rankingweb pages,
assigns a query and user independent estimate of “importance” to web pages.
Query and user sensitive extensions of PageRank, which use abasis set of bi-
ased PageRank vectors, have been proposed in order to personalize the ranking
function in a tractable way. We analytically compare three recent approaches to
personalizing PageRank and discuss the tradeoffs of each one.

1 Preliminaries

In this section we summarize the definition of PageRank [7] and introduce the notation
we will use subsequently.

Underlying the definition of PageRank is the following basicassumption. A link
from a pageu ∈ Web to a pagev ∈ Web can be viewed as evidence thatv is an
“important” page. In particular, the amount of importance conferred onv by u is pro-
portional to the importance ofu and inversely proportional to the number of pagesu
points to. Since the importance ofu is itself not known, determining the importance for
every pagei ∈ Web requires an iterative fixed-point computation.

We next describe an equivalent formulation in terms of a random walk on the di-
rected Web graphG. Let u → v denote the existence of an edge fromu to v in G. Let
deg(u) be the outdegree of pageu in G. Consider a random surfer visiting pageu at
timek. In the next time step, the surfer chooses a nodevi from amongu’s out-neighbors
{v|u → v} uniformly at random. In other words, at timek + 1, the surfer lands at node
vi ∈ {v|u → v} with probability1/ deg(u).

The PageRank of a pagei is defined as the probability that at some particular time
stepk > K, the surfer is at pagei. For sufficiently largeK, and with minor modifi-
cations to the random walk, this probability is unique, illustrated as follows. Consider
the Markov chain induced by the random walk onG, where the states are given by the
nodes inG, and the stochastic transition matrix describing the transition from i to j is
given byP with Pij = 1/ deg(i). If P is aperiodic and irreducible, then the Ergodic
Theorem guarantees that the stationary distribution of therandom walk is unique [6]. In
the context of computing PageRank, the standard way of ensuring thatP is irreducible
is to add a new set of complete outgoing transitions, with small transition probabilities,
to all nodes, creating a complete (and thus an aperiodic and strongly connected) transi-
tion graph.1 Let E be then × n rank-one row-stochastic matrixE = ev

T , wheree is

1 We ignore here the issue ofdangling nodes, e.g., nodes with outdegree 0. See [5] for a standard
way of dealing with this issue.



the n-vector whose elements are allei = 1 andv is ann-vector whose elements are all
non-negative and sum to 1. We define a new, irreducible MarkovchainAT as follows:2

A = [cP + (1 − c)E]T (1)

In terms of the random walk, the effect ofE is as follows. At each time step, with
probability(1 − c), a surfer visiting any node will jump to a random Web page (rather
than following an outlink). The destination of the random jump is chosen according to
the probability distribution given inv. Artificial jumps taken because ofE are referred
to asteleportation.

When the vectorv is nonuniform, so thatE adds artificial transitions with nonuni-
form probabilities, the resultant PageRank vector can be biased to prefer certain kinds
of pages. For this reason, we refer tov as thepersonalization vector.

2 Approaches to Personalizing PageRank

Let n be the number of pages on the web. Letx(v) denote then-dimensional per-
sonalized PageRank vector corresponding to then-dimensional personalization vec-
tor v. x(v) can be computed by solving the following eigenvalue problem, where
A = cPT + (1 − c)ve

T :

x = Ax (2)

Rewriting the above, we see that

x = cPT
x + (1 − c)v (3)

x − cPT
x = (1 − c)v (4)

(I − cPT )x = (1 − c)v (5)

I − cP is strictly diagonally dominant, so thatI − cP is invertible. Therefore,(I −
cP )T = I − cPT is also invertible. Thus, we get that

x = (1 − c)(I − cPT )−1
v (6)

Let Q = (1− c)(I − cPT )−1. By lettingv = ei, whereei is theith elementary vector3

we see that theith column of the matrixQ is x(ei), i.e., the personalized PageRank
vector corresponding to the personalization vectorei.

The columns ofQ comprise a complete basis for personalized PageRank vectors,
as any personalized PageRank vector can be expressed as a convex combination of
the columns ofQ. For any personalization vectorv, the corresponding personalized
PageRank vector is given byQv. This formulation corresponds to the original approach
to personalizing PageRank suggested by Page et al. [7] that allows for personalization
on arbitrary sets of pages.

2 We define the chain in terms of the transpose so that we can discuss right (rather than left)
eigenvectors.

3 i.e.,ei has a 1 in theith component, and zeros elsewhere



Unfortunately, this first approach, which uses the completebasis for personalized
PageRank, is infeasible in practice. Computing the dense matrix Q offline is impracti-
cal, as is computingx(v) at query time using the Power Method.

However, we can compute low-rank approximations ofQ, denoted aŝQ, that still
allow us to achieve a part of the benefit of fully personalizedPageRank. Rather than us-
ing a full basis (i.e., the columns ofQ), we can choose to use a reduced basis, e.g., using
only k ≤ n personalized PageRank vectors, each of which is a column (ormore gen-
erally, a convex combination of the columns) ofQ. In this case, we cannot express all
personalized PageRank vectors, but only those corresponding to convex combinations
of the PageRank vectors in the reduced basis set:

x(w) = Q̂w (7)

wherew is a stochastick-vector representing weights over thek basis vectors.
The following three approaches each approximateQ with some approximation̂Q,

although they differ substantially in their computationalrequirements and in the granu-
larity of personalization achieved.

Topic-Sensitive PageRank. The Topic-Sensitive PageRank scheme proposed by Haveli-
wala [2] computes ann × k approximation toQ usingk topics, e.g., the 16 top level
topics of the Open Directory [1]. Columnj of Q̂ is given byx(vj), wherevj is a dense
vector generated using a classifier for topicTj; (vj)i represents the (normalized) degree
of membership of pagei to topicj. Note that in this scheme, each column ofQ̂ must be
generated independently, so thatk must be kept fairly small (e.g.,k = 16). This scheme
uses a fairly coarse basis set, making it more suitable for modulating the rankings based
on the topic of the query and query context, rather than for truly “personalizing” the
rankings to a specific individual. The use of a good set of representative basis topics
ensures that the approximation̂Q will be useful.

In Topic-Sensitive PageRank,̂Q is generated completely offline. Convex combina-
tions are taken at query time, using the context of the query to compute the appropriate
topic weights.

In terms of the random surfer model of PageRank, this scheme restricts the choice
of teleportation transitions so that the random surfer can teleport to a topicTj with some
probabilitywj , followed by a teleport to a particular pagei with probability(vj)i.

Modular PageRank. The Modular PageRank approach proposed by Jeh and Widom [3]
computes ann × k matrix using thek columns ofQ corresponding to highly ranked
pages. In addition, that work provides an efficient scheme for computing thesek vec-
tors, in whichpartial vectors are computed offline and then composed at query time,
making it feasible to havek ≥ 104.

In terms of the random surfer model of PageRank, this scheme restricts the choice of
teleportation transitions so that the random surfer can teleport to certain highly ranked
pages, rather than to arbitrarily chosen sets of pages.

A direct comparison of the relative granularity of this approach to the topic-sensitive
approach is difficult; although the basis set of personalized PageRank vectors is much
larger in this scenario, they must come from personalization vectorsv with singleton



nonzero entries corresponding to highly ranked pages. However, the larger size of the
basis set does allow for finer grained modulation of rankings.

BlockRank. The BlockRank algorithm proposed by Kamvar et al. [4] computes ann×k
matrix corresponding tok “blocks”. E.g, in that work, each block corresponds to a host,
such aswww-db.stanford.edu or nlp.stanford.edu. That work computes a matrix̂Q
in which columnj corresponds tox(vj), wherevj represents thelocal PageRank of
the pages in blockj. The BlockRank algorithm is able to exploit the Web’s inherent
block structure to efficiently compute many of these block-oriented basis vectors, so
thatk ≥ 103 is feasible.

In terms of the random surfer model of PageRank, this scheme restricts the choice
of teleportation transitions so that the random surfer can teleport to blockBj with prob-
ability wj , followed by a teleport to a particular pagei in block Bj with probability
(vj)i, rather than to arbitrary sets of pages.

Again, a direct comparison of the granularity of this approach with the previous
two is difficult. However, the BlockRank approach allows fora large number of basis
vectors without the restriction that the underlying personalization vectors be derived
from highly ranked pages.
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