
CAPTURING, INDEXING, AND RETRIEVING SYSTEM

HISTORY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Steve Yu Zhang

March 2007

c© Copyright by Steve Yu Zhang 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Armando Fox) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Moises Goldszmidt)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Christos Kozyrakis)

Approved for the University Committee on Graduate Studies.

iii

Abstract

Complex networked systems are widely deployed today and support many popu-

lar services such as Google and Ebay.com. Due to their size and complexity, these

systems tend to behave in ways that are difficult for operators to understand. In

addition, frequent changes such as hardware and software upgrades mean that in-

sights into system behavior could be invalidated at any time. When these complex

systems exhibit problems, administrators must often analyze millions of metrics col-

lected about system state, the vast majority of which are irrelevant for any particular

problem. Furthermore, systematic methods of utilizing previous diagnostic efforts to

aid problem resolution are lacking.

This dissertation describes our approach of automatically extracting indexable

descriptions, or signatures, that distill the system information most associated with

a problem and can be formally manipulated to facilitate automated clustering and

similarity based search. We argue that our technique helps operators better manage

problems both by improved leveraging of past diagnostic efforts, and by automated

identification of relevant system information.

The first half of this thesis details how signatures can be used to aid system

problem diagnosis and the methodology for evaluating their effectiveness. We also

present a specific signature construction method based on statistical machine learning

and show that signatures generated in this manner have significantly better clustering

and retrieval properties compared to naive approaches. We validated our techniques

on a testbed system with injected problems, as well as a production system serving

real customers.

The latter half of this thesis focuses on a couple of challenges we faced. First,

iv

because system behavior is often highly dynamic, we introduce a technique for em-

ploying an ensemble of models to capture changes in behavior. Second, problem

symptoms often depend on how normal system behavior is defined. We present a

method of using multiple models of normality to make signatures robust to variances

in normal system behavior.

We believe our signatures-based approach offers a promising framework for lever-

aging statistical and information retrieval techniques to address the challenges posed

by the complexity of today’s and tomorrow’s systems.

v

Acknowledgements

First of all, I would like to convey my sincere gratitude to my Ph.D. adviser, Ar-

mando Fox. His invaluable advice and guidance have greatly helped me on my journey

through graduate school. Armando’s mentorship has been instrumental in my devel-

opment as a computer scientist. I benefited enormously from our many discussions

and I hope to be able to continue them in the future.

During the last three years of my research, I collaborated closely with Ira Co-

hen and Moises Goldszmidt at Hewlett-Packard Labs. Their work provided the basis

for my thesis. This dissertation would truly not have been possible without their

key contributions. My frequent interactions with Ira and Moises often inspired and

enabled significant progress in my research. Since I entered graduate school with a

background in systems, their statistical knowledge was critical to every major aspect

of my thesis. As a member of my committee, Moises also offered many helpful sug-

gestions for improving this dissertation. I appreciate all of the help and effort they

have both put into working with me.

I would like to thank Christos Kozyrakis, who also served on my thesis commit-

tee. He not only provided valuable feedback for this thesis, but also devoted much

time to help me improve my oral defense presentation. Thank you also to the other

member of my orals committee, Philip Levis and Rob Tibshirani. Their insightful

questions offered a helpful perspective regarding the potential and the limitations of

my research.

I would also like to thank Kumar Goswami and Marilyn Lam for enabling my in-

volvement with so many wonderful colleagues at Hewlett-Packard Labs. In particular,

Julie Symons and Terence Kelly helped me immensely in collecting and preparing the

vi

datasets that were key to evaluating the approaches described in this thesis. Thank

you to everyone else at HP Labs who have provided valuable feedback for several of

my presentations and publications.

As part of the Recovery-Oriented Computing (ROC) project and then the Reliable

Adaptive Distributed systems Laboratory (RAD Lab), I have had the pleasure of

working with many graduate students and faculty at U.C. Berkeley. I appreciated

all of the insightful presentations and research discussions at our various meeting

and retreats. I would also like to thank several colleagues at Stanford who have

collaborated with me, including George Candea, Pedram Keyani, and Emre Kıcıman.

Thank you to all of the staff member at the Stanford University Computer Science

department, especially Sarah Lee and Kathi DiTommaso, who have helped me deal

with an array of administrative tasks.

I would like to especially thank my parents, Rick and Ying, who have always put

me and my education as their top priorities. They worked so hard and sacrificed so

much in order to provide me with the opportunities they never had. I truly would

not be the person I am today without their love and support.

Most of all, I want to express my deep love and appreciation for Shuyi, my wife

and my best friend. She has always loved, supported, and motivated me in countless

ways. She inspires me to be a better person in every aspect. I am especially grateful

for the spirit, joy, and happiness that she continually brings into my life.

During my career as a Ph.D. student, I have received generous financial support

from the National Science Foundation as well as Hewlett-Packard Labs.

vii

Contents

Abstract iv

Acknowledgements vi

1 Overview and motivation 1

1.1 Problem: diagnosing failures in complex systems 2

1.1.1 System (un)reliability . 2

1.1.2 Complex systems difficult to understand 3

1.1.3 Current diagnosis techniques are primitive 3

1.1.4 Too much information . 5

1.2 Approach: constructing signatures of system state 6

1.3 Contributions and thesis map . 9

2 Background 11

2.1 Three tiered Internet services . 11

2.2 Assumptions about systems and system behaviors 13

2.2.1 Measurable system properties 14

2.2.2 Service level objectives . 16

2.2.3 Relationships between low level metrics and SLO 17

2.3 Statistical machine learning overview 17

2.3.1 Supervised learning and classification 18

2.3.2 Bayesian network classifiers 19

2.3.3 Clustering . 20

viii

3 Signature usage and evaluation methodology 22

3.1 Overview . 23

3.2 Calculating distance between signatures 24

3.3 Retrieving signatures . 24

3.4 Clustering signatures . 26

3.4.1 Clustering algorithms . 26

3.4.2 Clustering entropy . 27

3.5 Summary . 28

4 Constructing signatures 30

4.1 Sketch of the approach . 30

4.2 Inducing models on system data . 31

4.2.1 Formalizing the problem . 31

4.2.2 Feature selection . 33

4.3 Metric attribution . 35

4.4 Extensions to original metric attribution procedure 36

4.5 Signature based on metric attribution 37

4.6 Other signature compositions . 38

4.7 Summary . 41

5 Evaluation datasets and results 43

5.1 Trace collection . 44

5.2 Experimental testbed traces . 44

5.2.1 System architecture . 44

5.2.2 Inducing SLO violations . 45

5.3 Production system traces . 46

5.3.1 System architecture . 46

5.3.2 Diagnosed problem: Insufficient Database Connections (IDC) . 49

5.4 Signature compositions . 49

5.5 Results . 50

5.5.1 Retrieval . 51

5.5.2 Clustering . 53

ix

5.5.3 Case study: Leveraging Signatures Across Installations 59

5.6 Performance . 63

5.7 Limitations of signature evaluation 65

5.8 Summary . 66

6 Adapting to change 69

6.1 Dynamic system behavior . 69

6.2 Approach: Ensembles of Models . 70

6.2.1 Ensemble vs. Single Model . 71

6.2.2 Inducing and incorporating new models 72

6.2.3 Utilizing multiple models . 74

6.3 Evaluation . 75

6.3.1 Workloads . 76

6.3.2 Results . 76

6.4 Summary . 82

7 Improving signature robustness 84

7.1 Problem: Good behavior not unique 84

7.2 Naive approach . 85

7.3 Better approach: use baseline groups 87

7.4 Evaluation . 90

7.4.1 Inconsistency . 92

7.4.2 Practical implications . 95

7.5 Summary . 96

8 Practical considerations and limitations 97

8.1 Interaction with operators . 97

8.1.1 Usage guide . 98

8.1.2 Verification . 99

8.1.3 Troubleshooting signatures . 100

8.2 Limitations . 102

8.2.1 SLO Definitions . 102

x

8.2.2 Root cause diagnosis . 104

9 Related work 106

9.1 Techniques for system problem diagnosis 106

9.2 Statistical techniques for system problem detection 109

9.3 Statistical and signature based approaches in other domains 110

10 Future work 112

10.1 Detecting temporal patterns . 113

10.2 Automated diagnosis and repair . 114

10.3 Application to different systems and domains 114

11 Conclusions 116

Bibliography 118

xi

List of Tables

2.1 Examples of high and low level metrics 15

5.1 Key hardware and software components in FT 47

5.2 Summary of FT application traces . 48

5.3 Examples of the different signature compositions 51

5.4 Area under precision-recall curves for testbed traces 53

5.5 Example of a clustering instance using metric attribution based signa-

tures on FT-TRACE data . 58

5.6 Comparison of the centroid values for four clusters 59

5.7 Performance impact of signature construction and use 65

6.1 Summary of adaptation performance results 78

6.2 Minimum sample sizes needed to achieve accuracy that is at least 95%

of the maximum accuracy achieved for each workload condition . . . 81

7.1 Signatures based on a baseline group 89

xii

List of Figures

4.1 Example of a metric considered attributed and inversely attributed . . 39

4.2 Examples of a metric considered not attributed 40

5.1 Experimental testbed system . 45

5.2 Architecture of the “FT” production system 47

5.3 Precision-recall curves for TESTBED traces. 52

5.4 Temporal location of the instances of the IDC problem 54

5.5 Precision-recall graph for retrieval of the signatures of the IDC issue . 55

5.6 Clustering on the labeled data from TESTBED 56

5.7 Clustering on the data from FT-TRACE 57

5.8 Instances of the three “pure” abnormal clusters from Table 5.5), over-

laid on average response time . 60

5.9 Comparing the signatures from the Asia failover period and the IDC

problem in the Americas . 62

5.10 Average response time during the Asia1 failover period 63

5.11 Throughput for the XYZ Transaction during the Asia1 failover period 64

5.12 CPU utilization on DB server during Asia1 failover period 64

6.1 Relevant sequences of average web server response time for RAMP and

BURST . 77

6.2 Balanced accuracy of ensemble of models during training 79

6.3 Learning surface for RAMP experiment showing balanced accuracy . 80

7.1 Histograms of retrieval accuracies when using different baselines . . . 87

xiii

7.2 Mean and standard deviation of retrieval accuracy against baseline

group parameters . 91

7.3 Inconsistency against baseline group parameters 94

7.4 Inconsistency versus standard deviation of retrieval accuracy 95

8.1 Example of SLO state not representative of system behavior 105

xiv

Chapter 1

Overview and motivation

The continuous growth in computer processing power and network capabilities over

the last 50 years have enabled the construction of extremely complex networked sys-

tems, which are deployed widely today. Trillions of dollars of stocks and bonds are

traded everyday through electronic means. Billions of emails, which has become

closely intertwined in both our business and social lives, are exchanged every hour.

Millions of inquiries are answered by Internet search engines each minute. It is clear

that the very fabric of our society has come to depend on the correct functioning of

these types of systems. However, proper management of these very complex systems

presents a daunting challenge. In the relatively short history of computing, design-

ing for reliability has usually taken a backseat to maximizing raw performance. The

unfortunate consequence is that not only are systems today prone to many types of

failures, but also that when problems do occur, they are often difficult to diagnose

and resolve.

1

CHAPTER 1. OVERVIEW AND MOTIVATION 2

1.1 Problem: diagnosing failures in complex sys-

tems

1.1.1 System (un)reliability

Although computers today are hundreds of times more powerful compared to those of

15 years ago, their reliability has not improved nearly that quickly. While electronic

hardware today is more reliable, the ever increasing complexity of computer systems

has resulted in more points of failure for each system. In addition, while programming

languages and design techniques have improved in recent history, there are still many

bugs that make it into a production system. Popular online services such as Google

and Amazon.com utilize data centers with ten of thousands of components, ranging

from servers to network attached storage to routers and switches. Misbehavior of even

a small subset of these components can have significant impact on the performance

and availability of the entire service. Configuring and upgrading the software for

these systems are also extremely complex tasks that sometimes cause unanticipated

downtime or service degradation.

According to Keynote, an Internet service monitor, the top 40 business web sites

had a typical availability of 98% during 2006. This translates to roughly 7 days of

downtime each per year. Contrast this to telephone networks, where the gold standard

is “five nines” availability (99.999%), or less than 5 minutes per year [32]. Problems1

are not restricted to large Internet services. During two days in mid-January 2007, the

Chicago Board of Trade suffered 3 separate outages of their electronic trading system

[45]. The economic cost of a slowdown or outage extends beyond just the revenue

lost during the problem. Over the last year, service unavailability at high profile

services such as Ebay.com, Youtube.com, Amazon.com, and many more, were widely

reported by the mainstream press. Although most of these failures only resulted in

a few hours of downtime, the negative publicity from such an incident can affect

1We use the term problem to refer broadly to any undesirable behavior of a system, regardless of
root cause. This includes fail-stop scenarios that render a service completely unavailable, situations
where the service is merely unacceptably slow, and cases when the system responds incorrectly to
given input. See section 2.2.2 for a more detailed discussion of undesirable behavior.

CHAPTER 1. OVERVIEW AND MOTIVATION 3

business well after the original issue is fully addressed.

1.1.2 Complex systems difficult to understand

Although diagnosing problems in simple single node systems is often far from trivial,

the sheer size and complexity of large scale services, many designed to serve up to

millions of concurrent users, presents several additional significant challenges.

• Large complex systems exhibit emergent behavior that is not easily predictable

from the behavior of individual components [37]. The more complex the system,

the more likely that there is emergent behavior.

• It is difficult for any single person to be familiar with all of the components

of a large system and how they interact with one another. Often, these ser-

vices are supported by very large teams of engineers, where each individual

understands only a small aspect of the system in detail. Further complicating

matters, separate divisions of a company or even separate companies can be

responsible for different parts of a system. Responsibility for resolving issues

is frequently passed back and forth from one administrative unit to another,

hampering diagnostic and repair efforts.

• Many large systems and the environments in which they operate are continually

evolving. Even if it were possible to analyze and understand all of the intricacies

in a complex system, much of the analysis would often be invalidated by software

or hardware upgrades to even a single component, as well as by significant

changes in the nature of the workload applied to the system.

These challenges apply not only to problem resolution, but also to the initial deploy-

ment and ongoing maintenance of large complex software systems.

1.1.3 Current diagnosis techniques are primitive

The first step towards resolving failures is to detect them. Failure detection is difficult

and much work that has been done recently in this area [11, 27]. However, the focus

CHAPTER 1. OVERVIEW AND MOTIVATION 4

of this thesis is on the second step, diagnosing the problem once it is discovered.

While simple actions, such as rebooting a system in part or whole [9], may solve a

variety of problems without requiring full diagnosis, many problems require detailed

analysis to determine permanent solutions that should be applied. This includes

conditions related to misallocation or shortage of resources that leads to persistent

degradations in performance and other anomalies that can be addressed only by

nontrivial configuration changes.

Failure diagnosis today tends to rely on knowledgable system administrators.

They must be familiar with all of the important components and have a solid higher

level understanding of the behavior of the system as whole. Past experience in diag-

nosing and fixing problems in their system or a similar system usually helps them to

resolve common problems quickly. Although this approach might be adequate for an

experienced operator managing a system with only a few nodes, it is a poor solution

in general for several reasons.

• Capable and experienced system administrators are difficult to find and expen-

sive to keep. Partly (if not mostly) due to the lack of advanced tools for failure

analysis and recovery, good system administrators are in high demand.

• Diagnosing a problem that has never been seen before still presents a challenge,

even to the most astute operators.

• Most importantly, this approach does not scale well to extremely complex sys-

tems. A system is more than just the sum of its parts. Having a group of

administrators, each responsible for a portion of a system, is simply not effec-

tive for diagnosing systemic issues.

Furthermore, there are currently only informal techniques for leveraging past di-

agnostic efforts. Using the text of error messages to search the World Wide Web is

one common approach. However, those methods are inadequate since many problems

do not exhibit simple error messages. Therefore, we believe that a systematic method

for identifying and retrieving similar problem instances from the past would be in-

valuable. If the problem had been previously resolved, we could simply revisit the

CHAPTER 1. OVERVIEW AND MOTIVATION 5

diagnosis and perhaps reapply the repair actions. Even if the past problem remained

unresolved, we could gather statistics regarding the frequency of recurrence of that

problem, accumulating vital information for prioritizing or escalating diagnosis and

repair efforts.

1.1.4 Too much information

While it may appear that the predominant problem for novice troubleshooters is the

lack of knowledge about system behavior, in many cases, what is truly hampering

their efforts is actually the overabundance of information, most of which being irrel-

evant. Besides collecting high level data about the behavior of the overall service,

e.g. throughput and latency, many metrics2 from multiple layers of abstraction are

usually monitored for each component of a system. These typically include:

• Hardware level metrics (e.g. power consumption)

• Networking metrics (e.g. packet rates)

• Operating system level metrics (e.g. CPU utilization, memory usage)

• Application specific metrics (e.g. event counts)

In addition, application and operating system messages are usually dumped into log

files [3]. Section 2.2.1 examines in more detail all of the types of information that is

typically collected about systems.

The intuition that good administrators develop over time allows them to quickly

reduce the universe of possible diagnosis to a few prime suspects, given a set of

symptoms about a problem. Information about the system that cannot be used

to confirm or contradict those suspicions can simply be ignored unless all of those

suspicions prove false. However, for larger and more complex systems, experience

alone becomes inadequate for filtering the deluge of mostly irrelevant data into a

manageable stream of important information.

2Usually up to a few hundred per system node.

CHAPTER 1. OVERVIEW AND MOTIVATION 6

Frequently, even more information could be monitored or logged. The more data

that is collected, the greater the chance that details important for accurate diag-

nosis are included. Unfortunately, it is already impractical for even a large group

of operators to wade through the enormous amounts gathered data, often exceeding

hundreds of Gigabytes per day. Filtering for potentially relevant information is like

sifting for needles in a haystack. The ease with which computers can analyze large

collections of information, such as in data mining, suggests that designing automated

techniques to aid system problem diagnosis may be a fruitful approach. Furthermore,

given the dynamic and ever evolving nature of systems today, techniques which rely

on detailed specifications about the structure of a system would be impractical. Such

specifications would be expensive to generate and require constant updating to reflect

system changes. Any approaches we develop should be useful without a priori system

specific knowledge.

1.2 Approach: constructing signatures of system

state

Our approach involves automatically extracting indexable descriptions, or signatures,

that both distill the system information most associated with a problem and can be

formally manipulated to facilitate automated clustering and similarity based search.

We argue that our technique helps operators better manage problems both by im-

proved leveraging of past diagnostic efforts, and by automated identification of rele-

vant system information.

Diagnosing problems in the large software systems ubiquitous today requires tech-

niques that can leverage large amounts of observed data and help operators under-

stand the many complex behaviors that their systems may exhibit. This dissertation

describes our approach of utilizing statistical machine learning methods to extract

indexable signatures of system states. We will also explore the various ways in which

operators can harness the power of signatures to aid diagnosis and resolution of system

failures.

CHAPTER 1. OVERVIEW AND MOTIVATION 7

A signature is a indexable representation of system state that captures information

relevant to high level system behavior, where similarity between states can be inferred

by the distance between signatures. The more accurate the inference – we refer to this

as the accuracy of the signatures – the more useful the signatures. Perfect accuracy

is not required for signature usability. Nor is there a well defined boundary where

signatures go from useful to not useful. While the marginal utility of increasing

signature accuracy is an interesting topic, it will not be addressed in this thesis and

we simply assume that higher signature accuracy is always better. Using accurate

signatures offers the following benefits:

• A systematic way of comparing system problems by comparing their signatures.

Past diagnostic efforts can be applied whenever signatures indicate that a prob-

lem is similar to a previous one. Diagnostic efforts are often quite expensive,

meaning that the cost savings from being able to leverage past work may be

enormous.

• The ability to gather statistics on the frequency of recurrence of each problem.

This gives operators the ability a sound method for prioritizing or delegating

problem diagnosis efforts.

• Although it is not a requirement that signatures must have a smaller memory

footprint than the original system data, practically speaking, this should be

case for any reasonable method of generating the signatures. If that is the case,

then signatures also represent an efficient method of archiving system history.

System history often has to be stored for long periods of time not only to aid

system management, but also for auditing or compliance needs. Signatures not

only provide for the ability to index system history, they may also be stored in

lieu of the real system data, often resulting in storage cost savings.

Note that these benefits apply to any signatures based approach, regardless of how the

signatures themselves are actually extracted. Signatures could be created manually,

i.e. by operators sifting through system data. We will present not only ways of

utilizing signatures (regardless of how they are created) for system problem diagnosis,

CHAPTER 1. OVERVIEW AND MOTIVATION 8

but also an automated statistical method for extracting signatures that results in

significantly more accurate signatures when compared to naive approaches.

We use statistical machine learning techniques to extract relevant patterns and

correlations from information collected about a system. These patterns are then

encoded to become the signature of the state that the system was in when those

observations were recorded. In the past, these methods were often considered too

computationally expensive for use in a soft-real time manner. However, significant

improvements in both processing power and the statistical methods themselves have

enabled analysis of system data in soft real time.

There are three main advantages of our statistical approach.

• No assumptions are made about system design, structure, or behavior. Because

a priori knowledge is unnecessary, this technique can be applied to almost any

kind of system. Also, adaptation to changes in system internals or workload is

natural and no operator invention is needed.

• Since relevant patterns and correlations are encoded in signatures themselves,

operators can directly use this information to help with diagnostic efforts.

• The approach is fast enough to allow for soft-real time analysis, where signa-

tures of system state can be generated seconds after monitored system data is

recorded.

For any method based on statistical extraction of patterns and correlations to rea-

sonably work, relevant patterns and correlations must actually exist and be captured

by the data collected from a system. Fortunately, the primary reason more infor-

mation is not usually captured about a system is the lack of ability to analyze the

additional data. Our automated statistical techniques should address that concern

and encourage administrators to expand monitoring capabilities, which will in turn

improve the potential usefulness of our approach.

CHAPTER 1. OVERVIEW AND MOTIVATION 9

1.3 Contributions and thesis map

This thesis presents a statistical approach to analyzing failures in complex software

systems. In particular, we are advocating using statistical and machine learning tech-

niques to automatically generate signatures of system state. The goal of signatures is

to aid operators (especially less experienced ones) in diagnosing and resolving system

problems.

The first half of this thesis explains the background and techniques for constructing

and using signatures and demonstrates their effectiveness. The latter half explores a

couple of fundamental challenges we encountered. These challenges apply not only

to the approach we advocate, but also to many other statistics based approaches for

this domain.

This thesis makes four main contributions:

• An method for automatically generating signatures of system state that cap-

ture the essential state of an enterprise system and are effective for clustering

and similarity based retrieval using known techniques from pattern recognition

and information retrieval [18]. We show that the construction of an effective

signature is nontrivial – the naive approach yields poor clustering and retrieval

behaviors, but good results are obtained with an approach based on the use of

statistical methods to capture relationships between low-level system metrics

and high-level behaviors. We also show that this approach is computationally

efficient enough to be applied in soft-real time in large-scale systems.

• Demonstration of using signatures to cluster and identify performance problems,

and to compute statistics about the frequency of their occurrence. This in

turn lets an operator distinguish a recurrent condition from a transient or first-

time condition, and even annotate the corresponding signatures(s) with a repair

procedure or other explanation for future reference when the same problem

recurs.

• A signature generation method that allow for adaptation to changing system

and workload behavior by employing an ensemble of statistical models.

CHAPTER 1. OVERVIEW AND MOTIVATION 10

• Because system problem symptoms depend on the desirable behaviors that a

system exhibits, we developed a technique for evaluating and improving the

robustness of signatures with respect to variances in desirable behavior.

All of our techniques were verified on data from both an experimental testbed as well

as an enterprise system.

Chapter 2 presents background information. We first describe the common class

of enterprise systems that we focused on for the evaluation of our approach. We then

state some assumptions about these systems and their behaviors. Finally, we will

introduce statistical machine learning concepts that will be used in explaining our

approach.

Chapter 3 describes how signatures can be used and evaluated while Chapter 4

describes in detail our specific method for generating signatures. Chapter 5 presents

our evaluation datasets and the results of the evaluation.

Chapters 6 and 7 explore significant challenges that we faced. First, we describe

our method for building models based on ever changing system behaviors. We then

discuss the how lack of a single model of desirable system behavior complicates sig-

nature construction and usage, and a method for mitigating those effects.

Chapter 8 examines the usage of a signature based diagnosis tool from an system

operator’s point of view and discusses limitations of our technique and statistical

techniques in general.

Chapter 9 explores related work in system problem detection and diagnosis. We

also describe signature based approaches for tasks in other domains.

Finally, Chapters 10 and 11 describe future work and conclude.

Chapter 2

Background

We define a signature to be an indexable description of system state. Ideally, sim-

ilarity between signatures directly implies similarity between the root causes of the

corresponding system states. The accuracy of this implication determines the quality

of the signatures. Good signatures offer operators a systematic method of comparing

system problems. This allows them to easily leverage previous diagnostic efforts when

new failures emerge, among many other benefits that signatures can provide.

This dissertation advocates a method of automatically generating signatures using

statistical machine learning (SML) techniques. This chapter will first describe a

popular class of systems, the three tiered internet services. We will then explain our

assumptions about systems and system behavior that enable our approach. Finally,

some important SML concepts that form a basis for our approach are explored.

2.1 Three tiered Internet services

During their infancy in the early 1990s, online services tended to be single machine

web servers delivering static content. Today, popular websites, such as Ebay, Ama-

zon.com, and Google, utilize interconnected networks of tens or hundreds of thou-

sands of nodes, geographically distributed around the globe [6], usually configured as

a three-tiered system.

The three tiers consist of the following:

11

CHAPTER 2. BACKGROUND 12

• The top layer of this tiered structure is the presentation layer. This tier consists

of web servers, which are responsible for serving static content, forwarding user

requests for dynamic content to lower layers, and performing the processing

necessary to format the lower layer’s responses to those requests. Servers in this

tier usually run web server software such as Apache HTTP Server, or Microsoft’s

Internet Information Services(IIS).

• Underneath the presentation layer is the application logic tier. Servers that

comprise this layer are responsible for the business logic that usually represents

the core functionalities of an Internet service. For example, it would be the

role of Ebay’s application logic tier to verify the validity of users’ bid requests

and transform them into a proper sequence of actions such that the new bid is

consistently reflected in the database1.

Application logic is usually designed to operate on top of middleware, typically a

J2EE application server such as Weblogic (BEA), Jboss (Red Hat), WebSphere

(IBM), or Microsoft’s .NET platform. Middleware runs on top of servers’ native

operating system and provides generic functionality such as security and data

integrity. This allows companies to focus only on their business specific features

when developing application logic tier software.

• The bottom layer is referred to as the storage or database tier. These servers

are responsible for managing the persistent data needs of the service. Oracle

and MySQL are popular choices for database software.

These types of systems are mainly comprised of clusters of servers, with each cluster

serving one of three roles. Each cluster tends to consist of nearly identical hard-

ware running similarly configured software and a load balancer to ensure every server

is equally utilized. Large Internet services should vigorously stress any automated

diagnostic approach. The complex systems that support these services are good eval-

uations cases for the following reasons:

1To improve performance, sanity checking and some business logic may be done at the presen-
tation layer. Likewise, persistent data from the storage layer may be cached at the higher layers to
mitigate the high latencies usually associated with database accesses.

CHAPTER 2. BACKGROUND 13

• Hardware and software changes are inevitable for almost all large systems. How-

ever, they occur especially often for Internet systems. Many large services roll

out minor changes almost every day and major updates every month. This is

due to their extremely fast pace of growth as well as the constant need to offer

new features and fix bugs.

• These systems often exhibit recurring problems due to configuration issues.

This is because they are often comprised of hardware and software from many

different vendor that may not always be very compatible with one another.

• The commodity hardware on which most of these systems rely tend to fail more

often than top of the line hardware. Because very large services utilize tens or

hundreds of thousands of individual machines, the cost of using only the most

reliable hardware is usually prohibitive.

Another main reason we focus on these systems is that they are generally consistent

with the assumptions that we describe in the next section, which are prerequisite for

useful signatures.

2.2 Assumptions about systems and system be-

haviors

Our approach relies on finding statistical patterns within system data. In particular,

we assume that there is a binary high level indictor of system state, the service level

objective or SLO. At any time, a system is either in compliance of or in violation of its

SLO. In addition, we assume that many low level metrics (e.g. CPU utilization) are

collected and that these metrics are relevant to the SLO state. We aim for signatures

to represent the relationships between a system’s low level metrics and high level

behavior. Consequently, using SML techniques requires that these relationships be

able to be captured by statistical models. The rest of this section explores these

assumptions in more detail.

CHAPTER 2. BACKGROUND 14

Most Internet services are governed by simple SLOs based on average transactional

response times. In addition, large Internet systems, such as those employed at Ama-

zon.com [3], tend to be completely instrumented and monitored at a very fine-grained

level. Often, additional instrumentation is possible but not currently employed due

to the lack of ability of analyzing the data. Finally, many common problems that

these systems exhibit can be characterized by relatively simple patterns of behaviors

in the low level metrics.

2.2.1 Measurable system properties

There are two types of measurements that are typically collected about a system.

Properties about behavior of a system as a whole are one type. We will refer to

properties of this type as high level metrics. They usually measure the correctness,

efficiency, or availability of the service that the system is providing. Average response

time and throughput are the two predominant measurements of overall system per-

formance. However, high level behavior properties also encompass metrics such as

failure rate and click-thru rate, among many others. The second type of measure-

ments, which we will refer to as low level metrics, usually reflects the state or activities

of individual components of a system. This might include the CPU utilizations of

application servers, the packet counts of routers, or the free disk space of storage

units. Table 2.1 provides more examples of both measurement types. Note that

while it tends to be clear with higher level measures whether larger or smaller values

are generally better, this is often not the case with lower level metrics. This insight

is one of the reasons that naive approaches to signature construction are ineffective.

While the high level metrics are typically captured in a variety of ways depending

on the exact metric and specific system, low level metrics are usually captured by

software such as HP OpenView or Ganglia [22, 35]. Metrics are typically recorded

every 15 seconds to 5 minutes. We refer to this period as an epoch and epoch length

is usually configurable. Since the collection and reporting of measurements usually

has a negative impact on performance, it is undesirable to measure too frequently.

However, this must be balanced by the consideration that too coarse of measurements

CHAPTER 2. BACKGROUND 15

Metric Name Metric Description
High Level Metrics

Average response time Average latency of user requests
Click-thru rate Rate of site visitors clicking on advertisements

Or rate of search engine users clicking on search results
Average session length Average length of time a user spends at a site
User satisfaction rate Results of a live online survey about a service

Low Level Metrics
tt count Total transaction count
gbl cpu total time Total CPU time spent on all processes
gbl active cpu The number of CPUs online in a server
gbl run queue The average number of ’runnable’ processes
gbl syscall rate The number of system calls per second
gbl mem pageout The total number of page outs to the disk
gbl net in packet rate Number of successful packets per second received
fs space util Percentage of file system space in use
bydsk phys read Number of physical reads for disk device
bycpu interrupt rate Average number of IO interrupts per second

Table 2.1: Examples of high and low level metrics. The names of the low level
metrics are the actual names of the metrics used by a popular system monitoring
software.

CHAPTER 2. BACKGROUND 16

have little value when attempting to find useful patterns and correlations within them.

2.2.2 Service level objectives

Performance of complex networked systems are often bound by a service level objec-

tive or SLO. This is also well known as a service level agreement, which also usually

refers to the contractual agreement that specifies the service level objectives. Objec-

tives are typically based on one or a combination of a system’s high level metrics.

For example, a SLO might stipulate that the average response time of a search en-

gine service be below 4 seconds while retaining a click-thru rate above 10%. They

might represent goals internal to an organization, e.g. a promise from the IT de-

partment to corporate headquarters. However, they are also often included in legally

binding contracts in which violations of the service level objective can have severe

financial repercussions. This is commonly implemented when a company outsources

a consumer-facing service to a third-party vendor, which must be able to ensure a

positive experience for that company’s users. It may also represent the formalization

of a guarantee that an organization makes directly to its customers.

Although the exact SLO that is specified for a system carries substantial design

and administrative implications, SLOs could be determined rather arbitrarily, at least

from a system operator’s point of view. When violations of a SLO occur, it does

not necessarily imply that there is bug, misconfiguration, or component failure. It

may indicate that the system was subjected to an atypically high workload. It is also

possible that the SLO criterion is unrealistic or inaccurately measured. We will discuss

the implications of using an arbitrary SLO in section 8.2.1. However, no matter how

the service level objective is determined, the onus is still usually on system operators

to ensure that SLO violations occur as infrequently as possible.

We utilize the SLO as a systematic way of separating the overall state of a system

into two classes, SLO compliance and SLO violation. We will also refer to SLO

compliance as SLO non-violation. Although the behavior of a system is rarely binary,

exactly how the system is behaving is largely unimportant if it is always in a state

CHAPTER 2. BACKGROUND 17

of SLO compliance2. Conversely, excuses about complex system behaviors are rarely

acceptable when there are frequent SLO violations. Our approach will take advantage

of this convenient binary delineation of desirable versus undesirable system behavior.

2.2.3 Relationships between low level metrics and SLO

Since signatures try to capture relationships between low level metrics and a system’s

high level SLO state, those low level metrics must be relevant to the overall system

behavior reflected by the SLO state. For example, if problems occur that are related

to usage of a particular network interface and no metrics from that interface are

collected, then signatures will likely be of little use. Furthermore, we assume that the

relevant patterns and correlations between system metrics and high level SLO state

can be accurately captured by a statistical model. Note that we are not attempting

to explicitly model exact system behavior. For example, we do not try to predict the

average response time of a service based on low level metrics alone. All we need to

do for this approach to be successful is to capture patterns in low level metrics that

separate clearly defined desirable system states (SLO violations) from undesirable

system states (SLO compliances).

2.3 Statistical machine learning overview

Statistical machine learning (SML) algorithms have been applied in a wide range

of domains for many decades. Some examples of these applications include natural

language processing, medical diagnosis, bioinformatics, credit card fraud detection,

stock market analysis, DNA sequence classification, and robot locomotion [46]. Only

recently has it been applied to the area of systems management. In this section, we

will use a common and successful application of SML, for handwriting recognition, to

help introduce some concepts and terms that will be used throughout this thesis.

2A key exception being when it is expected that the workload to a system will change drastically
in the future and the operators need to anticipate the reaction of the system to those changes.

CHAPTER 2. BACKGROUND 18

2.3.1 Supervised learning and classification

When hand addressed parcels are given to a local post office, machine sorters scan

and interpret the address and direct the mail to the proper bin to continue its journey

to its destination. Given the wide range of handwriting styles and the haste which

with mailing addresses are often written, it is an impressive feat that machines are

able to recognize the vast majority of these addresses. Applying statistical learning to

this problem is straightforward. First, a learning algorithm is provided a training set

of data that consists of handwriting samples and the correct interpretations of those

samples. The ”correct” interpretation here is usually assumed to be the interpretation

of a human handwriting expert and is generally referred to as the ground truth. This

process uses the most mature type of SML algorithms, those for supervised learning.

In unsupervised learning, no training set with the ground truth is provided.

More specifically, this problem is a formulation of a very common supervised learn-

ing task, that of classification. The algorithms for classification are usually referred to

as classifiers. For classification tasks, classifiers try to learn the approximate behavior

of a function that maps an input vector (also known as a feature vector) into one of

several classes. Technically, the number of classes is not limited as long as it is finite.

However, for most classification tasks, the number classes is less than a hundred. The

training set consists of samples of input vectors and their corresponding correct clas-

sifications. For handwriting recognition, the input feature vector represents the letter

to be interpreted and the classification output should be one of the 36 alphanumeric

possibilities for that letter.

After processing the training data, a classifier can be used to predict the proper

classification of input vectors (handwritten letter samples). Prediction is used through-

out this dissertation in the sense of interpolating or extrapolating some property that

we are not given. It is not necessarily referencing an event that has yet to occur.

That we refer to as forecasting. The classification accuracy of the algorithm is eval-

uated by how well its output matches up with the ground truth. The data used for

evaluation purposes is usually referred to as the test set. In general, if there are no

significant differences, e.g. only samples from left handed writers in the training set

but only samples from right handed writers in the test set, between the training set

CHAPTER 2. BACKGROUND 19

and test set, the more training data an algorithm is given, the better the algorithm

will perform when evaluated using the test set. However, the relationship is not usu-

ally linear. Rather, when given very little training data, accuracy usually improves

drastically if given additional training data. However, the marginal improvement to

accuracy generally decreases as more and more training data is processed. Also, not

only does using more training data have a greater computational cost, the availabil-

ity of data with the corresponding ground truth is often limited. Therefore, these

tradeoffs must be balanced when determining the optimal size for a training set.

The ultimate goal of a training a classifier is usually to use it to classify samples

whose ground truth is unknown3. However, the precise accuracy with which an trained

classifier correctly classifies these samples is unknown. Evaluation requires ground

truth and having the proper classifications already obviates the need for using a SML

algorithm. Fortunately, much of statistics is based on the premise that one can extract

meaningful predications about a large population based on a much smaller sample.

It is assumed that when an learning algorithm is able to accurately evaluate samples

in test set, useful patterns or correlations must have been modeled by the algorithm.

However, it is possible that the algorithm actually learned nothing and merely “lucked

into” the correct classifications. While this is always a statistical possibility, the larger

the test set and the more representative it is of the entire population, the less likely

that good accuracy can be contributed to mere “luck”.

2.3.2 Bayesian network classifiers

Bayesian network classifiers are widely employed for classification tasks today. One of

the key properties of this class of models is interpretability. This means that not only

can we use this type of model to determine the proper classification of samples, we can

also interrogate the model for meaningful patterns and correlations that the model

has learned. Other popular methods such as neural networks and kernel functions

are not easily interpreted and can be used for their predictive value only. In relation

to the handwriting recognition example, if we employed a Bayesian network classifier

3The main notable exception being in SML research, where the goal is merely to compare and
evaluate new learning algorithms

CHAPTER 2. BACKGROUND 20

for that task, we could interrogate the classifier to determine exactly what values of

individual features make a sample likely to be any particular letter. Note however,

that even if a classifier is used in this manner, the prediction accuracy is still important

as an indictor of the strength and relevance of the patterns and correlations captured

by the model.

Bayesian networks are computationally efficient representational data structures

for probability distributions [41]. Since complex system may not always be completely

characterized by statistical induction alone, Bayesian networks have the added ad-

vantage of being able to incorporate human expert knowledge. The use of Bayesian

networks as classifiers has been studied extensively [21]. The simplest and most com-

mon Bayesian network approach is the naive Bayes classifier, which assumes complete

independence among all of the features of the input vector. Although this assumption

rarely holds in reality, naive Bayes classifiers have proven to be effective and extremely

efficient at a variety of tasks, for example as a Spam filter [47]. At the other end of

the complexity spectrum, full Bayesian networks allow for all possible relationships

between features. However, this flexibility makes inducing these classifiers difficult

and computationally expensive. The specific Bayesian network approach advocated

in [15] is a compromise known as Tree Augmented Naive Bayes (TAN) models. TAN

models allow each input feature to have one or zero child to parent relationships to

other features. The benefits of TAN and its performance in pattern classification is

studied and reported in [21].

2.3.3 Clustering

An unsupervised learning method, data clustering, will also be referenced in this

thesis. We use this technique later not for constructing signatures, but rather way

of leveraging signatures for diagnostic efforts. Clustering refers to the process of

partitioning a dataset into subsets or clusters, so that the data in each cluster ideally

share some common properties. In particular, clustering algorithms aim to minimize

the average distance from each data point to its cluster center, for some defined

distance measure. These algorithms are typically iterative such that some initial

CHAPTER 2. BACKGROUND 21

partitioning of the data is assumed and this partitioning is evaluated and improved

repeatedly until a threshold is reached. The most common methods in this domain

are hierarchical clustering and k-means clustering. Hierarchical algorithms either

successively builds up or breaks up clusters in order to minimize the average distance

to cluster centers. On the other hand, the k-means algorithm always forms k clusters

and each iterative step refines the location of those k cluster centers to achieve the

same goal of minimizing distance to those centers.

Chapter 3

Signature usage and evaluation

methodology

Enterprise systems today are complex. When they exhibit undesirable behavior,

whether it be poor performance, partial failures, or incorrect behavior, the cause of

the problem tends to be difficult to diagnose, even for very experienced operators.

Typically, ad-hoc trial and error approaches are used as the main root cause deter-

mination and resolution strategy. Such approaches are often time consuming and

especially challenging for novice troubleshooters. What usually makes diagnosis dif-

ficult is not the lack of information about a system, but the overwhelming amount

of data describing a system’s behavior. Only a small subset of data is relevant to

diagnosing any given problem, but there are no advanced tools to aid operators in

identifying this subset.

In addition, today there is no systematic method for leveraging past diagnostic ef-

forts when new problems arise. Hence expensive diagnostic efforts are often needlessly

repeated. Therefore, we advocate the approach of automatically creating indexable

signatures of system state that facilities similarity based search and retrieval. Ideally,

signatures should not only offer a systematic way of inferring the similarity between

two system problem states, but also help operators identify the subset of data that is

likely relevant to problems.

While the next chapter will detail a specific method for generating signatures, the

22

CHAPTER 3. SIGNATURE USAGE AND EVALUATION METHODOLOGY 23

rest of this chapter will focus on how to utilize and evaluate signatures in general,

regardless of how they are constructed. The work described the next three chapters

was previously published in [15, 53, 16] and was jointly done with Ira Cohen, Moises

Goldszmidt, Julie Symons, and Terence Kelly of Hewlett-Packard Labs.

3.1 Overview

As a system operates, data such as those described in 2.2.1 are collected periodically.

The first step towards using signatures is to construct them using the captured system

information (detailed techniques for doing this are presented in the next chapter). As

signatures are built, they should be stored in a database.

System operators may then use a database of signatures in two main ways: clus-

tering and retrieval. Clustering attempts to find a natural groupings of signatures

that characterize different system problems, which offers operators a way of priori-

tizing efforts when many problems have yet to be diagnosed. Retrieval aims to find

the signatures that are the closest to some search signature and thus most likely to

represent “similar” problems. Retrieval is most helpful when many past problem have

been diagnosed and an operator seeks to determine if a new problem can be iden-

tified as one of those previous issues. Both usage methods depend on defining the

distance between signatures. We define signatures to be vectors of natural numbers.

Therefore, any vector distance formula can be applied.

Since there is no ground truth for what a system signature should be, we evaluate

signature accuracy based on if similar signatures represent similar system problems.

We represent this accuracy as a precision-recall graph, which is commonly used in the

information retrieval domain. However, in order for this evaluation to be possible,

signatures must be labeled with their corresponding problem so that we can determine

if two signatures are supposed to represent the same issue or not. However, labels

are determined by human operators and are therefore usually inexact, incomplete,

and expensive to obtain. In the absence of labels, partial evaluation is still possible

by examining signature clustering to determine if the signatures at least capture

information relevant for separating SLO compliance and SLO violation.

CHAPTER 3. SIGNATURE USAGE AND EVALUATION METHODOLOGY 24

3.2 Calculating distance between signatures

The main usage methods for signatures, clustering and retrieval, are described in

the next two sections. However, both techniques depend on formalizing the notion

of similarity between signatures. Since signatures are just vectors of numbers, any

common vector distance metric could be used. We explored three such metrics. Let

~S1 = [a1
1, . . . , a

1
n] and ~S2 = [a2

1, . . . , a
2
n].

• Cityblock distance: Also known as the L1 norm, this distance between ~S1

and ~S2 would be
∑n

i=1 |a1
i − a2

i |.

• Square Euclidean distance: Also known as the L2 norm, this distance be-

tween ~S1 and ~S2 would be
√∑n

i=1(a
1
i − a2

i)
2.

• Cosine distance: This is one minus the cosine of the angle between two vector

and between ~S1 and ~S2 would be 1−
∑n

i=1
a1

i a2
i√∑n

i=1
a1

i a1
i

√∑n

i=1
a2

i a2
i

This thesis includes only results based on the cityblock distance because it is the

most efficient to compute. Although the results when using the square Euclidean

and cosine distances were quantitatively different, they were qualitatively similar and

offered no new insight as far as making decisions about signature composition or other

parameters of the process.

3.3 Retrieving signatures

Using information retrieval techniques, we can search a database of signatures for

the previous instances that are closest (in terms of the distance measure described

in the previous section) to a specific signature ~S. This capability enables operators

to leverage past diagnosis and repairs and generally all information about previous

instances displaying similar characteristics (as captured in the signature vector).

For evaluation, we will follow the standard measures from the machine learning

and information retrieval community [51]. In the information retrieval domain, a

search retrieves some number of entries from a database of documents. Each search

CHAPTER 3. SIGNATURE USAGE AND EVALUATION METHODOLOGY 25

result is considered either irrelevant or relevant given the search terms1. The more

relevant entries returned (without returning extra irrelevant items) the better. This

implies the need for ground truth about the relevance of each item in a database with

respect every possible search term. In our case, this relevance is derived from the

label (or annotation) applied to each signature. Presumably, the labels are associated

with a root cause or resolution method. If we search for the closest signatures to a

test signature, a search result is considered relevant if it has the same label as the test

signature, and irrelevant otherwise.

Since the ratio of relevant to irrelevant search results varies depends on the size

of the result set, and it is important to vary search parameters to fully gauge the

success of the method, we present retrieval results using Precision-Recall (PR) curves.

Precision is defined to be the percentage of search results that are relevant. Recall is

defined to the number of relevant search results divided by the total number of relevant

signatures in the database. In general, recall increases and precision decreases as the

search result size increases. Ideally, precision would always equal one. If retrieval

behavior needed to be described using a single number, the area under the PR curve

should be used. The larger that number the better, with the best curve having an

area of one.

We construct PR curves separately for each distinct signature label in the database

for two reason. First, retrieval behavior can vary significantly depending on the type

of problem used as the test signature. More importantly, this allows evaluation using

data sets where not all signatures are labeled. In order to derive the PR curve for

problem label L, we only need to know if each signature has label L or not. If it

was not L, we do not need the proper label. It is common for operators to know all

occurrences of a particular problem but be unsure about the cause of other problem

instances. The exact procedure for generating a precision-recall graph is described in

Algorithm 1.

1Relevance need not be binary.

CHAPTER 3. SIGNATURE USAGE AND EVALUATION METHODOLOGY 26

Algorithm 1 Generating a Precision-Recall curve for signature label L

Let t denote the total number of signatures in the database
Let a denote the number of signatures in the database with label L
Let n denote the size of the result set
Initialize pn = 0 and rn = 0 for (n = 1, . . . , t− 1)
for test signature = each signature with label L do

for n = 1 to (t− 1) do
Find the n signatures in the database closest to the test signature (sec 3.2)
Let m of those n signatures also have label L
pn = pn + m

n

rn = rn + m
a−1

end for
end for
for n = 1 to (t− 1) do

pn = pn

a

rn = rn

a

add (rn, pn) to curve {Recall is always on the x-axis and Precision on the y-axis}
end for

3.4 Clustering signatures

The objective when applying clustering to a database of signatures is to find the

natural groupings or clusters of these signatures that characterize different system

problems (and optionally normal operation regimes). The output of clustering is a

set of clusters, plus a characterization of each cluster center. By inspecting the actual

elements of the signature database in each cluster, we can identify different regions

of normality as well as recurrent problems. In addition, the centroid of a cluster of

problem behaviors can be used as the syndrome for the problem, since it highlights

the metrics that are in a sense characteristic of a set of manifestations of the same

problem.

3.4.1 Clustering algorithms

Clustering requires not only a distance metric(see Section 3.2, we again use only show

results using cityblock distances), but it also requires specification of a clustering algo-

rithm, which attempts to the minimize distortion (sum of distances of each signature

CHAPTER 3. SIGNATURE USAGE AND EVALUATION METHODOLOGY 27

with respect to its nearest cluster center). We use the standard k-means iterative

algorithm [18]. This algorithm finds k cluster centers that minimize the distortion

defined above. Other methods such as hierarchical clustering were also explored with

no qualitative difference in results.

3.4.2 Clustering entropy

Ideally, we would like each cluster to contain signatures belonging to a single class of

problems (i.e. SLO violations with the same root cause), or else signatures belonging

only to periods of SLO compliance (when clustering signatures of violations and

compliance periods together). We introduce a score determining the purity of a

clustering to formalize this intuition. In the case where we have no labeled data

(where root cause diagnosis is known), we can distinguish signatures only in terms of

their corresponding SLO state (compliance or violation).

If given labeled data, we can count the number of signatures in each cluster with

each label. These counts are then normalized by the total number of signatures in

each cluster (sum of counts) to produce probability estimates p1, . . . , pn if there are

n different problem labels, where
∑n

i=1 pi = 1. These are used in turn to score the

purity of each cluster. A cluster is pure if it contains signatures of only one type

of problem (as determined by the labels), i.e., if exactly one of p1, . . . , pn equals 1

while the other probabilities equal 0. With these probabilities, we can compute the

information entropy (or just entropy) of each cluster, given as: H =
∑n

i=1−pilog2(pi).

For a pure clustering, entropy is 0, which is the best possible result. The entropy is 1

when a cluster is evenly split between each label (p1 = . . . = pn = 1
n
). When labeled

data is unavailable, we may only consider the percentage of violation signatures pv

versus compliance signatures pc in a cluster and use those probabilities in the entropy

formula by letting n = 2, p1 = pv, and p2 = pc.

We compute the overall average entropy of all of the clusters weighted by the

normalized cluster size to give us a measure of purity of the entire clustering re-

sult. Average clustering entropy being close to 0 would be a strong indication that

the signatures capture meaningful characteristics for distinguishing different problem

CHAPTER 3. SIGNATURE USAGE AND EVALUATION METHODOLOGY 28

types (if evaluated using labeled violations), or at least meaningful characteristics of

violations in contrast to periods of non-violations (if evaluated on unlabeled data).

The k-means algorithm must be given the parameter k, the total number of clus-

ters expected. There are a number of procedures for determining the optimal pa-

rameter settings, including score metrics with regularization components and search

procedure which increase their value gradually until no significant improvement in

the clustering distortion is achieved [18]. We choose a simpler approach and merely

iterate through values of k obtain clustering purity results for each iteration. For

clustering evaluation where SLO violations are labeled with their problem type, we

expect that as long as k is set to be greater than n (the number of different problem

labels), overall clustering entropy should be close to 0. However, this is not generally

true when clustering violations and non-violations together (given the lack of labeled

data), although entropy is still expected to generally decrease as k increases.

3.5 Summary

This chapter explored signature usage and evaluation methodology.

• Once signatures are produced, they may be used for retrieval or for clustering.

Both usages depend on using a formal distance metric to represent similarity

between signatures. We use a common vector distance metric known as the

cityblock or L1 norm distance. The hope is that signatures closer in distance

are more likely to represent the same system problem.

• Signature retrieval attempts to find signatures that are closest to some test

signature. We can evaluate retrieval quality using a precision-recall curve, which

is commonly employed in the information retrieval domain. Evaluation in this

manner is only possible when signatures are properly labeled (or annotated)

according to root cause information.

• Clustering aims to identify natural groupings of signatures that characterize

different system problems. In addition to the distance metrics, a clustering

CHAPTER 3. SIGNATURE USAGE AND EVALUATION METHODOLOGY 29

method that seeks to minimize distortion is needed. We use the popular k-

means clustering algorithm. Clustering quality can be evaluated using a purity

score. This score is based on the ratios of different types of problems (as deter-

mined by each signature’s label) in each cluster. When labels are unavailable,

clustering evaluation may be solely based on the ratio of signatures representing

SLO violation epochs versus those representing SLO compliance epochs in each

cluster.

Chapter 4

Constructing signatures

We now present a method for constructing system signatures using metric attribution,

a statistical technique introduced by Cohen et al. in [15]. A key insight of this

approach is that relevant information about the cause and effect of a system problem

are usually adequate to define the problem and differentiate it from different types of

problems. Therefore, identifying the subset of relevant information and incorporating

that into signatures should allow these signatures to be effectively used for clustering

and retrieval, the main subjects of the preceding chapter. This chapter first presents

a sketch of our approach and then describes each step in more detail.

4.1 Sketch of the approach

The process of signature construction starts with the collection of system information.

Software such as HP’s OpenView or the open source Ganglia is usually used. Although

the collection and reporting of data for large system is not trivial, the exploration of

this aspect of the process is outside the scope of this thesis. For our approach, this

system information must include a high level indicator of performance in the form of

an service level objective (SLO), explained in Section 2.2.2. It must also include low

level metric data, such as CPU and memory utilization, that may be related to high

level system behavior. We focus on three-tiered Internet services because these types

of information are already typically captured in production systems.

30

CHAPTER 4. CONSTRUCTING SIGNATURES 31

As this system data is collected, we induce Bayesian network classifiers, Tree-

Augmented Naive Bayes or TAN in particular (see Section 2.3.2), to predict high

level system behavior (represented by SLO state) from the low level metric data. We

evaluate the prediction accuracy of these models to determine how well they capture

meaningful patterns in the system data. Since Bayesian network classifiers have

the key advantage of being interpretable, we can interrogate the models to find out

exactly which low level metrics most strongly influenced their classification decisions.

We deem these low level metrics as attributable to high level behavior and use this

information as the basis for system signatures.

4.2 Inducing models on system data

The behavior of even relatively simple networked systems are quite difficult to model

completely, even with detailed a priori information about the configuration and make

up of the system. Therefore, it is foolish to expect to be able to completely model

the behavior of a complex system by using statistical machine learning techniques on

system measurements. Fortunately, we do not need to fully model a system’s behavior.

By using the simple delineation of desirable versus undesirable system states that

SLOs provide us, we can transform an almost impossibly complex modeling task into

the relatively simple task of binary classification.

4.2.1 Formalizing the problem

Given the background of Chapter 2, we can now cast the problem of modeling system

behavior as a classification task in supervised learning. Let Yt ∈ {s−, s+} denote

whether the system is in compliance (s−) or noncompliance (violation) (s+) with the

SLO at time epoch t1, which can be measured directly. Let ~Mt denote a vector of

values for n collected metrics [m0,. . . ,mn] at time t (the subindex t will be omitted

when the context is clear). The classification task here is to induce or learn a classifier

function F : ~Mt → {s−, s+} that maps the universe of possible values for ~Mt to one

1The length of an epoch is not in any way restricted by our approach. However, due to the
performance impact of monitoring processes, epochs are usually in the one to five minute range.

CHAPTER 4. CONSTRUCTING SIGNATURES 32

of two states {s−, s+}. The training data set for this task consists of observations of

the form < ~Mt, Yt > collected from a system in operation.

To evaluate the success of our classifier function F , we could determine the clas-

sification accuracy, which in this case is defined as the probably that F correctly

identifies the SLO state St associated with any ~Mt. However, this measure can be

misleading if the test set contains predominantly data belonging to one class. We

expect this to be the case in any reasonably well-designed production system since

SLO compliance or non-violations s− should be much more frequently observed than

SLO violations s+. To see why raw classification accuracy may be misleading, imag-

ine that only 10% of epochs are SLO violations. In that case, a trivial classifier that

always predicts compliance yields a classification accuracy of 90%. Therefore, our fig-

ure of merit is balanced accuracy (BA), which averages the probabilities of correctly

identifying non-violations and violations. Formally:

BA =
P (s− = F(~M)|s−) + P (s+ = F(~M)|s+)

2
(4.1)

To achieve the maximal BA of 100%, F must perfectly classify both SLO violation

and SLO compliance incidences. The trivial classifier in the previous example would

only achieve a BA of 50%. Note that since BA scores the accuracy with which a set

of metrics ~M predicts the SLO state, it is an indicator of the degree of correlations

between these metrics and higher level system behavior.

Unlike traditional usage of classifier models, our goal is not to simply use an

induced model to predict the SLO state Yt for some ~Mt where the SLO state is not

already known. This is because Yt is constantly being observed. There is never a

need to identify the SLO state from the values of individual metrics. Rather, the

goal of this technique is to induce a classifier model and then interrogate them for

the patterns and correlations that they have captured. The predictive value of the

model merely serves as an indictor of the strength of the patterns. To achieve the

goal of extraction, the classifier model must be interpretable, which precludes many

common classification algorithms. Therefore, we use an interpretable class of models

based on Bayesian networks.

CHAPTER 4. CONSTRUCTING SIGNATURES 33

To implement F , we use a TAN (other types of Bayesian networks could also be

used) to represent the joint distribution P (Y, ~M) – the distribution of probabilities for

the system state and the observed value of the metrics. From the joint distribution we

compute the conditional distribution P (Y | ~M) and the classifier uses this distribution

to evaluate whether P (s+| ~M) > P (s−| ~M). If so, F would predict s+, SLO violation.

Using the joint distribution enables us to invert F , so that the influence of each metric

on the prediction of SLO state can be quantified with sound probabilistic semantics.

This is the basis for metric attribution and will be derived formally in 4.3.

Although the joint distribution is represented in a Bayesian network, the probabil-

ity distribution of the individual metrics must still be chosen. The simplest method

is to assume a Gaussian distribution (also known as a normal distribution). Two

distributions are assumed for each metric, one for each possible SLO state. By using

the Gaussian distribution, inducing a model is very simple and involves only calcu-

lating the means and variances for each metric for each of the two SLO states. Such

a model also uses very little memory. However, not all metrics can be accurately rep-

resented using Gaussian distributions. The alternatives and their implications will be

discussed later in Chapter 8.

4.2.2 Feature selection

Armed with monitored low level system metric data ~M and high level SLO state

Y , we could simply learn a classification function F : ~M → Y as described in the

previous section. However, such an approach is unlikely to produce an accurate

classifier. The reason is known as the dimensionality problem in pattern recognition

and statistical induction: the number of data samples needed to induce good models

increases exponentially with the dimension of the problem, which in this case is the

number of metrics in the model (which influences the number of parameters). The

solution to this problem is usually a process called feature selection, where only the

subset of metrics most relevant to modeling the patterns and relations in the data is

retained.

The feature selection process provides two advantages. First, it discards metrics

CHAPTER 4. CONSTRUCTING SIGNATURES 34

that appear to have little impact on SLO state, allowing human operators to focus on a

smaller set of candidates for diagnosis. Second, it reduces the number of data samples

needed to induce robust models, due to the aforementioned dimensionality problem.

At first glance, it may seem that the role of metric attribution and feature selection

overlap somewhat. They both seek to determine which are the relevant metrics with

respect to SLO behavior. However, feature selection is often a very computationally

intensive task that is only done once for an entire data set, as a preprocessing step,

while metric attribution requires only a few probability calculations and determines

which metrics of a model are relevant for each epoch. If a metric is deemed to be

irrelevant during the feature selection process, it will never be considered by the

classifier model and thus will never be attributed for any SLO violation. Conversely,

if a metric is considered by the classifier model, it could be considered attributed for

none, some, or all SLO violations.

The problem of feature selection is essentially that we wish to select ~sM , a subset

of ~M , that produces the most accurate classifier function F : ~sM → Y . This means

that if ~M = [m1, . . . , mn], there are a total of 2n different subsets ~sM , and it is

essentially a combinatorial optimization problem that is usually solved using some

sort of heuristic search. The method used in [15] is a greedy search approach as

follows. ~sM is initially empty. Iterate over all of the metrics m1, . . . , mn and choose

mx1 such that F : ~sM = [mx1] → S has the best accuracy over the dataset2. Once

mx1 is chosen, we again iterate over m1, . . . ,mn but not including mx1. We choose

mx2 such that F : ~sM = [mx1,mx2] → S has the best accuracy. We continue this

process until accuracy no longer improves by adding more metrics or when a fixed

upper limit is reached.

Although feature selection is very successful at mitigating the dimensionality issue

and helping to produce robust models, it does introduce one significant problem.

Metrics that are removed from consideration due to lack of relevance will never be

considered. This was acceptable in the context of [15] because the evaluation data

consists of monitored system metrics and SLO state over the course of several hours.

2Ten-fold cross validation [28] is used to prevent overfitting, a common problem for statistical
approaches

CHAPTER 4. CONSTRUCTING SIGNATURES 35

It was assumed that the behavior patterns and correlations in each data set never

changed. However, the longer the time period, the less acceptable the assumption.

For this technique to be useful in a real system, it needs to be able to adapt to changes

in system behavior. The necessary step of feature selection complicates this ability to

adapt. This challenge and how we resolve it will be described in detail in Chapter 6.

4.3 Metric attribution

Metric attribution is the statistical process by which we identify low level system

metrics that are the most correlated to high level behavior. The metrics that are

correlated are referred to as attributed metrics. This section will review the original

technique introduced by Cohen, et al. in 2004 [15]. Extensions of that process are

summarized in the next section and explored in detail in later chapters.

Given a model induced as described in section 4.2.1, the joint distribution that it

represents can be expressed in a functional form as a sum of terms, each involving

the probability that the value of some metric mi occurs in each state (s− or s+) given

the value of the parent metric (if any) mpi
on which mi depends (in the probabilistic

model):

n∑

i=1

log[
P (mi|mpi

, s+)

P (mi|mpi
, s−)

] + log
P (s+)

P (s−)
> 0 (4.2)

From Eq. 4.2, a metric mi is implicated in an SLO violation if log[
P (mi|mpi ,s

+)

P (mi|mpi ,s
−)

] > 0,

also known as the log-likelihood ratio for metric mi. To analyze which metrics are

implicated with an SLO violation, we simply examine which metrics had a positive

log-likelihood ratio. These metrics are flagged as attributed for that particular viola-

tion. Furthermore, the strength of each metric’s influence on the classifier’s choice is

represented by the value of the log-likelihood difference.

It is the hope that attributed metrics can point to the root cause of SLO violations

and that signatures based on this attribution information can define and differenti-

ate system problems. Unfortunately, as with any statistical technique, the patterns

that are captured by models could be mostly noise, in which case attributed metrics

CHAPTER 4. CONSTRUCTING SIGNATURES 36

may not be any more relevant than those that are not attributed. In addition, the

attribution of a metric only means that the metric is correlated with the overall SLO

state. It is not evidence of a causal link. Fortunately, signatures can be effective even

if attribution information fails to completely capture true root cause since the set of

metrics that are likely relevant to a problem is usually enough to differentiate it from

other problems. True root cause diagnosis is not possible without a priori system

specific knowledge anyway.

4.4 Extensions to original metric attribution pro-

cedure

To produce accurate signatures, several changes to the original attribution procedure

were necessary:

• In order to adapt to the ever changing behavior patterns of systems, new sta-

tistical models are induced periodically and added to an ensemble of models.

The attribution value of a metric is calculated using all relevant models in the

ensemble. The insight of this approach is that we can model complex and con-

stantly evolving system behavior by using a collection of simple models designed

to represent a single behavior. This extension is described in Chapter 6.

• Just as a system can misbehave in a wide variety of ways, good (SLO com-

pliant) system behavior can also vary. The same system problem can appear

different when compared to different good system states. Therefore, all problem

behaviors must be compared to the same “baseline” good behavior or behaviors.

However, choosing behaviors to use as the baseline is not trivial. This issue is

covered in Chapter 7.

• A problem is better characterized by all strong correlations between that prob-

lem state and the system metrics rather than by only the strongest correlation.

Each classifier may be thought of as representing a single correlation and the

accuracy of the classifier as strength of the correlation. Therefore, it is better

CHAPTER 4. CONSTRUCTING SIGNATURES 37

to utilize all models that pass some minimum accuracy threshold, rather than

searching for the most accurate model only.

4.5 Signature based on metric attribution

The process of using metric attribution information to construct system signatures is

fairly simple. The ultimate goal is to transform observations of the form < ~Mt, Yt >

into ~St for each epoch t (e.g. five minute intervals). Recall that we start by inducing

classifier models on the system observations and then compute metric attribution

information using those models. We define ~St = [a1, . . . , an] where [a1, . . . , an] repre-

sents the attribution value of the metrics ~Mt = [m1, . . . , mn]. Each of ai(i = 1, . . . , n)

can take on one of three attribution values, the meanings of which are described as

follows:

• ai = 1 if the metric mi is generally correlated3 to overall SLO state and the

current value of mi strongly indicates a state of SLO violation4. We say the

metric is attributed. (see Figure 4.1)

• ai = -1 if the metric mi is generally correlated to overall SLO state but the cur-

rent value of mi strongly indicates a state of SLO compliance or non-violation5.

We say the metric is inversely attributed. Note: this is rare for signatures of

epochs when the SLO is violated. (see Figure 4.1)

• ai = 0 if the metric mi is not generally correlated to overall SLO state, or if

it is correlated but the current value of mi does not strongly indicate either of

the possible SLO states. Such a metric is referred to as not attributed. (see

Figure 4.2)

3Generally correlated refers to being considered by a model. In order to be considered by a model,
a metric has to first pass the feature selection process, which eliminates metrics with no correlations
to overall SLO state.

4Log-likelihood ratio ≥ 5, as calculated by the formula given in 4.3. The specific threshold is
configurable although it must be positive.

5Log-likelihood ratio ≤ −5, as calculated by the formula given in Section 4.3. The specific
threshold is configurable although it must be negative.

CHAPTER 4. CONSTRUCTING SIGNATURES 38

Note that the attribution value of a metric during an epoch does not directly depend

on the SLO state of that epoch.

The signature vector ~St for each time epoch can be added to a database as they

are created. As problems in the system occur, this database of signatures can be

queried in various ways to aid operator diagnosis efforts. In addition, signatures

can be manually annotated with information about root causes or possible resolution

strategies once they are found.

4.6 Other signature compositions

Although we have described signature construction only in terms of metric attribu-

tion, there is nothing inherent about the concept of signatures and their usage model

that depends on utilizing only attribution information. In fact, signatures could be

constructed without using metric attribution information at all. The only issue is the

effectiveness of those signatures in achieving the goals we set out for our approach.

The following are some alternates to metric attribution that could be used alone,

combined with one another, or combined with metric attribution.

• Raw metric values. Directly using raw metric values works poorly as a

signature because the range of each metric can very substantially (compared

to other metrics). Following common practice in data analysis [18], each metric

should have its values normalized to [0, 1], using the range of values ever seen, to

prevent scaling issues from influencing similarity metrics and clustering. Future

references to raw values will assume normalization has taken place already. Raw

metric values can also be multiplied by the metric attribution values to roughly

represent a signature based on “only raw values of metrics correlated to SLO

state.”

• Loglikelihood ratio. Since metric attributions values are calculated using

the Loglikelihood ratio, it is certainly a conceivable option to use this ratio

directly. Metrics with values that more strongly indicate SLO violation would be

represented by higher positive numbers, while those that more strongly indicate

CHAPTER 4. CONSTRUCTING SIGNATURES 39

0 20 40 60 80 100
CPU Utilization

P
ro

ba
bi

lit
y

D
en

si
ty

Non−violations

Violations

Operating point under examination

0 20 40 60 80 100
CPU Utilization

P
ro

ba
bi

lit
y

D
en

si
ty

Non−violations
Violations

Operating point under examination

Figure 4.1: Example of a metric considered attributed(top) and inversely at-
tributed(bottom). A previously induced Bayesian classifier has modeled CPU Uti-
lization as two Gaussian distributions, one for each SLO state. The distribution for
SLO violation a mean of 60% and standard deviation of 15%, while for SLO com-
pliance the mean is 20% with a standard deviation of 10%. A CPU Utilization at
70% for some epoch would strongly indicate a state of SLO violation and thus this
metric would be considered attributed. Conversely, CPU Utilization at 25% would
strongly indicate SLO compliance and thus the metric would be considered inversely
attributed

.

CHAPTER 4. CONSTRUCTING SIGNATURES 40

0 20 40 60 80 100
CPU Utilization

P
ro

ba
bi

lit
y

D
en

si
ty

Non−violations

Violations

0 20 40 60 80 100
CPU Utilization

P
ro

ba
bi

lit
y

D
en

si
ty

Non−violations

Violations

Operating point under examination

Figure 4.2: Examples of a metric considered not attributed. (top) The CPU Uti-
lization metric’s SLO non-violation and violation distributions highly overlap. This
suggests a lack of correlation between CPU Utilization and overall SLO state. There-
fore, this metric would be removed from consideration during the feature selection
process. (bottom) Although the distributions in this case indicate correlation with
SLO state, the value of CPU Utilization during a particular epoch (39% in this case)
may not strongly point to SLO violation or compliance.

CHAPTER 4. CONSTRUCTING SIGNATURES 41

SLO compliance are represented by more negative numbers. The issue with

using this ratio directly is that it is not bounded and not calibrated6.

• Relative value. While metric attribution can tell us if a metric is correlated

to overall SLO state, it says nothing about the type of correlation. It answers

the question of if a higher value for the metric indicates a greater or smaller

likelihood for SLO violation? (1 if yes, -1 if no)

• Relevance score. The relevance score of a metric represents the balanced

accuracy of the classifier that uses the metric. A higher relevance score usually

indicates a stronger correlation to SLO state. The range of this score is 0 to 1.

Other factors not included above could also be used. It would be impractical to

evaluate every conceivable signature compositions. However, we did evaluate several

compositions besides using metric attribution by itself and found using attribution

only was almost always superior for our evaluation data sets. Empirical results can

be found in Chapter 5. This does not imply that using different compositions would

never be helpful for any system. Therefore, we recommend using metric attribution

only signatures as a default setting and allowing operators to experiment with other

compositions to determine if those are better suited for their system.

4.7 Summary

This chapter explained a specific technique for constructing signatures by utilizing a

statistical technique known as metric attribution. The process of building signatures

in this manner is as follows.

• Induce TAN (a class of Bayesian network classifier) models on observed system

data (low level metrics plus high level SLO state).

• Extract metric attribution information from these TAN models using the proce-

dure described in Section 4.3. Although the original technique is based on work

6Not being calibrated implies that the value is useful only as a comparator between ratios gen-
erated by the same statistical model.

CHAPTER 4. CONSTRUCTING SIGNATURES 42

in [15], several improvements to the process were necessary and are described

in later chapters. These changes relate to the adaptivity, robustness, and scope

of attributions.

• Each signature is simply a vector of attribution values, one for each low level

metric. For any epoch, each metric may be considered attributed, inversely

attributed, or not attributed. Although we focus on attribution based signatures,

other compositions are possible. We will compare the results of using different

compositions in the next chapter.

The next chapter will show the results of evaluating metric attribution based sig-

natures for retrieval and clustering, while Chapter 6 and Chapter 7 will describe

extensions to metric attribution for adapting to system changes and for dealing with

variability in SLO compliant behaviors, respectively. Chapter 8 presents a practical

guide for operators seeking to utilize our approach.

Chapter 5

Evaluation datasets and results

This chapter describes the datasets that we use to evaluate our approach as well as

the results of the evaluation. We infer the effectiveness of signatures by how well the

two main usage methods, clustering and retrieval, perform on data collected from

systems in operation. Our evaluation criteria are defined operationally, e.g., to say

that retrieval “performs well” is to say that the signatures retrieved as being similar

to some problem do indeed represent problems with similar root-cause diagnosis in

practice. Furthermore, to say that signatures are accurate, meaningful, and of high

quality is to imply that retrieval and clustering based on those signatures perform

well.

We first introduce the systems from which we collected our data sets and the

known problems in each system. We then present the results of evaluating signature

retrieval and clustering using these data sets and also discuss anecdotal evidence about

leveraging signatures across different systems. Finally, the performance impact of

our approach and the limits of this evaluation are discussed. Note that each problem

examined is performance-based. This is due to the SLOs of these systems being based

on a performance metric (average transaction response time). Our approach does not

restrict us to any particular class of problems.

43

CHAPTER 5. EVALUATION DATASETS AND RESULTS 44

5.1 Trace collection

Our empirical results are based on large and detailed traces collected from two dis-

tributed applications, one serving synthetic workloads in a controlled laboratory en-

vironment and the other serving real customers in a globally-distributed production

environment. These two traces allow us to evaluate our approach in complementary

ways. The testbed trace is labeled with known root causes of problems. The causes

are known because we controlled the faults injected into the system. Labeled data

allow for full evaluation of our signature-based diagnostic methods using common

information-retrieval performance measures. The production trace is not labeled as

reliably1 or as thoroughly as the testbed trace. However, we may apply the clustering

technique for unlabeled data described in section 3.4. In addition, the presence of

some labels allows us to further validate the accuracy of our retrieval on this real-world

data.

Our traces record two kinds of data about each service: application-level per-

formance data to use for deriving system SLO state, and low level system resource

utilization metrics (e.g., CPU utilization). Our tools generally capture the latter as

averages in non-overlapping windows (epochs).

5.2 Experimental testbed traces

5.2.1 System architecture

Our controlled experiments use the popular PetStore e-commerce sample application,

which implements an electronic storefront with browsing, shopping cart and checkout.

Each tier (Web, J2EE, database) runs on a separate HP NetServer LPr server (500

MHz Pentium II, 514 MB RAM, 9 GB disk, 100 Mbps network cards, Windows 2000

Server SP4) connected by a switched 100 Mbps full-duplex network (see Figure 5.1).

Apache’s extended HTTPd log format provides us with per-transaction response times

and we obtain system level metrics from HP OpenView Operations Agents running

1That is to say, we are less confident about the accuracy of the labels that we do have for this
data set. We discuss this limitation in section 5.7.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 45

Figure 5.1: Our experimental testbed system, featuring a commonly used
three-tier internet service.

on each host. A detailed description of our testbed’s hardware, software, networking,

and workload generation is available in [54]. We collected 62 individual metrics at

15-second intervals and aggregate them into one-minute windows containing their

means and variances. We pre-process our raw measurements from the Apache logs

to average transaction response times over the same windows and then join all data

from the same application into a single trace for subsequent analysis.

We use the standard load generator httperf [38] to generate workloads in which

simulated clients enter the site, browse merchandise, add items to a shopping cart,

and checkout, with tunable probabilities governing the transition from “browse item”

to “add item to cart” (probability Pb) and from “add item to cart” to “checkout cart”

(probability Pc). We measure the average response time of client requests in each 1

minute window and require that the average response time stay below 100 msec to

maintain SLO compliance.

5.2.2 Inducing SLO violations

We created three handcrafted fault loads designed to cause SLO violations. In the

first, we alternate one-hour periods of Pb = Pc = 0.7 with one-hour periods of

CHAPTER 5. EVALUATION DATASETS AND RESULTS 46

Pb = Pc = 1.0. This problem was termed BUYSPREE. In the second, we execute

a parasitic program on the database server machine that consumes approximately

30% of available CPU cycles during alternating one hour intervals, but no other ma-

jor resources. The last faultload does the same thing but on the application server

rather than the database server. These two scenarios were called DBCPU and APPCPU,

respectively.

Note that these faultloads simulate both SLO violations due to internal problems

(CPU contention) as well as problems resulting from change in workload (extreme

buying patterns in BUYSPREE). In both cases, the injected failures correspond to the

root causes of performance problems, which we use as the ground truth for proper

labeling of signatures of SLO violations.

5.3 Production system traces

5.3.1 System architecture

Our second trace is based on measurements collected at several key points in a

globally-distributed application that we call “FT” for confidentiality reasons. FT

serves business-critical customers on six continents 24 hours per day, 365 days per

year. Its system architecture therefore incorporates redundancy and failover features

both locally and globally, as shown in Figure 5.2. Table 5.1 summarizes key hardware

and software components in FT, and the transaction volumes recorded by our traces

(Table 5.2) demonstrate the non-trivial workloads of the FT installations. All hosts

at the application server and database server tiers are HP 9000/800 servers running

the HP-UX B.11.11 operating system, except that one database server in Asia is an

HP rp7410 server.

HP OpenView Performance Agent (OVPA) provides system utilization metrics

for application server and database hosts. FT is instrumented at the application level

with Application Response Measurement (ARM) [50], providing transaction response

times. OVPA and ARM data area aggregated into 5-minute epochs in the processed

traces we analyze. We have traces from the Americas and Asia/Pacific hubs but not

CHAPTER 5. EVALUATION DATASETS AND RESULTS 47

client client client

WAN

App Srvr App Srvr

Load
balancer

Primary DB Backup DB

client client client

WAN

App Srvr App Srvr

Load
balancer

Primary DB Backup DB

client client client

WAN

App Srvr App Srvr

Load
balancer

Primary DB Backup DB

(Singapore)
ASIA/PACIFICEMEA

(Swinden)
AMERICAS

(Atlanta)

failover if local
DB unavailable

failover if local
DB unavailable

WAN Auxilliary DBWAN

A
pp

lic
at

io
n

Se
rv

er
 P

ro
vi

de
r

Oracle DB replication

Figure 5.2: Architecture of the “FT” production system. FT is a
globally-distributed multi-tiered application with regional hubs in the Americas, Eu-
rope/Middle East/Africa, and Asia. Different organizations are responsible for the
FT application and the application server on which it runs; the latter is indicated by
a shaded dashed rectangle in the figure. FT has a globally-distributed main database
and an additional auxiliary database, managed by a third organization, shown in the
lower right.

RAM
Region Role hosts CPUs disks (GB)

Amer App srvr 2 16 16 64
Amer DB srvr 2 12 18 32

EMEA App srvr 3 16 10 32
EMEA DB srvr 2 6 ? 16

Asia App srvr 2 12 63/22 20
Asia DB srvr 2 6 8 16

Table 5.1: Key hardware and software components in FT. The two app server
hosts in Asia have different numbers of disks. All app servers ran WebLogic and all
DB servers ran Oracle 9i. Most of the DB servers had 550 MHz CPUs.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 48

transactions/min % SLO
Server Dates mean 95 % max viol

AM1 12/14–1/14 208.6 456.4 1,387.2 23.6
AM2 12/13–2/08 207.9 458.0 977.4 22.5

Asia1 12/17–1/05 39.9 118.2 458.4 26.2
Asia2 12/17–1/30 52.1 172.8 775.0 13.1

Table 5.2: Summary of FT application traces. The last column is the percentage
of transactions which violated their SLO in the data. Trace collection began in
late 2004 and ended in early 2005. “AM” and “Asia” servers were located in the
Americas and Asia, respectively.

from Europe. Table 5.2 summarizes our FT traces. Our criterion for SLO violation is

whether the average response time over all transactions in a 5-minute period exceeded

4 seconds.

FT is well suited to our interests because its requirements include high perfor-

mance as well as high availability. Performance debugging in FT is particularly

challenging for two reasons. First, different organizations are responsible for FT itself

and for the application server infrastructure in which crucial FT components run (the

latter is delimited with a shaded dashed oval in Figure 5.2); opportunities for inter-

organizational finger-pointing abound when end-to-end performance is poor. Second,

FT’s supporting infrastructure is physically partitioned into three regions with sepa-

rate operational staffs. A performance problem that occurs in the afternoon in each

region, for example, will occur three different times, will appear to be specific to a

single region each time it occurs, and will demand the attention of three separate

teams of system operators. Cost-effective diagnosis in FT requires that commonali-

ties be recognized across regions, across time, and across organizational boundaries,

and that different teams of human diagnosticians leverage one another’s efforts.

Another attractive feature of our FT traces is that some of our 5-minute samples

are labeled in that they correspond to times when we know that a specific performance

problem occurred whose root cause was subsequently diagnosed. The next section will

describe this particular problem, which illustrates both the challenges that we face

and the opportunities that our approach attempts to exploit.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 49

5.3.2 Diagnosed problem: Insufficient Database Connections

(IDC)

The FT production system experienced a recurrent problem mainly in the Americas

domain during December 2004 and January 2005. During episodes of this problem,

business-critical customers experienced latencies of several minutes on transactions

that normally complete within seconds. The operators who first detected the problem

described it as “stuck threads” in the application server because WebLogic issued

messages in a log file each time it diagnosed a stuck thread. Since there can be many

causes for threads to become stuck, it was necessary to look for other symptoms to

diagnose the cause.

Due to the severity of the problem, a joint task force comprising both FT ap-

plication developers and application server administrators quickly formed to address

it. This team eventually diagnosed and repaired the root cause of the performance

problem, thus providing labels for data points in our traces corresponding to episodes.

Our account of the problem is based on detailed bug-tracking database entries and

e-mail correspondence among the troubleshooters.

After several weeks of debugging, the problem was traced to an insufficient pool of

database connections. Under heavy load, application threads sometimes had to wait

more than 10 minutes to acquire a connection, and were therefore flagged as “stuck

threads” by WebLogic. The problem was solved by increasing the connection pool

size by 25%. We use the label IDC (Insufficient Database Connections) to refer to

this problem from now on.

5.4 Signature compositions

Our evaluation compares four different approaches for creating signatures (examples

in Table 5.3). See Chapter 4 for details on signature construction methods. Let ~S

denote the vector representing the signatures. In all cases the elements si in this

vector correspond to a specific system, application, or workload metric.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 50

1. Raw values: in this case we represent a signature ~S using the normalized raw

values of the metrics, as described in Section 4.6. This signature is the most

naive and requires no extra processing of the traces.

2. Metric attribution: Following the attribution definitions provided in Section 4.5,

if metric mi is deemed attributable, then si = 1. If it is inversely attributed,

si = −1, and si = 0 for all other cases. Although this requires significant com-

putation [15], individual attribution values can be determined on the millisecond

timescales, which allows this approach to used in real time. (see Section 5.6)

3. Metric attribution and raw values: This is similar to the previous approach

except that the raw value of the metric is multiplied by its metric attribution

value as explained in the previous item. The intuition here is that the infor-

mation contained in the value of the metric is added to the information in the

attribution process.

4. Loglikelihood ratio: This is the ratio log[
P (mi|mpi ,s

+)

P (mi|mpi ,s
−)

] (see Section 4.3) that is

used in computing the final attribution value. For this approach, we directly

use the value of this ratio in the signature.

5.5 Results

This section presents and discusses the results of evaluating our approach with our two

traces. We will use TESTBED to identify the trace from the experimental testbed and

FT-TRACE for the data from the globally-distributed production environment system.

For the TESTBED experiments, we intentionally injected known faults into the system

to cause SLO violations. The TESTBED trace is therefore reliably labeled with the

appropriate diagnosis per epoch. FT-TRACE is only partially labeled with the one

diagnosed problem described in section 5.3.2. These labels, as well as the objective

measure of system state reflected by SLO compliance or violation, provide us the

ground truth against which we will determine the effectiveness of our signatures with

respect to clustering and retrieval.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 51

Metric Name Raw Value Metric Attr Raw Value Loglikehood
& Attr Ratio

transaction count 398.00 0 0 0.4
gbl app cpu util 97.47 1 97.47 15.4
gbl app alive proc 449 0 0 -0.6
gbl app active proc 357 0 0 1.2
gbl app run queue 10.57 1 10.57 6.7
gbl app net in packet rate 817 1 817 275.4
gbl mem util 54.62 1 54.62 25.9
gbl mem user util 26.32 1 26.32 10.2
DB1 CPU util 25.96 -1 -25.96 -33.7

Table 5.3: Examples of the different signature compositions, showing a subset
of the metrics collected in the production environment. The first column is of raw
values (not normalized to preserve the context of these metrics), second is metric
attribution (with possible values in {+1, 0,−1}), third is the product of raw values and
metric attribution, and the last column is the loglikelihood ratio used in computing
attribution.

5.5.1 Retrieval

We now evaluate the different signature compositions based on the quality of retrieval

operations and demonstrate that signatures based on metric attribution are superior

for our purposes. This strongly implies that metric attribution captures information

about system state that goes beyond the raw values of the collected metrics, further

validating the results from [15].

We also remark that in our experiments we saw that certain metrics are consis-

tently deemed irrelevant for all time epochs in the traces (e.g., in the FT-TRACE data

the root CPU, memory, and disk utilization on the application server were consistently

eliminated during the feature selection process, resulting in si = 0 for all epochs).

In some cases such an observation can lead to reducing the number of metrics be-

ing collected, although that loss of information can be detrimental when a dropped

metrics becomes relevant in future problems. In addition, because our modeling pro-

cess is able to quickly narrow down the number of metrics considered to only those

that show correlations with overall SLO state, unless the expense of data collection

is significant, we discourage removing any metrics from the measurement apparatus.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 52

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

BUYSPREE − Raw Values

BUYSPREE − Metric Attribution

APPCPU − Raw Values

APPCPU − Metric Attribution

DBCPU − Raw Values

DBCPU − Metric Attribution

Figure 5.3: Precision-recall curves for TESTBED traces. Precision-recall rep-
resentation of retrieval behavior for metric attribution and raw value based signatures.
In general, the larger the area under the curve the better. An ideal PR curve has
precision equal to 1 for all values of recall.

Figure 5.3 shows the precision-recall curves of retrieval exercises performed on the

TESTBED traces using the metric attribution versus raw values signature compositions

(see Section 3.3 for the definition of these curves). Precision-recall performance is

better in proportion to the area under its curve. Clearly, the use of attribution

information provides an advantage, as the curves using attribution are far superior

to using raw values alone. The area under the PR curve is compared in Table 5.4 for

all four signature compositions.

Our real-world traces were collected during a period when a misconfiguration

was causing a performance problem (the IDC problem discussed in Section 5.3.2).

Overall, 318 epochs were labeled with this problem. Figure 5.4 shows the location

of these epochs over the month long trace, overlaid on the value of the reference

CHAPTER 5. EVALUATION DATASETS AND RESULTS 53

Testbed Trace Raw Value Metric Attr Raw Value & Attr Loglikehood Ratio
APPCPU 0.59 0.94 0.88 0.77
DBCPU 0.83 0.92 0.92 0.64
BUYSPREE 0.63 0.97 0.94 0.64

Table 5.4: Area under precision-recall curves for testbed traces. The larger the area
under a PR curve the better, with an ideal curve having an area equal to 1.

metric (average transaction response time). It can be seen that this issue occurred

intermittently over that period.

Figure 5.5 shows the precision-recall graphs for retrieving signatures of the IDC

problem. In the TESTBED trace, metric attribution based signatures again performed

the best. The graph shows that high precision is achieved for a wide range of the

recall value. For example, for a retrieval set of the 100 signatures closest to a test

signature (where that test signature has been labeled with IDC), an average of 97

of those were also labeled IDC and thus correctly retrieved. This corresponds to a

precision of 97% with a recall of 30.6%. Such a precision would be more than sufficient

for an operator to safely infer that the label attached to the majority of signatures

being retrieved matches the problem described by the test signature. These results

confirm that the use of attribution information in the generation of signatures allows

effective inference of the similarity of system problems.

5.5.2 Clustering

Recall that clustering is useful to operators when many problems are undiagnosed

(i.e. many signatures are unlabeled). It provides information about the intensity

and recurrence of all system problems and gives troubleshooters an educated way of

prioritizing diagnostic efforts. In addition, in the absence of fully labeled data, such

as the case for FT-TRACE, clustering results may still be used for evaluation of our

approach.

We cluster signatures as described in Section 3.4. To evaluate the quality of the

clustering, we utilize the notion of purity introduced in that same section. Entropy

is used as a measure of purity with low entropy implying that each cluster contain

CHAPTER 5. EVALUATION DATASETS AND RESULTS 54

12/19/04 12/25/04 12/31/04 01/06/05 01/12/05

10
0

10
1

10
2

10
3

Time

A
ve

ra
g

e
R

es
p

o
se

 T
im

e
(s

ec
)

Avg Response Time
Performance thresh
IDC instances

Figure 5.4: Temporal location of the instances of the IDC problem on one
of the Americas machines, overlaid on the reference metric.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 55

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

Raw Values: 0.43

Raw Values * Attribution: 0.78

Metric Attribution: 0.91

Log Likelihood Ratio: 0.65

Retrieving top 100: Precision = 97%, Recall = 30.6%

Figure 5.5: Precision-recall graph for retrieval of the signatures of the IDC
issue in the web-service production environment. Methods based on metric
attribution outperform the one relying on raw values significantly.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 56

2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Clusters

E
n

tr
o

p
y

Figure 5.6: Clustering on the labeled data from TESTBED. As long as the
number of clusters is greater than the number of different problem labels, the entropy
is near zero. Zero entropy indicates pure clusterings.

only signatures with one type of label (and hence are of a better quality). Since

the TESTBED trace is fully labeled (each signature of an epoch that violated SLO is

labeled either BUYSPREE, APPCPU, or DBCPU), we can fully evaluate the effectiveness of

our signatures for clustering. We vary the number of clusters (k) as it is a parameter

that must be provided for the k-means clustering algorithm. Figure 5.6 shows that

weighted average entropy of the clustering is close to 0 (ideal) as long as k >= 3, which

is what we would intuitively expect from meaningful signatures and a good clustering

algorithm. In addition, the stable entropy across different number of clusters is an

indication of the robustness of the clustering output.

As explained in Section 3.4, we can still apply the notion of purity when labels are

unavailable. However, instead of entropy measuring the purity of each cluster with

respect to different labels, we base entropy calculations only on the percentage of

violation and non-violation signatures in each cluster. Figure 5.7 shows the average

weighted entropy of clustering FT-TRACE signatures over a range of cluster sizes. We

CHAPTER 5. EVALUATION DATASETS AND RESULTS 57

8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

of clusters

A
ve

ra
g

e
en

tr
o

p
y

o
f

cl
u

st
er

s

Raw Values
Raw values metric attribution
Metric attribution

Figure 5.7: Clustering on the data from FT-TRACE. The signatures relying on
information from metric attribution outperform those using only raw values. Cluster-
ing entropy is calculated without using labels since most violations were unlabeled.

see again the stability of entropy over k and conclude that the clustering is robust

(as we increase the number of clusters, existing clusters are being subdivided rather

than new ones being created).

We demonstrate that the clustering is meaningful for the case of nine clusters.

Table 5.5 shows the number of elements belonging to each SLO state (compliance or

violation) in each cluster. Note that for 7 of the clusters, comprising 90% of the 5

minute epochs in a trace collected over a month, the vast majority of elements in each

cluster correspond to either compliance or violation. In addition these clusters are dif-

ferent from one another. Table 5.6 depicts the cluster centroids (with a subset of the

metrics) for four of the clusters from Table 5.5: clusters 4 and 7, which contained only

compliance signatures, and clusters 1 and 3, which contained mostly violation signa-

tures. Note that the compliance centroids deem most metrics as inversely attributed

(value of -1), while the violation centroids deemed some of the metrics as attributed

(value 1), and most others as not attributable. We also see the difference between

CHAPTER 5. EVALUATION DATASETS AND RESULTS 58

Cluster # # violations # compliances Entropy
1 552 27 0.27
2 225 0 0.00
3 265 2 0.06
4 0 1304 0.00
5 1 1557 0.00
6 0 1555 0.00
7 0 1302 0.00
8 216 274 0.99
9 100 128 0.99

Table 5.5: Example of a clustering instance using metric attribution based
signatures on FT-TRACE data (k = 9). The first column is a count of number
of violation instances, the second shows the number of compliance instances, and the
third shows the cluster entropy based on the purity of the cluster. Cluster 3 contains
almost all the instances corresponding to the IDC problem.

the centroids of the “violation” clusters (1 and 3) with respect to the metrics that

are deemed attributed. Cluster 1 deemed the Database tier CPU utilization (DB1

cpubusy) as attributed but assigned a -1 value for the application server CPU utiliza-

tion (gbl cpu total util). In contrast, the centroid of cluster 3 deemed the application

server CPU as attributed, together with the number of alive processes and active

processes on the application server. As discussed earlier, most members of cluster 3

were labeled as the IDC problem, which had the symptom of high application server

CPU utilization and high number of alive and active processes. These differences

point to the symptoms of the members in each cluster and define the syndrome of a

group of signatures.

Given this clustering, recurrent problems can be identified by looking at the time of

occurrence of the signatures in each cluster. Figure 5.8 depicts the instances of cluster

1, 2 and 3 overlaid in time on the performance indicator graph. Cluster 3 is recurrent,

and as mentioned earlier, we verified with the IT operators that the periods defined by

“Cluster 3” coincided with the manifestation of the IDC problem according to their

records. Thus, had they had this tool, they could have easily identified the problem

as a recurring one since its symptoms matched those of the signatures. In addition,

the clustering discovered another undiagnosed recurring problem (Cluster 1), with

CHAPTER 5. EVALUATION DATASETS AND RESULTS 59

Metric Cluster 1 Cluster 3 Cluster 4 Cluster 7
gbl app cpu total util 0 1 -1 -1
gbl app disk phys io 0 0 1 1
gbl app alive proc 0 1 0 -1
gbl app active proc 0 1 1 -1
gbl app run queue 0 0 -1 -1
gbl app net in packet rate 0 0 -1 1
gbl app net out packet rate 1 1 -1 -1
gbl app mem util 0 0 -1 -1
gbl app mem sys util 0 0 -1 -1
DB1 cpu util 1 1 -1 -1

Table 5.6: Comparison of the centroid values for four clusters (clusters 1,
3, 4 and 7 from Table 5.5), two containing mostly compliance signatures (clusters 4
and 7) and two containing mostly violation signatures (clusters 1 and 3). Cluster 3
contained mostly signatures of the IDC problem. Note the difference between cluster 1
and cluster 3 in terms of metrics that are attributed and those not attributed.

the symptom of higher Database CPU utilization (average of approximately 60%

compared to approximately 20% in most other times), while at the same time all

application server utilization metrics were not attributed, and were in fact normal.

This problem remains undiagnosed to this date, and did not appear again in the

following months, however, if it appears again, these past instances would be retrieved

and perhaps help prioritize finding a solution or the root cause of the problem.

Note that neither the signature construction process, nor the clustering algorithm,

considers temporal information. That is, there is no information contained within

signatures that correspond to the time epochs they represent. Since we intuitively

expect that problems close together in time are more likely to share a common root

cause, the fact that these clusters tend to be grouped together in time is another

strong indication that our signatures are meaningful.

5.5.3 Case study: Leveraging Signatures Across Installations

In this section we provide evidence that the signatures collected at various sites and

systems can be leveraged during the diagnosis of performance problems. In particular,

we show that diagnosis of a performance problem can be aided by querying for similar

CHAPTER 5. EVALUATION DATASETS AND RESULTS 60

12/19/04 12/25/04 12/31/04 01/06/05 01/12/05

10
0

10
1

10
2

10
3

Time

A
ve

ra
g

e
R

es
p

o
se

 T
im

e
(s

ec
)

Avg Response Time
Performance thresh
Cluster 1
Cluster 2
Cluster 3

recurring problem
(mostly IDC)

Figure 5.8: Instances of the three “pure” abnormal clusters (clusters 1,
2 and 3 from Table 5.5), overlaid on average response time. Cluster 3
comprises mostly of the instances labeled as the IDC problem. Cluster 1 is another
recurrent problem with the symptom of high Database CPU load and low Application
server utilization, while Cluster 2 has memory and disk utilization metrics on the
Application server as attributed metrics to the performance problem.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 61

(or dissimilar) signatures collected at different sites or machines.

In the process of diagnosing the IDC problem, which was observed on the Americas

site, the debugging team investigated whether the same problem occurred in the Asia-

Pacific region as well. In particular, they hypothesized that it did occur during a

failover period on December 18th, 2004, in which the transactions from the Americas

cluster were being sent to the Asia systems hosting the FT application. A high

percentage of the transactions were violating the SLO on one of the Asia cluster

machines during the first 100 minutes of the failover period. The debugging team

suspected that the cause was the same IDC problem, and labeled it as such. Our

signature database included signatures on traces collected on that day. We then

performed the following query: are the signatures labeled as the IDC problem on the

Americas site similar to the signatures collected during the failover period at the Asia

site?

As Figure 5.9 shows, the result of the query was that the signatures of the Asia

failover period are very different from the signatures of the IDC problem. Key metrics

that were highly attributed in one were not attributed in the other. Of the metrics

that were attributed in both, only transaction volume was similar in its attribution

signal for the signatures from the two sites.

Upon close inspection of the attributed metrics from one of the Asia machines

and the transaction mix on that machine, we quickly arrived at a different diagnostic

conclusion for the Asia problem. Due to the failover from the Americas system,

Asia1 was experiencing higher transaction volumes, and during the initial phase of

the failover, it was experiencing higher response times (see Figure 5.10). During this

initial phase, Asia1 was seeing a high transaction volume of one type of transaction

(referred to as the XYZ transaction in Figure 5.11) that it normally does not see. The

SQL statements associated with this unusual transaction type were not prepared or

cached on the Asia machines, leading to more database overhead (Figure 5.12), higher

response times, and ultimately SLO violations. This diagnosis was accepted by the

diagnostics team; the repair consists of priming the database and middleware caches

for the new transaction type before a planned failover. As a result of this experience,

we were able to replace the false labels originally provided for that trace data with a

CHAPTER 5. EVALUATION DATASETS AND RESULTS 62

tt_
co

un
t

gb
l_c

pu
_to

tal
_u

til

gb
l_a

live
_p

roc

gb
l_a

cti
ve

_p
roc

gb
l_r

un
_q

ue
ue

gb
l_n

et_
ou

t_p
ac

ke
t_r

ate

DB1_
_c

pu
bu

sy

DB1_
_c

pu
run

q

DB1_
_p

ag
ere

q

DB1_
_d

isk
uti

l

DB1_
_p

ac
ke

ts

oth
er_

us
er_

roo
t__

ap
p_

dis
k_

ph
ys

_io

oth
er_

_a
pp

_c
pu

_to
tal

_ti
me

oth
er_

_a
pp

_a
live

_p
roc

oth
er_

_a
pp

_a
cti

ve
_p

roc

oth
er_

_a
pp

_c
pu

_to
tal

_u
til

AP1 Failover

IDC

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
et

ri
c

A
tt

ri
bu

tio
n

Metrics

AP1 Failover

IDC

Figure 5.9: Comparing the signatures from the Asia failover period and
the IDC problem in the Americas. The bars for each metric show the mean
attribution value for the signatures in each period. For metrics where there are fewer
than two bars shown, a missing bar means that the metric was not selected by any
model that predicted the violation for this period. Metrics whose name does not
begin with “DB1” are from the application server.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 63

12/18/04,08:53 12/19/04,01:33 12/19/04,18:13 12/20/04,10:53

10
−1

10
0

10
1

Time

A
ve

ra
ge

 R
es

po
ns

e
T

im
e SLO Threshold

Figure 5.10: Average response time during the Asia1 failover period.

new and correct label explaining the problem and describing the required repair.

5.6 Performance

There are five points where our approach adds computation cost or other overhead

that may impact performance of a system: overhead of collecting data, construction of

models for metric attribution, signature computation, clustering, and retrieval. Our

system data is collected by a commercial tool that is widely deployed in industry; the

tool is designed to minimize performance impact on the observed system, and at any

rate the widespread use of such tools represents a sunk cost. Updated system data

is coalesced and reported periodically, generally in 1 or 5 minute epochs. The entire

CHAPTER 5. EVALUATION DATASETS AND RESULTS 64

12/18/04,08:53 12/19/04,01:33 12/19/04,18:13 12/20/04,10:53
0

50

100

150

200

250

300

Time

X
Y

Z
 T

ra
ns

ac
tio

n
co

un
t

Figure 5.11: Throughput for the XYZ Transaction during the Asia1 failover
period. XYZ transactions are usually never seen in Asia.

12/18/04,08:53 12/19/04,01:33 12/19/04,18:13 12/20/04,10:53

10

20

30

40

50

60

70

80

90

100

Time

D
B

 C
P

U
 %

Figure 5.12: CPU utilization on DB server during Asia1 failover period.
The utilization was unusually high at the beginning of the failover period. Once the
caches were warmed, CPU utilization returned to 20% or lower.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 65

Testbed Trace FT Trace
Epoch length 1 min 5 mins
Number of epochs 1079 7507
Constructing metric attribution based signatures 65 secs 315 secs
Retrieving top 100 matching signatures < 1 sec < 1 sec
k-means clustering (k = 5) 2 secs 9 secs

Table 5.7: Performance impact of signature construction and use. All timing
measurements were taken on a Pentium 4 2.0 GHz laptop with 1 GB RAM. Algorithms
were implemented using Matlab 7.0.

process of generating signatures for one month of data (7507 epochs of 5 minutes each),

as well as analyzing the signatures using clustering and retrieval techniques, takes a

matter of minutes on a Pentium 4 based laptop computer using Matlab prototype

code. Detailed timings for each operation is giving in Table 5.7 for both FT-TRACE

and TESTBED traces. We conclude that signature generation can proceed in soft real

time, and analysis with clustering or retrieval is fast enough to be done at will.

5.7 Limitations of signature evaluation

For many traditional areas where statistical and machine learning techniques have

been applied, determining the ground truth of data sets for evaluation purposes has

been a matter of hiring human experts. The correct interpretation for handwritten

letter samples is easily decided by humans. However, in the domain of system problem

diagnosis, obtaining ground truth is extremely difficult. Even if operators are certain

about the root cause of a failure, there is no exact notion of what the correct signature

for that system state should be. We must rely on approximate human labeling to

evaluate if signature similarity does indeed infer problem similarity.

It is a fact of life in the IT trenches that labels are scarce and imperfect. Part of

the reason for this is the lack of advanced diagnostic tools, precisely the hole that we

are attempting to fill. Additionally, administration of different subsystems or tiers of

an application may be delegated to different individuals distributed across an organi-

zation, as we experienced when investigating the problem and resolution described in

CHAPTER 5. EVALUATION DATASETS AND RESULTS 66

Subsection 5.5.3. Our experiences with other companies running multi-tier applica-

tions confirm that there is often no single administrator responsible for understanding

the end-to-end paths through an application. An unfortunate consequence is a fre-

quent lack of clear agreement on what the true cause of a problem is or was: forensic

data may be discarded before the realization that it is needed, and each operator is

typically focused on either debugging or exonerating his or her piece of the system.

Fortunately, problem labels are only required for complete evaluation of our tech-

nique. Even lacking labels, partial evaluation is possible through the purity score of

clustering violation and compliance signatures together. Therefore, the impreciseness

of labeling and the limits that that imposes on signature evaluation should not be con-

sidered a limitation of our overall approach. Nevertheless, a main focal point of our

technique is to better enable operators to leverage previous diagnostic efforts. There-

fore, we hope that the availability of a systematic way to exploit labels will encourage

a change in best practices that makes labels more prevalent and reliable. In Chapter 8

we discuss how operators can best leverage signatures for problem diagnosis.

5.8 Summary

This chapter described the systems and traces from those systems with which we used

for evaluation of our signatures based approach.

• Traces were collected from two systems, an experimental testbed 3-tiered system

running the Petstore sample application, and a globally-distributed enterprise

system serving business-critical services to real customers. A widely used com-

mercial software, HP OpenView was used for monitoring and reporting of metric

data.

• The experimental testbed system was injected with 3 faults that tended to

cause SLO violations. The BUYSPREE scenario involved increasing workload

by adjusting the buy to browse ratio. The APPCPU and DBCPU scenarios

consists of parasitic process consuming only CPU cycles only the application

server and the database server, respectively.

CHAPTER 5. EVALUATION DATASETS AND RESULTS 67

• The production system trace contained many violations. However, only some of

these violations were ever diagnosed by the system operators. In particular, we

focus on a problem termed Insufficient Data Connection (IDC) which occurred

several times over the month or so that this trace covered.

• Using precision-recall behavior, we compared the effectiveness of four different

signature compositions (raw metric values, metric attribution only, attribution

and raw values, and loglikelihood ratio) on both the TESTBED and FT-TRACE

data sets. We found that not only was attribution based signatures superior

in all cases, but that the accuracy of retrieving similar problem instances (97%

for top 100 search for IDC) was more than adequate to be of use to a system

operator.

• We verified the ability of the k-means clustering algorithm to group together

different signatures for the TESTBED trace according to problem label, generating

clusters with very low entropy (high purity). Since the FT-TRACE data was not

fully labeled (only IDC problem labels were available), we could only partially

evaluate signature clustering on that trace, utilizing entropy calculations based

on the ratio of compliance signatures and violation signatures in each cluster.

We found that entropy to be low and does not vary when increasing the number

of clusters and thus we conclude that the clustering is robust.

• We successfully leveraged signatures across different sites of the FT service to

correct an erroneous initial diagnosis of a performance problem after a failover

situation.

• Generating metric attribution based signatures for over a month of data (from

service FT) took only minutes. Clustering and retrieval of signatures takes on

the order of seconds. Therefore, we conclude that our approach can be used in

real time as a system is running.

• Unlike some other domains, there is often no ground truth for what signatures

should capture. We must use operator provided labels (annotations of diagnosed

root cause) to evaluate our techniques. These labels are often incomplete and

CHAPTER 5. EVALUATION DATASETS AND RESULTS 68

imprecise due to the difficulties in diagnosing complex systems today. However,

this impacts only the accuracy of evaluation and rather than the effectiveness

of our approach. When labels are lacking, clustering purity, as well how closely

grouped in time clusters are, can be used as indirect measures of signature

quality.

Chapter 6

Adapting to change

In order to construct signatures with the good retrieval and clustering properties ev-

idenced in the last chapter, several major modifications were needed to the original

metric attribution procedure described in Section 4.3. These changes will be de-

scribed in the next few chapters. This chapter focuses on improvements allowing the

statistical models from which attribution is computed to adapt to changing system

behavior. The majority of this chapter has been previous published in [53] and was

joint work with Ira Cohen, Moises Goldszmidt, and Julie Symons of Hewlett-Packard

Labs.

6.1 Dynamic system behavior

Complex systems today are highly dynamic. Frequent software and hardware changes

not only make system problems more likely, but they can also fundamentally alter

the way a system behaves. Patterns of behaviors captured by statistical models (or

manually noticed by system operators) could change significantly over a period of

days or even hours. The experiments in [15] hinted at the need for metric attribution

to adapt, as under different conditions, different metrics, or different thresholds, the

metrics deemed attributable varied significantly. This is unsurprising since a system

behavior may be altered by not only changes in the infrastructure, but also changes

in the workload due to surges or rebalancing (due to transient node failures), faults

69

CHAPTER 6. ADAPTING TO CHANGE 70

in the hardware, and bugs in the software, among other factors.

A single Bayesian network classifier is designed to capture one particular corre-

lation pattern between high level system behavior (i.e. SLO compliance state) and

lower level metrics. Simple experiments showed that an accurate classifier induced on

data captured while a system was under one workload pattern were very inaccurate

(poor balanced accuracy, see Section 4.2.1) when evaluated on data from the same

system but under a different workload condition. The validity of metrics selected

as attributable by a statistical model depends heavily on the ability of that model

to accurately capture the underlying behavioral patterns in that data. Clearly, we

cannot simply induce a model from a period of system information and expect it to

faithfully describe all possible behaviors of that system.

6.2 Approach: Ensembles of Models

This section presents a technique for maintaining an ensemble of models to enable

adaptation of metric attribution computations to changes in system behavior. As a

system runs we periodically induce new models and augment the ensemble if the new

models capture a behavior that no existing model captures. The problem of adapting

metric attribution is thereby reduced to the problem of managing this ensemble.

Several management issues must be addressed. When should new models be induced?

Which model(s) are the most relevant to current system behavior? How can we

combine information from multiple models to provide a single attribution value for

each metric?

We sketch our approach as follows. We treat the regularly reported system metrics

as a sequence of data vectors. As new data are received, a sliding window is updated

to include the data. Periodically, we score the balanced accuracy (BA) of existing

models in the ensemble against the data in this sliding window and compare this to

the BA of a new model induced using only the data in this window. Based on this

comparison, the new model is either added to the ensemble or discarded.

For every epoch, we use the Brier score [7, 14] to select the most relevant model

from the ensemble to use for metric attribution. The Brier score is related to the

CHAPTER 6. ADAPTING TO CHANGE 71

mean-squared-error often used in statistical fitting as a measure of model goodness.

Equation 4.1 from Section 4.3 is still used to derive the attribution values. The rest

of this section describes the rationale for this approach and the details of new model

induction and ensemble usage.

6.2.1 Ensemble vs. Single Model

The observation that changes in workload and other conditions leads to changes in

metric attribution relationships has been observed in real Internet services [27] and in

our own experiments. In the context of probabilistic models in general and Bayesian

network models in particular, there are various ways to handle such changes.

One way is to learn a single monolithic Bayesian classifier model that attempts

to capture all variations in workload and other conditions. There are two problems

with this approach. First, as new data about a system is collected, the monolithic

model must be rebuilt including the new data. This means that the amount of data

that has to be processed when inducing the model is ever increasing. However, due

to the efficiencies of our techniques of model induction, the computational cost of

this method may not be prohibitive. The second and more important issue with

using a single monolithic model is that it simply does not capture multiple behavior

patterns well. For example, a problem may initially increase I/O request rates to be

much higher than normal. A different problem may manifest later that results in I/O

requests being lowering than normal. If we attempted to model both these conditions

in a single model, it would capture the fact that during SLO violating behavior, the

I/O request rate may be high or low and therefore is not strongly correlated to SLO

state. In actuality, that metric should be attributed for both of the problem and

that would be the case if we used a different model for each condition. We used data

collected on a system with two different workloads (these workloads are described

in Section 6.3.1), one that mimics increasing but “well-behaved” activity (e.g. when

a site transitions from a low-traffic to a high-traffic service period) and the second

mimics unexpected surges in activity (e.g. a breaking news story). We will show that

while a single classifier trained on both workloads had a balanced accuracy of 72%,

CHAPTER 6. ADAPTING TO CHANGE 72

utilizing two separate models, one trained on each workload, we achieve a BA of 88%.

A second approach, trying to circumvent the shortcomings of the single monolithic

model, is to use a single model that is constantly updated with the most recent system

data. The most significant issue with such an approach is in the fact that the single

model does not have “long term” memory, that is, the model only captures short term

system behavior, forcing it to re-learn conditions that might have occurred previously.

In the third approach, advocated by this dissertation, adaptation is addressed

by using a scheduled sequence of model inductions, keeping an ensemble of models

instead of a single one. The models in the ensemble serve as a memory of the system

in case problems reappear. In essence, each model in the ensemble is a summary

of the data used in building it. We can afford such an approach since the cost, in

terms of computation and memory, of learning and managing the ensemble of models

is relatively negligible: new system data typically arrives every one to five minutes

in commercial products (e.g., HP OpenView), while learning a model takes on the

order of several seconds, evaluating a model in the ensemble takes around 1 msec and

storing a model involves keeping on the order of tens of floating point numbers1. The

challenges of managing an ensemble lie in deciding when to add new models to the

ensemble and how to combine the information from the ensemble’s models.

6.2.2 Inducing and incorporating new models

The general procedure for inducing a statistical model remains the same as described

in Section 4.3. It is important to note that the feature selection process is repeated for

every new model induced. Recall that this process is mainly needed to deal with the

dimensionality problem, where the number of data samples needed to induce robust

models increases exponentially with the dimension (which is directly related to the

number of metrics under consideration) of the problem. Repeating this for each model

is done to avoid the situation where metrics deemed relevant at a previous time are

never again considered even though they may become relevant in the future. Feature

selection has been improved by incorporating a beam search algorithm rather than

1These performance figured were generated on a Pentium 4 2.0 GHz laptop with 1GB of ram
using Matlab 7.0 prototype code.

CHAPTER 6. ADAPTING TO CHANGE 73

simple greedy search, which provides some robustness against local minima [29].

Models are induced periodically over a data window D consisting of vectors of

n metrics at some time t, ~Mt = [m1, . . . , mn] and the corresponding SLO state (s−

or s+). Once the model is induced, we estimate its balanced accuracy (Eq. 4.1)

on the data set D using tenfold crossvalidation [28]. We also compute a confidence

interval around the new BA score. If the new model’s BA is statistically significantly

better than that of all models in the existing ensemble, the new model is added

to the ensemble; otherwise it is discarded. In our experiments, models are never

removed from the ensemble. Although any caching discipline (e.g. Least Recently

Used) could be used to limit the size of the ensemble, we did not study this issue

in depth because evaluating models takes milliseconds and their compact size allow

us to store thousands of them2, making the choice among caching policies almost

inconsequential.

Algorithm 2 Learning and Managing an Ensemble of Models

Input: WindowSize and Frequency of Induction
Initialize Ensemble to {φ} and CurrentWindow to {φ}
for every new sample do

update CurrentWindow to include new sample (and discard oldest sample if
necessary)
if CurrentWindow has enough samples and it is time to induce a new model
then

Do feature selection and induce new model M on CurrentWindow
Compute accuracy of M using crossvalidation.
For every model in Ensemble compute accuracy on CurrentWindow.
if accuracy of M is statistically significantly higher than the accuracy of all
models in the Ensemble then

add new model to Ensemble.
end if

end if
Compute Brier score (Eq. 6.1) over CurrentWindow for all models in Ensemble
Perform metric attribution using model with best Brier score

end for

2Also note that the more models in an ensemble, the less likely that a new model will be added
to it since it must be significantly more accurate than all current models.

CHAPTER 6. ADAPTING TO CHANGE 74

Algorithm 2 describes in the detail the algorithm for managing the ensemble of

models. There are two main parameters to this process that need to be set. First

and foremost, the size of the data window D for use in inducing new models must be

considered. Choosing too large a window may increase the number of patterns that

a single model attempts to capture, resulting in less accurate models (exactly the

problem with using a single monolithic model). However, too small a window may

result in overfitting of the data and thus a non-robust model. Lacking closed-form

formulas that can answer these questions for Bayesian classifiers given potentially

complex system behaviors, we follow the typical practice in machine learning of using

an empirical approach. In Section 6.3, we use learning surfaces to characterize mini-

mal data requirements for the models in terms of number of data samples required as

well as proportions of SLO violation versus compliance epochs in a data window. The

second, less important parameter is the frequency of inducing new models. Settings

of this parameter make a tradeoff between unnecessary computation and potentially

an adaptation rate that is too slow for rapidly changing system behaviors.

6.2.3 Utilizing multiple models

When using a single model, accuracy is determined by the accuracy of that model

in correctly predicting SLO state from metric data. In addition, attribution is deter-

mined by querying that model to determine the log-likelihood ratios of each metric’s

value during some epoch. To compute the accuracy and attribution when using an

ensemble approach, we follow a winner takes all strategy: we select the “best” model

from the ensemble, and then proceed as in the single-model case.

Although the machine learning literature describes methods for weighted combi-

nation of models in an ensemble to get a single prediction, our situation differs from

those cases because our models are each trained on different windows of data and are

designed to capture different types of behaviors that a system can exhibit. Therefore,

our goal is not to merge the opinion of many models, but rather select the most

appropriate model at a given point in time. We accomplish this task by utilizing the

Brier score[7].

CHAPTER 6. ADAPTING TO CHANGE 75

For each model in the ensemble, we can compute its Brier score over a short

window of past data, D = {dt−w, . . . , dt−1}, where t is the present sample, making

sure D includes samples of both SLO compliance and violation. The Brier score is the

mean squared error between a model’s probability of the SLO state given the current

metric values and the actual SLO state, i.e., for every model in the ensemble, Moj:

BSMoj
(D) =

t−w∑

k=t−1

[P (s+| ~M = ~mk; Moj)− I(sk = s+)]2, (6.1)

where P (s+| ~M = ~mi; Moj) is the probability of the SLO state being in violation

of model j given the vector of metric measurements and I(sk = s+) is an indicator

function, equal to 1 if the SLO state is s+ and 0 otherwise, at time k. For a model to

receive a good Brier score (best score being 0), the model must be both correct and

confident (in terms of the probability assessment of the SLO state) in its predictions.

Although in classification literature the accuracy of the models is often used to

verify the suitability of an induced model [5, 10, 17], we require a score that can select

a model based on data that we are not sure has the same characteristics as the data

used to induce the models. Since the Brier score uses the probability of prediction

rather than just {0,1} for matching the prediction, it provides us with a finer grain

evaluation of the prediction error. Our experiments consistently show that using the

Brier score yields better accuracy, confirming the intuition expressed above.

Note that we are essentially using a set of models to capture the drift in the rela-

tionship between the low level metrics and high level behavior as defined by the SLO

state. The Brier score is used as a proxy for modeling the change in the probability

distributions governing these relationships by selecting the model with the minimal

mean squared error over the current data window.

6.3 Evaluation

We validated this ensemble technique using the experimental testbed system described

in Section 5.2. In addition to the three previously described workloads BUYSPREE,

APPCPU, and DBCPU, we introduce two new workloads, RAMP and BURST, in the next

CHAPTER 6. ADAPTING TO CHANGE 76

section. We then report the results comparing the ensemble technique to: (a) a sin-

gle monolithic model trained using all experimental data, and (b) an “oracle” that

knows exactly when and how the workload varies among the five workload types. The

oracle method induces workload-specific models for each type and invokes the appro-

priate model during testing; while clearly unrealistic in a real system, this method

provides a qualitative indicator of the best we could do. Last, we present the result

of using learning surfaces to characterize the amount of data needed to induce robust

classifiers.

6.3.1 Workloads

For the RAMP workload, the number of concurrent client sessions was gradually ramped

up. An emulated client was added every 20 minutes up to a limit of 100 total ses-

sions. Individual client request streams were constructed so that the aggregate request

stream resembles a sinusoid overlaid upon a ramp. The average response time of the

web service in response to this workload is depicted in Figure 6.1. Each client ses-

sion follows a simple pattern: go to main page, sign in, browse products, add some

products to shopping cart, check out, repeat.

The BURST workload has two components. The first httperf creates a steady

background traffic of 1000 requests per minute generated by 20 clients. This second

is an on/off workload consisting of hour-long bursts with one hour between bursts.

Successive bursts involve 5, 10, 15, etc client sessions, each generating 50 requests

per minute. The intent of this workload is to mimic sudden, sustained bursts of

increasingly intense workload against a backdrop of moderate activity. Each step

in the workload produces a different plateau of workload level, as well as transients

during the beginning and end of each step as the system adapts to the change.

6.3.2 Results

We learn the ensemble of models as described in Algorithm 2 using a subset of the

available data. The subset of data are the first 4-6 hours of each workload. We keep

the last portion of each workload as a test (validation) set. Overall, the training set

CHAPTER 6. ADAPTING TO CHANGE 77

0 1 2 3 4 5 6 7 8

50

100

150

200

250

300

time (hours)

av
g

re
sp

 ti
m

e
(m

s)

0 1 2 3 4 5 6 7 8

100

200

300

400

time (hours)

av
g

re
sp

 ti
m

e
(m

s)

(a) (b)

Figure 6.1: Relevant sequences of average web server response time over
1-minute windows when the test system was subjected to the (a) RAMP
workload (b) BURST workload

is 28 hours long (1680 epochs, each epoch being 1 minute) and the test set is 10 hours

long (600 epochs). The training set starts with alternating two hour sequences of

DBCPU, APPCPU, and BUYSPREE, with DBCPU and APPCPU represented three times and

BUYSPREE twice. This is followed by six hour sequences of data from RAMP and BURST.

The result is a training set which has five different workload conditions some of which

are repeated several times. Testing on the test set with the ensemble amounts to the

same steps as in Algorithm 2, except for the fact that the ensemble is not initially

empty (but has all the models trained on the training data) and no new models are

added at any point. The accuracies provided by this testing procedure show how

generalizable the models are on unseen data with similar types of workloads.

Table 6.1 shows the balanced accuracy, false alarm and detection rates, measured

on the validation data, of our approach compared to the single monolithic model and

the workload specific models. We present results for the ensemble of models with

three different training window sizes (80, 120, and 240 samples). We see that for all

cases: (a) the ensemble’s performance with any window size is significantly better

than the single-model, (b) the ensemble’s performance is robust to wide variations of

the training window size, and (c) the ensemble’s performance is slightly better, mainly

in terms of detection rates, compared to the set of five individual models trained on

each of the workload conditions we induced.

CHAPTER 6. ADAPTING TO CHANGE 78

metrics chosen avg attr metrics BA FA Det
Ensemble W80 64 2.3 95.67 4.19 95.53
Ensemble W120 52 2.5 95.12 4.84 95.19
Ensemble W240 33 3.7 94.68 5.48 94.85
Workload specific models 9 2 93.62 4.51 91.75
Single model 4 2 86.10 21.61 93.81

Table 6.1: Summary of adaptation performance results. First three rows show
results for ensemble of models with different size training window (80, 120, 240 sam-
ples). Metrics chosen represents all of the metrics used in all models in an ensemble.
Average attributed metrics refers to the average number of metrics found to be at-
tributable for epochs of SLO violation.

The last observation (c) is at first glance puzzling, as intuition suggests that the

set of models trained specifically for each workload should perform best. However,

some of the workloads on the system were quite complex, e.g., BURST has a ramp up of

number of concurrent sessions over time and other varied conditions. This complexity

will be further characterized by learning surfaces, where we will see that it takes many

more samples to capture patterns of the BURST workload, and with lower accuracy

compared to the other workloads. The ensemble of models, which is allowed to learn

multiple models for each workload, is better able to characterize this complexity than

the single model trained with the entire dataset of that workload. Intuitively, this

also makes sense since a single workload “pattern” applied to a system does not imply

that it will exhibit a single behavior pattern in response to that workload. For the

BURST workload, it seems likely that system behavior will be quite different depending

on the intensity of a burst.

The table also shows the total number of metrics included in the models and

the average number of metrics attributable to specific instances of SLO violations.

The ensemble chooses many more metrics overall because models are trained inde-

pendently of each other, which suggests that there is some redundancy among the

different models in the ensemble. However, only a handful of metrics are attributed

to each instance of an SLO violation, therefore attribution is not affected by the

redundancy.

To show how the ensemble of models adapts to changing workloads, we store the

CHAPTER 6. ADAPTING TO CHANGE 79

200 400 600 800 1000 1200 1400 1600
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (minutes)

B
al

an
ce

d
A

cc
ur

ac
y

2 3 1 2 3 1 2 4 51

Figure 6.2: Balanced accuracy of ensemble of models during training. Verti-
cal dashed lines show boundaries between workload changes. Numbers above figure
enumerate which of the five types of workload corresponds to each period (1=DBCPU,
2=APPCPU, 3=BUYSPREE, 4=RAMP, 5=BURST).

accuracy of the ensemble of models as the ensemble is trained. The changes in the

ensemble’s accuracy as a function of the number of samples is shown in Figure 6.2.

There are initially no models in the ensemble until enough samples of violations are

observed. The ensemble’s accuracy remains high until new workloads elicit behaviors

different from those already seen, but adaptation is quick once enough samples of

the new workload have been seen. An interesting situation occurs during adaptation

for the last workload condition (BURST, marked as 5 in the figure). We see that

the accuracy decreases significantly when this workload condition first appears, but

improves after about 100 samples. It then decreases again, illustrating the complexity

of this workload and the need for multiple models to capture its behavior, and finally

recovers as more samples appear. It is worth noting that there is a tradeoff between

adaptation speed and robustness of the models, e.g., with small training window,

adaptation would be fast, however, the models might not be robust to overfitting and

will not generalize to new data.

CHAPTER 6. ADAPTING TO CHANGE 80

Figure 6.3: Learning surface for RAMP experiment showing balanced accu-
racy. The color map on each figure shows the mapping between color and accuracy.
Each quad in the surface is the balanced accuracy of the right bottom left corner of
the quad.

To test how much data is needed to learn accurate models, we take the common

approach of testing it empirically. Typically, in most machine learning research, the

size of the training set is incrementally increased and accuracy is measured on a fixed

test set. The result of such experiments are learning curves, which typically show

what is the minimum training data needed to achieve models that perform close to

the maximum accuracy possible. In the learning curve approach, the ratio between

violation and non-violation samples is kept fixed as the number of training samples

is increased. Additionally, the test set is usually chosen such that the ratio between

the two classes is equivalent to the training data. These two choices can lead to

an optimistic estimate of the number of samples needed in training, because real

applications (including ours) often exhibit a mismatch between training and testing

distribution and because it is difficult to keep the ratio between the classes fixed.

To obtain a more complete view of the amount of data needed, we use Forman

and Cohen’s approach [20] and vary the number of violations and non-violations in

CHAPTER 6. ADAPTING TO CHANGE 81

Workload # of violation epochs # of non-violation epoch max BA(%)
RAMP 90 80 92.35
BURST 180 60 81.85
BUYSPREE 40 40 95.74
APPCPU 20 30 97.64
DBCPU 20 20 93.90

Table 6.2: Minimum sample sizes needed to achieve accuracy that is at least
95% of the maximum accuracy achieved for each workload condition.

the training set independently of each other, testing on a fixed test set that has a

fixed ratio between violations and no violations. The result of this testing procedure

is a learning surface that shows the balanced accuracy as a function of the ratio

of violations to non-violations in the training set. Figure 6.3 shows the learning

surface for the RAMP workload we described in the previous section. Each point in the

learning surface is the average of five different trials. Examining the learning surface

reveals that after about 80 samples of each class, we reach a plateau in the surface,

indicating that increasing the number of samples does not necessarily provide much

higher accuracies. The surface also shows us that small numbers of violations paired

with high numbers of non-violations results in poor BA, even though the total number

of samples is high; e.g., accuracy with 200 non-violations and 20 violations is only

75%, in contrast to other combinations on the surface with the same total number of

samples (220) but significantly higher accuracy.

Table 6.2 summarizes the minimum number of samples needed from each class

to achieve 95% of the maximum accuracy. We see that the simpler APPCPU and

DBCPU workloads require fewer samples of each class to reach this accuracy threshold

compared to the more complex RAMP or BURST workloads.

Even though we based the evaluation of our ensemble method on the accuracy of

predicting SLO state from metric values, inferring the SLO state is clearly not the

goal of metric attribution (since SLO state can simply be measured directly). Rather,

the end goal is allowing attribution values to be used as the basis for signatures that

can aid operators in diagnosing problems. Although we cannot prove that improving

the accuracy of models used for metric attribution directly improves the quality of

CHAPTER 6. ADAPTING TO CHANGE 82

signatures, models that do not represent system behavior well (i.e. low prediction

accuracy) clearly can not be counted on for useful information for signatures. We

rely on the evaluation in Chapter 5 to conclude that signatures based on metric

attribution generated using this ensemble method do indeed offer helpful information

for system troubleshooters.

6.4 Summary

This chapter explored the rationale, method, and performance of employing an en-

semble of models to allow metric attribution to adapt to changes in system behavior.

• Metric attribution calculations rely on inducing models of system behavior.

When system behavior inevitably changes (due to workload changes, infras-

tructure changes, or software bugs, among many other factors), the model must

change as well for metric attribution results to be meaningful.

• Using a single monolithic model cannot adequately capture multiple system

behaviors, while maintaining an adaptive model that only captures the most

recent system behavior results in forgetting of past patterns that may repeat in

the future. Our experiments demonstrated both of these cases.

• Our approach utilizes an ensemble of models. New models are periodically in-

duced on a sliding window of training data as new system information is gath-

ered. If the new models capture system behavior better than any current models

in the ensemble, the new model is added to the ensemble. For each epoch, the

model that represents recent system behavior most faithfully (measured using

the Brier Score) is used for metric attribution.

• Using traces from a testbed system, we found the ensemble method performs

significantly better than a single monolithic model approach. Surprisingly, it

is also better than using workload specific models, as complex workloads may

result in many different patterns of system behavior and the ensemble method

can better capture those multiple patterns.

CHAPTER 6. ADAPTING TO CHANGE 83

• Although ensemble performance is robust to the size of the training window,

the accuracy and robustness of models produced do rely on the training window

having enough data samples. We demonstrated how learning surfaces can be

used to gauge how much data is enough. In addition, we showed that more

complex workloads and conditions require greater number of samples to induce

a good statistical model.

Chapter 7

Improving signature robustness

Signatures based on metric attribution capture the set of symptoms that define an

undesirable system state (SLO violation). As such, signatures depend on not only the

problem behavior itself, but also on the good behavior that is used for comparison.

Therefore, the same problem may be characterized by different signatures if compared

to different good behaviors. Unfortunately, this is detrimental to the utility of our

approach, which is based on the ability to accurately infer similarity between problem

states based on the similarity between the signatures. In this chapter, we explore this

issue further and present a technique for mitigating its effects.

7.1 Problem: Good behavior not unique

Properly designed systems often must perform well under a wide variety of workload

conditions. Consequently, metric values often exhibit great variability during nor-

mal operation. For example, suppose a service handles many different types of client

transactions, some of which are CPU intensive while others are I/O intensive. While

this service may be able to support many different transaction mixtures without vio-

lating its SLO, the value of metrics such as CPU Utilization would vary significantly

depending on the exact workload. Furthermore, component failures or software bugs

may result in a system operating with less efficiency, but still meeting its SLO, espe-

cially during periods of low overall utilization. Since metric attribution relies on the

84

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 85

binary SLO state, such types of behavior would also be considered desirable.

Although the concept of signatures in general is independent of any particular

method of generating them, we have shown in previous chapters that signatures based

on metric attribution exhibit the best clustering and retrieval properties. That is,

metric attribution signatures were the most accurate for inferring problem similarity

from signature similarity. These results would definitely benefit from being able to

keep signatures robust to variances in good behavior. The signature of a problem

behavior compared to one particular good behavior may be quite different if compared

to another good behavior. This implies that a failure with the same root cause

occurring at two different times may produce significantly different signatures, which

is clearly detrimental to clustering and retrieval performance.

But why can we not simply model all non-violations as a single monolithic good

behavior? The answer is for the same reasons that we do not use a monolithic model to

capture multiple problem behaviors. Our classifiers do not treat compliant behavior

any different from problem behavior in terms of modeling. We established in the

previous chapter that inducing a single model on multiple problem behaviors resulted

in poor classification accuracy (see Section 6.2.1). Furthermore, a dynamic system

changes over time and as more data is collected, even a monolithic version of good

behavior may have to be adapted.

Our challenge will be to determine which good behaviors to use when generat-

ing signatures of problem behaviors with the goal of maximizing the likelihood that

problems with similar root causes will exhibit similar attributions.

7.2 Naive approach

The naive approach to addressing this problem is to simply choose any single good

behavior to compare all undesirable behaviors against. We refer to this reference

good behavior as a baseline. However, the issue with this approach is that similarity

inferences may not be consistent when using different possible baselines.

The variability in metric attribution due to using different good behaviors is not in

and of itself problematic. Clustering and retrieval, the main signature usage methods,

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 86

depend not on the absolute value of signatures, but rather the distance between

signatures. That is, similarity is inferred using the distance between signatures of

different problems. Therefore, it is reasonable to ask whether the technique of basing

all signatures against the same baseline behavior could be effective. Unfortunately,

distances between signatures are also dependent on the particular baseline selected.

The following is an example that illustrates this issue. Suppose there are two

periods of SLO violations due to two different root causes. Assume that during the

first period, CPU utilization is usually between 40% and 50% while during the second

period, it is between 75% and 90%. The issue is that depending on exactly which

baseline is used, this metric may be found attributable for both, neither, or only

one of the problem periods. If CPU utilization was between 10% and 15% during

the baseline, this metric would be considered attributed for both problems. On the

other hand, had the baseline behavior exhibited utilization between 35% and 45%, the

metric would be attributable for the second period but not the first. While a signature

would consider every low level metric, this example just focuses on CPU utilization

for simplicity, and the highlighted issue extrapolates to considering multiple metrics.

Note that in this example, we would want signatures of the two periods to differ as

they represent different root causes. However, this may or may not turn out to be

case depending on the baseline behavior used. Consequently, the implication is that

some baselines would result in more accurate signatures than others.

Figure 7.1 shows a histogram of different retrieval accuracies (as measured by the

area under the precision-recall curve for the IDC problem in FT-TRACE) resulting from

the use of different randomly selected baselines. By random, we mean that the base-

lines are selected by randomly choosing a starting epoch using a uniform distribution

of all possible starting epochs in the dataset. The ending epoch of the baseline is

determined by the starting epoch and the baseline length. We show baselines of 100

epochs and of 300 epochs. Although there is a small improvement in the average

accuracy when using a longer baseline, there is great amount of variance in both

cases. This pattern holds for even longer or shorter baselines. We conclude from

these figures that we would not be guaranteed good retrieval accuracy by randomly

choosing a single baseline.

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 87

0 0.2 0.4 0.6 0.8 1
Retrieval Accuracy

F
re

q
u

en
cy

0 0.2 0.4 0.6 0.8 1
Retrieval Accuracy

F
re

q
u

en
cy

(a) (b)

Figure 7.1: Histograms of retrieval accuracies when using different base-
lines. These histograms were produced by randomly selecting 50 different baselines
of lengths (a) 100 epochs (b) 300 epochs. The Y-axis represents the frequency of
achieving the retrieval accuracy specified by the X-axis, where retrieval accuracy rep-
resents the area under the precision recall curve for the IDC problem in FT-TRACE.
Notice that good retrieval accuracy cannot be guaranteed by randomly choosing a
baseline.

Could we possibly examine all possible baselines and choose the one that yields

signatures with the highest accuracy? The answer in general is no, because reliable

labels are required for evaluation. In real systems, labels are usually incomplete and

only partially reliable if available at all. How, then, can one make an educated choice

of which baseline to use in such a scenario?

7.3 Better approach: use baseline groups

Although we cannot guarantee good retrieval accuracy without reliable labels, we

present an approach that allows for the weaker guarantee that attribution differences

(which clustering and retrieval depends on) will not materially depend on the choice

of baselines, provided the operators follows our guidelines in choosing them.

To help understanding of this challenge and our approach, we can draw an analogy

to doctors diagnosing illnesses. The SLO state would corresponding to whether or

not a patient is feeling sick. The low level metrics would include a patients vital

stats (temperature, blood pressure, cholesterol levels, heart rate, etc). Computing a

signature represents the first and most important aspect of diagnosis, defining the

symptoms of the problem. For example, if a patient’s temperature were at 102◦

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 88

Fahrenheit, one of the symptoms of her illness would be a fever. Note that we can only

arrive at the fever symptom by assuming that normal body temperature should be

significantly less than 102◦ F, which is generally true for humans. However, normality

for many other metrics (e.g. heart rate, blood pressure) is heavily dependent on

factors such as a patient’s age, race, sex, and lifestyle. Consequently, illness symptoms

(signatures) depend not only on a patients’ stats when they are sick, but also on the

model of normality we choose as the basis for comparison. Doctors tend to rely

on common medical knowledge and past experience to determine a sensible idea of

normality. However, since design, composition, and workload can vary so much from

system to system, we take the approach of deriving normality dynamically for each

system.

We can further extend this analogy to show why certain baselines may result in

more accurate signatures compared to using other baselines. For example, a patient’s

vitals taken immediately after running a marathon might be a poor choice for a

baseline since her blood glucose level may be so low that if we accepted this condition

as normality, almost all illness would have elevated blood glucose level as a symptom.

Vitals taken after a large meal may also pose similar issues. Furthermore, it is not

possible to determine which model of normality results in the most accurate signatures

(i.e. where similar symptoms implies similar illness) without knowing exactly which

illnesses are supposed to be the same (i.e. labeled data).

The technique we advocate to address this challenge is simply to use multiple

baselines. Recall the ensemble learning procedure described in the previous chapter.

As new data is collected, models are constructed on a moving window to include

this new data. These models capture the differences between the SLO violations and

SLO compliances in that window. We alter this process such that only the SLO

violations in these moving windows are used. Instead of comparing that behavior

to the compliance behavior within that same window, we compare it to multiple

pre-selected good behaviors. These good behaviors will be used as the basis for

comparison for every data window. We refer to them as a baseline group.

The result of using a baseline group is that each epoch will essentially be repre-

sented by multiple signatures, one for each baseline group member. Another way to

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 89

Baseline Signature st Signature st′ Cityblock
m1 m2 m3 m4 m5 m1 m2 m3 m4 m5 Distance

b1 1 0 1 1 0 1 1 1 0 0 2
b2 1 1 0 0 0 1 1 0 0 0 0
b3 0 1 1 0 0 0 1 1 0 1 1

Average Distance: 1.0

Table 7.1: Examples of signatures for epochs t and t′ using a baseline group
consisting of 3 individual baselines {b1, b2, b3}. Each signature basically con-
sists of sub-signatures, one for each baseline. Overall distance between signatures is
computed by averaging the distance between sub-signatures.

think about this is that each epoch’s signature will actually contain a vector of sub-

signature vectors. These sub-signature vectors are what we previously represented

as a signature. Distance between epochs is simply the average of distances between

sub-signature vectors. See Table 7.1 for an example.

A baseline group could be any set of good behaviors. Each individual baseline

could be any group of generally contiguous SLO compliance epochs. For example,

the requirement for a baseline of length 100 might be that at least 95 (this is con-

figurable) of these epochs must be compliance. Any violating epochs in between is

simply ignored and the length of the baseline refers to the timespan between the first

compliance epoch and the last compliance epoch used. The generally continuous re-

quirement is due to the fact that changes in behavior become more likely over longer

periods. There are two main parameters that govern the composition of a baseline

group: the size of the group (i.e. number of good behaviors in the group), and the

length of each baseline within the group (we require this to be uniform within a

group). For example, a baseline group may consist of 5 baselines of 300 epochs each

or perhaps 10 baselines of 100 epochs each.

The hope is that by using a baseline group, which represents multiple models of

normality, we can at least achieve a consistent view of the symptoms of problems,

regardless of the exact models of normality used. This is analogous to taking a

patient’s vital stats at many different times and using all of these measurements as

the basis for symptom definition. While some measurements might be taken right

after a long run or a large meal, considered together, they may represent a good,

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 90

stable model of normality.

7.4 Evaluation

In this section, we aim to show that by utilizing baseline groups, we can better

guarantee signature accuracy. We characterize the retrieval performance of signatures

generated using randomly formed baseline groups on the labeled IDC problem from

FT-TRACE. Analysis using the TESTBED data was excluded because all of the good

behaviors in that data set were designed to be very similar. Thus it is not suitable

for demonstrating the performance of our method.

We compare how the range of retrieval accuracies differ depending on the parame-

ters for a baseline group, with using a group of size 1 meaning that we rely on a single

baseline. Basically, histograms like those presented in Figure 7.1 have been summa-

rized to only a mean and a standard deviation and are shown in Figure 7.2. Each

pair of 〈mean, standard deviation〉 values represents 25 trials of forming a baseline

group by randomly selecting good behaviors according to the given parameters.

The general pattern is clear. Using larger baseline groups (i.e. more baselines in

a group), and to a lesser degree using longer baselines within a group, substantially

increases the mean accuracy and decreases the variance. For example, using a ran-

domly selected single baseline of length 300 yields an average accuracy of 0.77 and

a standard deviation of 0.13. This implies that we can only guarantee an accuracy

of 0.51 with about 88% certainty1. When using a baseline group of any 5 randomly

selected baselines of length 300 yields, the mean accuracy increases to 0.90 while

the standard deviation decreases to only 0.04. This guarantees an accuracy of 0.82

with the same certainty as before, a drastic improvement. We note that frequently,

a group of baselines used together will result in more accurate signatures than any

of the baselines used individually. This suggests that even if labels were available for

evaluating individual baseline accuracies, using baseline groups would still offer an

1We calculate this using Chebyshev’s inequality, which states that no more than 1/k2 of the
values of a distribution are more than k standard deviations from the mean. This theorem valid
for all statistical distributions while the common 95% within 2 standard deviation rule is only for
normal distributions.

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 91

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20
0

0.1

Baseline Group Size

S
td

ev

 R

et
ri

ev
al

 A
cc

u
ra

cy

M

ea
n

30 Epochs
100 Epochs
300 Epochs
1000 Epochs

Figure 7.2: Mean and standard deviation of retrieval accuracy against base-
line group parameters. Baseline groups were repeatedly generated using various
combinations of the baseline group size (X-axis) and baseline length parameters. Sig-
natures were created based on those baseline groups and evaluated against the IDC
problem of FT-TRACE. Using baseline groups ensures better accuracy compared to
using a single baseline, with larger groups offering the best improvement.

advantage. Therefore, not only do baseline groups result in more consistent signature

retrieval results, but retrieval accuracy is also drastically improved.

However, there is a price to be paid for using larger baseline groups and longer

baselines. Computation time for signature generation and retrieval (and clustering) is

linear in the size of a baseline group. For longer baselines, there is extra computational

cost for the signature generation phase only and it is again linear with respect to the

number of epochs in each baseline. In addition, there are fewer possible long baselines

since long periods of compliance without notable problems are infrequent in many

systems.

Note how the marginal improvement in signature accuracy (both mean and stan-

dard deviation) diminishes for larger baseline groups and longer baselines. For this

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 92

evaluation data, using a baseline group consisting of 5 baselines of 300 epochs each

represents a reasonable balance of increased computational costs versus improved sig-

nature accuracy. However, this particular setting of the baseline group parameter may

only be a good balance for this data set and possibly only the IDC particular problem.

To continue with our analogy, while we may only require observation during 3 or 4

different periods of normality to achieve consistent symptom definitions for certain

illnesses, more sets of observations may be needed for very complicated conditions.

The next section presents a method of evaluating the consistency of signatures in the

absence of labeled data.

7.4.1 Inconsistency

Recall that a main reason baseline groups are used is because evaluating individ-

ual baselines requires reliably labeled data. To solve the problem of optimizing the

baseline group parameter setting in the absence of labeled data, we introduce a new

measure, signature inconsistency. Inconsistency attempts to capture the variance of

signature-based problem similarity inferences (for clustering or retrieval) constructed

using different baseline groups (or different individual baselines), without knowing

the accuracy of those inferences. This is somewhat analogous to making sure that

a pair of patients is always deemed to have either the same set of symptoms or a

different set of symptoms, regardless of whether or not they actually have the same

illness (which is unknown).

We aim to utilize this inconsistency measure to determine how many different

baselines must be incorporated in a baseline group to guarantee some level of consis-

tency in signature-based inferences. We wish to show that inconsistency can serve as

a proxy for the accuracy of signature retrieval. Recall that signature-based problem

similarity inferences are determined by distances between signatures. Let SA denote

the set of signatures extracted from some dataset using the baseline group A. In

particular, SA = {sA
1 , ..., sA

n} where sA
t is the signature of epoch t with respect to

baseline group A. Similarly, we define SB as the set of signatures extract from that

dataset using baseline group B. We define the inconsistency of baseline groups A and

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 93

B on this dataset as

I(A,B) =
1

n2

n,n∑

t=1,t′=1

|D(sA
t , sA

t′)−D(sB
t , sB

t′)| (7.1)

where D(s, s′) represents the distance between two signatures. Intuitively, this is

the average difference in signature distance, over all pairs of epochs, when using one

baseline group compared to a different group. To reduce computation time, we may

sample pairs of epochs and average those results instead of using all possible pairs.

Figure 7.3 shows the inconsistency of using different baseline group parameters on

the FT-TRACE dataset. Each point in the graph represents the average pairwise in-

consistency of selecting two randomly formed baseline groups with those parameters.

For example, the inconsistency value for baseline groups of size 5 and length 300 is

determined by randomly forming two baseline groups, each containing 5 individual

baselines of 300 epochs each, measuring the inconsistency of the signatures generated

by using these two different baseline groups, and repeating this procedure at least

25 times and averaging the results. Note the similarity between this graph and the

graph of the standard deviation of retrieval accuracy show in Figure 7.2. Indeed,

Figure 7.4 shows the very strong correlation between these two measurements. Fur-

thermore, since no labeled information is required for calculating inconsistency, we

are not restricted to evaluation based only on the IDC signatures.

We therefore conclude that inconsistency can be used as a proxy of retrieval ac-

curacy when annotations are unreliable or unavailable. However, there are important

distinctions between the two measures. First, the numerical value of inconsistency

is meaningless since it is not calibrated and depends on the exact distance metric

employed. More importantly, low inconsistency implies low variance in retrieval ac-

curacy, not good accuracy itself. However, low inconsistency is a necessary condition

to being able to guarantee quality signatures when direct evaluation with labeled data

is not possible. Intuitively, low inconsistency means that signature accuracy does not

depend on the specific baselines used in the baseline group.

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 94

1 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

Baseline Group Size

In
co

n
si

st
en

cy

30 Epochs
100 Epochs
300 Epochs
1000 Epochs

Figure 7.3: Inconsistency against baseline group parameters. Inconsistency
(Y-axis) is calculated based on the differences in signature when based on a particular
baseline group versus another baseline group with the same parameters. Labels are
not used for this calculations so all signatures of FT-TRACE were considered instead
of focusing on the IDC problem signatures only. Note that using baseline groups
drastically decreases inconsistency, with the larger groups experiencing the lowest
inconsistency.

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 95

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

Inconsistency

S
td

ev
 o

f
R

et
ri

ev
al

 A
cc

u
ra

cy

Correlation coefficient: 0.94

Figure 7.4: Inconsistency versus standard deviation of retrieval accuracy.
When accurate labels for evaluation are unavailable, the inconsistency measure (Y-
axis) can be used to directly assess the extent to which the accuracy of signature
based inference various depending on the exact baselines chosen.

7.4.2 Practical implications

Operators can leverage this approach in a production environment as follows. Using

existing system data, compute the inconsistency of using different baseline group

parameters to generate a graph similar to Figure 7.3. Operators may then use this

information to balance the increased computational costs of larger baseline groups

versus improved consistency. Finally, once the baseline group parameters have been

decided, choose a single baseline group using those parameters as the basis of all future

signature construction. Due to the computationally intensive process of exploring

consistency over different baseline group parameters, this procedure is designed to be

used only during the initial deployment of our signature based techniques to a system.

Once labeled problem instances are known, they can be used to directly assess the

accuracy of generated signatures.

CHAPTER 7. IMPROVING SIGNATURE ROBUSTNESS 96

7.5 Summary

This chapter explored the implications of the observation that desirable system be-

havior (SLO compliance) does not usually exhibit a single monolithic pattern.

• We showed that using a baseline group, multiple baselines used in conjunction,

results in good retrieval accuracy on our dataset no matter which individual

baselines are used. We evaluated this claim using the IDC problem instances in

FT-TRACE. We discovered that using a baseline group of size 5 could improve

the lower bound of an 88% confidence interval of signature accuracy from 0.51

to 0.82.

• The composition of a baseline group is controlled by two main parameters: the

size of the baseline group (how many individual baselines are used) and the

length (number of epochs) of each baseline. Because larger groups and longer

baselines result in significant additional computational costs and the marginal

benefits of increasing group size decreases for larger groups, we must balance

these tradeoffs when choosing a baseline group.

• In order to set the baseline group parameters wisely in the absence of reli-

able labels, we introduced the concept of inconsistency, which measures how

much inferences based on signature distances can change due to the particular

baseline group used. This measure can be used by operators to select baseline

group parameters that balances computational costs against improved signa-

ture consistency. Although consistency is not a guarantee of good accuracy, it

is necessary for instilling confidence in signature quality.

• Operators can periodically evaluate the accuracy of signatures with labeled

problem instances. In addition, inconsistency can also be computed from time

to time to gauge baseline group effectiveness in the absence of labels.

Chapter 8

Practical considerations and

limitations

Our signatures based approach is well suited towards diagnosing problems in complex

networked systems today. Often, although enormous amounts of data are collected

about the behavior of a system, important information is usually difficult to uncover.

Our statistical techniques are fast enough to extract useful patterns from typically

overwhelming amounts of data and yet do not rely on a priori knowledge about

system structure, which is difficult for operators to provide. However, our approach

is only one key piece in the larger puzzle of the management of complex systems. In

this chapter, we describe how operators can best leverage our diagnosis tool and the

limitations of the approach.

8.1 Interaction with operators

There has been much recent progress towards automated system problem detection

(such as Pinpoint [11]) and resolution (such as the microreboot approach described

in [9]). Although some issues could be detected and resolved completely without

operator support, many failures still need to be handled by human administrators.

Therefore, we consider how operators should best leverage our tools and what kinds

of human input can be fed back into these tools to maximize their usefulness.

97

CHAPTER 8. PRACTICAL CONSIDERATIONS AND LIMITATIONS 98

8.1.1 Usage guide

An usage guide to our technique designed for system operators would include the

following key points.

• Data collection: In general, the more data (both in terms of the number of

metrics and in terms of more frequent reporting) collected about the system the

better. As much should be captured about the system as possible without un-

acceptably degrading system performance. Monitoring processes should report

information at least every few minutes. The faster that a system behavior may

change, the shorter reporting epochs should be.

• Signature clustering: The clustering analysis should generally be used when a

large set of signatures are unlabeled. This will provide recurrence and intensity

information helpful towards prioritization of operator efforts. When utilizing

k-means clustering, it is important to cluster using several different settings for

k to ensure the stability of results.

• Signature retrieval: When problems occur as a system runs, the signatures

for those problems can be used to retrieve similar problems in the past. This

is most useful when many past problems have already been annotated with

diagnostic information.

• Using metric attribution: Our suggested signature composition, based on

metric attribution information, directly contains possible hints of the causes and

effects of a system problem. The set of metrics deemed attributed represent a

good starting point for diagnostic efforts.

• Annotating signatures: Any information helpful towards diagnosing or re-

solving a problem should be added to the appropriate signatures’ annotations.

Annotations can be altered at any time with no impact on signatures. Nei-

ther the signature clustering or retrieval process depends on the existence or

accuracy of labels. However, the more accurate and relevant the information

included with annotations, the more useful these tools will be.

CHAPTER 8. PRACTICAL CONSIDERATIONS AND LIMITATIONS 99

• Incorporating operator knowledge in the modeling process: One of

the reasons we advocate using Bayesian network classifiers is for the ability to

inject expert knowledge into these models seamlessly. In fact, in the simplest

usage cases, Bayesian networks can be completely specified by a human and

then directly used for inference. A network consists of a set of dependencies

between features (if any) and the conditional probability of each feature given

its parent feature(s). We do not delve into the details of the process, but it is

covered by most books on statistical and machine learning, such as [18].

• Verification of signatures: It is possible that signatures may provide inac-

curate inferences in some systems or for some types of failures. Therefore, we

suggest that operators verify the accuracy of signatures using already diagnosed

failures in their system in a similar manner to how we evaluated our techniques

in Chapter 5. If signature quality is found to be poor, there are many param-

eters that could be tuned in an effort to improve accuracy, as we discuss in

section 8.1.3.

8.1.2 Verification

We demonstrated the excellent retrieval and clustering properties of metric attribution

based signatures on two systems. However, this same approach might not work well

on some given system for a wide variety of reasons. Perhaps some of the assumptions

made in Section 2.2 do not hold; for example, important information relevant to

overall system state may not have been monitored. Or perhaps our technique is

simply not adapting fast enough to ephemeral behavior. Some of these issues could

be resolved or mitigated by simply changing configuration parameters such as the

training window size for the ensemble method (see Chapter 6). Therefore, the ability

of an operator to accurately evaluate the quality of generated signatures is quite

valuable not only to increase operator trust in the inferences made, but also because

it is sometimes possible to remedy poor signature quality in a quick and effective

manner.

The signature retrieval and clustering evaluations we described in Chapter 5 could

CHAPTER 8. PRACTICAL CONSIDERATIONS AND LIMITATIONS 100

also be applied by operators for their own systems. When reliable labels are available,

we advocate focusing on validating good retrieval properties using precision-recall

graphs. This is preferred over clustering for two reasons. First, retrieval measures

signature quality more directly because clustering relies on the choice of a clustering

algorithm as well as a method of optimizing the number of clusters (for k-means). In

addition, clustering evaluation is most valuable when almost all violation signatures

have already been labeled or annotated. Generating a precision-recall graph for a set

of signatures is possible as long as most instances of a particular problem is labeled

(as was the case for FT-TRACE and the IDC issue). Root cause diagnosis or resolution

of the problem is not required. Knowledge that a particular subset of the signatures

reflects a common problem would be sufficient.

When labels are unavailable, we can evaluate signatures by measuring cluster-

ing purity using the ratio of compliance versus violation signatures in each cluster.

An average weighted entropy near zero would still firmly suggest that meaningful

differences between desirable and undesirable system behavior are being accurately

captured by the signatures. In addition, recall from Section 7.4.1 that the inconsis-

tency measurement can be used to assess the stability of retrieval results. Although

good (i.e. low) inconsistency does not necessarily imply accurate signatures, it is a

necessary condition for robust signatures.

8.1.3 Troubleshooting signatures

We now describe a few cases where signatures may exhibit poor retrieval or clustering

behavior and what remedies an operator might apply in response to those symptoms.

• Very few or no metrics are deemed attributable for most SLO viola-

tion epochs. There are a few possible explanations for this behavior. First,

it is possible that our models are rarely confident that a metric value strongly

signals a state of SLO violation. Recall that we use a threshold on the log-

likelihood ratios to determine attribution. Theoretically, this threshold can be

set as low as zero, meaning that as long as a metric’s value indicates violation

over compliance by any amount, it would be deemed attributable. Lowering

CHAPTER 8. PRACTICAL CONSIDERATIONS AND LIMITATIONS 101

this threshold from our suggested default of around 5 should result in more

metrics being attributed.

If even lowering the log-likelihood ratio to zero still results in few attributions,

then it means that very few accurate models are being induced. This may be

due to a lack of correlations or patterns in the data itself (i.e. relevant metrics

were not captured or perhaps not frequently enough), which may be solved by

enabling additional logging or monitoring processes. However, it may also be

because of an inability of our models to capture the types of patterns present

in the data. More powerful classifiers and induction methods may be needed.

Another factor may be the way that the SLO is defined, which will be discussed

in Section 8.2.1.

• Poor clustering and retrieval performance despite many attributions

for SLO violations. There are many different reasons this could be occur-

ring. One possibility is that our models may be overfitting the data, extracting

correlations that do not generalize well and do not reflect true system behav-

ioral patterns. This could be addressed by using simpler models or induction

algorithms.

Another possibility is that the labels used for evaluation could be inaccurate.

Operators are rarely very confident about being able to identify all of the in-

stances of any particular problem. If the metrics deemed relevant (information

contained in each signature) make sense intuitively from a systems point of view,

then inaccurate ground truth is a possible culprit for poor evaluation results.

• Retrieval accuracy is poor, but clustering does a good job of sepa-

rating violation and compliance. This suggests that although metric at-

tribution is capturing relevant metrics that correlate well with overall system

behavior, information that would separate different types of violation behav-

iors is not being captured or represented. The feature selection process could

be partially responsible for this problem and may be tuned to filter out fewer

metrics (at the risk of causing overfitting).

CHAPTER 8. PRACTICAL CONSIDERATIONS AND LIMITATIONS 102

Note that these are not the only problems that our approach might suffer nor are

these the only methods that may mitigate the problem. However, we believe that

these are the most common issues that a user of our approach might encounter.

8.2 Limitations

As systems become ever more complex and monitoring increases, the need for au-

tomated diagnostic techniques will only grow. However, signatures will not be able

to address every problem. This section will explore some limitations of not only our

approach but also some that are fundamental to any automated method.

8.2.1 SLO Definitions

Although we advocate for the general case of using signatures to identify similarity

between problems, it is clear from this thesis that the metric attribution technique for

generating signature offers much promise. However, this approach is also subject to

the pitfalls of relying on SLO definitions, which may be set based on business needs

rather than normal system behavior under typical workloads. The lack of constraints

on how a service level objective can be defined is also a great advantage of this

technique and will be discussed further in Section 10.3.

SLO definitions can be based on any number of metrics that summarize overall

system performance. These include but are not limited to performance based mea-

sures such as latency and throughput, reliability based metrics such as the mean time

to failure, and other measures such as click through rates or even survey based user

feedback. Although these high level measures are often easy to monitor and report,

not much effort may be put into finding “good” thresholds (that truly differentiates

desirable versus undesirable behaviors). Contractual agreements between executives

often drive these decisions, rather than systems reasoning. For example, most sys-

tems have a limit on the amount of input they can handle before they either slows

to a crawl, crash, or rate-limiting pre-processing has to be applied. Even though

latency may naturally increase as workload ramps up, there usually comes to a point

CHAPTER 8. PRACTICAL CONSIDERATIONS AND LIMITATIONS 103

where this latency increase is no longer only due to processing delays. Components

may stop responding, causing numerous transactions to time out. Ideally, an SLO

threshold based on response times should factor in this aspect of system behavior.

To maximize the potential benefits of our approach, we advocate that if possible,

SLO threshold be determined through technical evaluation of system behavior. For

example, if average transactional response time is used (as it most often is), the actual

threshold should be set only after analyzing the typical response times of the system

under normal workload conditions.

One key limitation of our approach is that very infrequent SLO violations will

be particularly difficult to model. As shown in Section 6.3.2, at least 20 or 30 vi-

olation epochs are needed to robustly characterize even simple problem behaviors.

When this occurs, an operator may choose to use a more stringent “virtual” SLO for

signature generation purposes only. In this manner, signature will characterize not

only true SLO violating behavior, but also behavior close to the SLO threshold. Such

information may prove to be valuable for preventing true SLO violations.

In general, a major issue with SLOs is that there is no guarantee that there

is actually meaningful differences between SLO states. Suppose a system usually

exhibits average response time around two seconds under normal workloads and the

SLO threshold were also set to around 2 seconds, violations will be frequent and

usually be just above the threshold, while compliance epochs tend to fall just barely

below the threshold. There would be no meaningful correlations detected in such a

case.

A related issue was seen in our FT-TRACE data set (Figure 8.1). While the threshold

itself of 4 seconds is reasonable, the reported average response time occasionally

oscillated wildly, from less than 2 seconds to more than 8 seconds every few epochs

for several hours. Although it is possible that system behavior is truly changing that

rapidly, most operators would simply consider the behavior of this entire period to

be undesirable1. However, because the SLO is based on individual 5 minute epochs,

half of these epochs would be considered compliant behavior. Smoothing the SLO

1In fact, we believe that the underlying problem causing these violations persisted throughout
that time range and the oscillations in response time were due to an artifact of how response times
of failed transaction are considered.

CHAPTER 8. PRACTICAL CONSIDERATIONS AND LIMITATIONS 104

so that compliance or violation is determined by more than just the current epoch

can help mitigate this problem. We applied rudimentary smoothing to the FT-TRACE

data and discovered that doing so led to more accurate modeling of system behavior,

especially during these oscillatory periods.

8.2.2 Root cause diagnosis

The statistical and pattern recognition techniques underlying the automated extrac-

tion of signatures capture correlation, not necessarily causation. Indeed, as is well

known in statistics and in other communities, the ability to infer causation from

pure observation is limited and in most cases impossible [42]. By pure observation

we mean lack of direct intervention into the system or additional information from

human experts regarding the causal relations and paths in the system. In some in-

stances, time information and information about the sequence of events can be used

as heuristics to find causal connections. This has been attempted in many domains

including this one, most notably in [1]. We leave as future work the inclusion of this

kind of information into our approach and the exploration of its utility, although we

remark that there is nothing in principle that prevents us from considering sequences

of signatures or adding time information (including precedence information) into the

creation of the signatures and the subsequent analysis. See Section 10.1 for further

discussion on this topic.

It follows from this limitation that we cannot and have not claimed that the

approach advocated in this dissertation yields the root causes of problems. Even

with human expert knowledge, root cause analysis is far from trivial. Nevertheless, we

believe that the capability of systematic similarity search and clustering of correlated

metrics offered by signatures helps in narrowing down possible causes and is therefore

useful as a diagnosis tool. Furthermore, it may not be necessary to determine exact

root causes to resolve problems. As difficult as root causes analysis has proven to

be over the years, a more pragmatic approach could be to automatically map the

evidence for faults and metric state to a finite set of possible repair actions.

CHAPTER 8. PRACTICAL CONSIDERATIONS AND LIMITATIONS 105

Figure 8.1: Example of SLO state not representative of system behavior.
Although only about half of the epochs during this time period violate the SLO
threshold of 4 seconds, it is most likely that almost this entire period’s behavior is
undesirable. Simple smoothing techniques can be applied to mitigate this problem.
After smoothing this data, the shaded regions were all considered violations and
with all compliance in between. This resulted in modeling accuracy of this period
increasing from the low 61% range to 92%.

Chapter 9

Related work

Systems today are becoming increasingly complex and difficult to manage. Current

tools that assist operators for detecting or diagnosis problems are quite primitive.

Therefore, it is not surprising that there have been a significant amount of work

done in just the last few years in this general domain. This chapter will first talk

about statistical and non-statistical techniques for diagnosing system failures. It then

explores statistical techniques for the detection of problems as well as signature based

approaches outside of system problem diagnosis.

9.1 Techniques for system problem diagnosis

There have been several projects in just the last few years focusing on diagnosing

systems issues using statistical approach. First, at HP Labs, Aguilera et al. describe

two algorithms for isolating performance bottlenecks in distributed systems of opaque

software components [1]. Since many systems today use off the shelf components from

third party vendors, operators of these system have no way of instrumenting or ex-

amining the source code of these components. Thus, each entity must be treated as a

black box. Often, the only information that is readily available is the timing informa-

tion about communications between the black box components. The two algorithms

described in this work were a convolution algorithm and a nesting algorithm. Both

106

CHAPTER 9. RELATED WORK 107

algorithms seek to infer causal connections between input and output communica-

tions of a component, which leads to average latency information. The convolution

algorithm makes no additional assumptions and can only be used to compute perfor-

mance information for the majority behavior of the system. The nesting algorithm

assumes RPC style messaging semantics and is able to isolate the behavior of specific

requests or transactions.

At the opposite extreme of that knowledge-lean approach, Magpie, developed at

Microsoft Research Cambridge, characterizes transaction resource footprints in fine

detail but requires that application logic be meticulously encoded in “event schema”

[2]. The goal is to extract representative models of resource usage and behavior

for system performance modeling and debugging. Detailed instrumentation at the

operating system level tracks specific resource usage characteristics for transactions,

which are translated by the event schema to form a very fine grained runtime path

model. Magpie then uses data clustering techniques to determine runtime paths that

succinctly model a system’s overall behavior.

Both works focus on performance debugging and identifying bottlenecks in sys-

tems. Neither advocates a signatured based approach for identifying similarity be-

tween problems or is suitable for problems not tied to performance as measured by

latencies. Chen, Zheng et al. at U.C. Berkeley and Ebay.com, utilize decision tree

learning algorithms for fault localization [12]. Although similar to our approach in

that they do not focus on fault detection but rather on diagnosing and localizing of

the problem, their approach also differs in the lack of a signature based method.

Bod́ık, et al. examined how troubleshooting and monitoring was conducted at

Amazon.com [3]. They found three main challenges.

• Complex dependencies in the system cause failures to propagate quickly, making

root cause diagnosis difficult.

• Lack of global dependency knowledge. Each operator knows only a small part of

the system well. No individual understands all of the behavioral dependencies

between different parts of the system.

• Although the whole system is heavily instrumented at a detailed level, most

CHAPTER 9. RELATED WORK 108

problems can be characterized by the behaviors of tens of metrics. The total

amount of information collected is overwhelming and makes analyzing problems

extremely challenging for operators.

These observations strongly reinforce the motivations for our approach.

They also noted that system operators and troubleshooters generally use hard-

ware, operating system, network, and application metrics that are collected from ev-

ery machine at fine grained intervals. All of this data is stored in a central database

accessed via web-based tools designed in-house. These tools are generally used to

graph the metrics but are also capable of some simple analysis, such as predicting

metric values based on historical values. Setting threshold based alarms for any met-

ric is also possible. Different troubleshooting teams can design their own tools that

operate on top of this environment. Sometimes, operators actually log into individ-

ual nodes to look at event and error logs or restart processes, although that usage is

declining as the web-based tools are further developed.

As of November 2005, a new visualization tool called Maya was being tested at

Amazon.com. Maya shows the dependencies between different system components

as a directed graph. The health of each component is also displayed. Users may

zoom into any node to examine the metrics of each components. Although Maya

is certainly an improvement over previous methods, operators still felt overwhelmed

about the amount of information available. A single component may have hundreds

or thousands of metrics, and Maya offers no systematic way of identify which metrics

are the most relevant. It is clear that more advanced tools are still needed.

Jain describes a traditional performance debugging technique that generates vi-

sual signatures of performance problems [24]. Popular in the 1970s, “Kiviat graphs”

display a handful of utilization metrics in such a way that resource bottlenecks and

imbalances assume a distinctive appearance. Like our approach of using signatures,

Kiviat graphs allow comparison and facilitate similarity matching between problems

in same or different systems. However, rather than relying on visual inspection, our

approach allows for automated indexing, retrieval, and similarity measurement, which

scales better for thousands or millions of metrics in the complex systems of today.

CHAPTER 9. RELATED WORK 109

There have been a significant amount of literature on faults, rather than per-

formance problems, in distributed systems. For communication networks, whose

components have highly constrained and well defined specific behaviors, a wide of

fault localization techniques have been explored [48]. Yemini et al. describe an event

correlation (root cause determination) procedure that relies on an extensive library

describing each system components’ possible faults and the consequences of each fault

[52]. These detailed component descriptions are compiled into a codebook that reduces

root cause analysis to a simple and efficient task of decoding observed symptoms into

the faults that caused them. This approach has been commercialized for commu-

nication systems [23] but is inappropriate for arbitrary distributed software systems

because it is infeasible to enumerate in advance the faults and symptoms of arbitrary

computer programs. In addition, this technique has no learning or adaptive aspects,

as our approach does.

9.2 Statistical techniques for system problem de-

tection

The first step necessary for resolving a failure is to detect it. While problems asso-

ciated with violating SLOs are usually trivial to detect, many types of failures are

subtle and difficult for operators to notice immediately. One example is failures in

which a part of a service is providing incorrect output. Several recent projects utilize

statistical anomaly detection to approach this problem.

The Pinpoint system of Chen et al. analyzes run-time execution paths of complex

distributed applications. It automatically detects potential failures by identifying

statistically abnormal paths [11]. These paths can then aid system administrators in

diagnosing the underlying cause. Kıcıman & Fox further explore usage of Probabilis-

tic Context-Free Grammars (PCFG), which are frequently used in natural language

processing, in Pinpoint to model the typical behavior of a system’s transactions [27].

The statistical likelihood of the path taken by any transaction can then be calculated

CHAPTER 9. RELATED WORK 110

with sound probabilistic reasoning. Because Pinpoint requires instrumenting compo-

nents or middleware to obtain the transactional path information, it is ideally suited

for Internet services that rely on an application server environment such as J2EE

or Microsoft’s .NET. Pinpoint also performs some fault localization using decision

trees. At NEC Labs, Jiang et al. extended the approach taken by Pinpoint by using

multi-resolution learned automata instead of PCFG path-shape analysis [25].

At U.C. Berkeley, Bod́ık et al. detected failures in Internet services by examining

end user behavior patterns [4]. They use statistical analysis to find possible anomalies

and visualizations to allow operators to easily identify the existence of a potential

problem. In their analysis using HTTP logs from a real Internet service, they were

able to automatically recognize several failures, often significantly faster than the in-

place detection processes. Since user behavior is used and readily available as web

server logs, no additional system instrumentation is usually required.

9.3 Statistical and signature based approaches in

other domains

Signatures have been used extensively in virus scanning and intrusion detection [39].

Statistical techniques are often employed to flag anomalous activity automatically,

but signatures of malicious behavior are almost always defined manually. Kephart et

al. describe a statistical method for automatically extracting virus signatures for a

commercial detection product [26].

Engler et al. use pattern matching techniques for bug discovery [19]. Based on the

source code of a large system, their approach infers correctness rules such as function-

call ordering constraints and locking requirements for critical sections. Once the

rules are discovered, they can utilize them to find instances in the source code where

those rules are not followed. Kremenek et al. continued this work by incorporating

statistical methods to reduce false positives when locating bugs in system source

code [31, 30]. Liblit et al. advocate statistical debugging [33]. With this technique,

they sample code-level information, such as function return values, of software during

CHAPTER 9. RELATED WORK 111

normal execution. They use statistical analysis to find what information is most

correlated with the symptoms of Heisenbugs, helping software developers locate bugs’

root causes.

There have also been a large body of work incorporating statistical learning for

optimization of the configurations of complex systems or parts of systems. David

Sullivan applied Bayesian networks for software configuration and performance tuning

in database systems [49]. He designed a controller that could automatically adapt

a database system’s configuration to changing workloads. Mesnier et al. explored

the usage of decision trees to classify files and select storage policies to maximize

the performance of file systems [36]. Finally, IBM has an initiative called autonomic

computing, which seeks to design self-managing and self-configuring systems using

control theory and some statistical techniques[40].

Chapter 10

Future work

A plethora of avenues remains for future research based on statistical techniques for

detecting, diagnosing, and resolving system problems. More specific to this thesis,

there are many opportunities for extending our approach of extracting signatures of

system state to aid diagnosis efforts.

We explore three possible extensions. First, many problems manifest not as a

single major shift in system behavior but rather as a series of subtle changes. These

types of issues could be better captured in signatures if we were able to model tem-

poral patterns in the monitored data. Also, due to recent work towards automated

detection and repair methods, it is also not inconceivable that an automated diag-

nostic system could be combined with other automated tools to drastically reduce

the troubleshooting role of a system administrator. Finally, although we validated

our techniques on three-tiered Internet services, the generality of our approach leads

us to believe that it can be effectively applied to a wide range of computer systems

and possibly even outside this domain. We now discuss each of these future research

directions.

112

CHAPTER 10. FUTURE WORK 113

10.1 Detecting temporal patterns

A memory leak usually results in a sometimes slow but steady increase in memory

utilization, rather than a sudden jump when the problem is first triggered. Misbe-

havior in a single component often causes other components to fail over time, usually

due to complex dependency chains. Network activity tends to ebb and flow frequently

and suspicious behavior is often reflected by a change in this frequency. What these

types of problems all have in common is that they are best described by a sequence

of changes to system behavior.

While our current methods may find some of these correlations without directly

considering time, many important patterns will be missed. There are two general ways

of extending our approach to accommodate temporal patterns. The first approach is

simpler but less powerful, while the second would require significant changes to the

general signature framework but would be able to better capture many behaviors.

First, metrics may be manipulated such that while sequences of metric vectors is

not directly used, some simple time based patterns can still be extracted. Instead of a

vector of system data including only information from one epoch, it could also include

metric values from past epochs, as well as the rate of change of those values. For

example, if mt is the value of some metric m at time t, then the data analyzed by our

technique for each epoch may also consider mt−1, mt−2, (mt−mt−1), and (mt−mt−2).

This approach requires only a simple alteration of the data preprocessing step, rather

than fundamental changes to our techniques. However, many temporal correlations

cannot be represented in this manner. In addition, adding many additional metrics for

each existing metric can worsen the dimensionality problem and increase computation

costs.

The second general method of capturing temporal patterns would involve explicitly

searching for patterns in sequences of metrics’ values. The simple Bayesian network

models we currently employ would not be adequate for this task. Inducing robust

models that capture temporal based patterns is quite difficult. However, there has

been much research into this area. Hidden Markov models (HMMs) have been used

successfully to model sequence based information [13, 34]. Many have also studied

CHAPTER 10. FUTURE WORK 114

pattern extraction from financial time series events (e.g. stock prices) [43]. The key

for adapting those approaches in the domain of system problem diagnosis is to use

interpretable models so that the captured patterns can be presented to operators and

summarized in signatures.

10.2 Automated diagnosis and repair

Although fully automated system management may not be realistic in the near term,

many simpler types of failures could be resolved without operator intervention. One

caveat, however, is the pitfall of automation irony [44], which states that automation

increases system complexity and hinders operator understanding of a system to the

point that operators become ill-equipped to resolve problems with the automated

process itself. Thus it is important for automated tools to be transparent to users

and their actions deterministic and easy to understand. Simple, low cost1 resolution

methods such as microrebooting components [8] fit such a profile.

Our signatures based approach may be used to aid automated repair in several

ways. First, attributed metrics may be examined to extract a list of components

implicated in a failure. That list of components could then be microrebooted (or some

other resolution method applied). Another approach could involve simply mapping

signatures to repair actions. Since signatures are effective at identifying similarity

between problems, the proper repair actions could be attached to signatures such

that whenever a new problem is determined to be similar to a prior one, the previous

repair action is automatically applied.

10.3 Application to different systems and domains

While we validated our approach using performance based problems in three-tiered

Internet services, a signature based method involving correlations between copious

low level data and some high level performance measure is not restricted to three

tiered Internet services or even to large networked systems. Single machines may also

1Low cost means that the penalty for doing the resolution action unnecessarily is low.

CHAPTER 10. FUTURE WORK 115

exhibit complex behavior patterns that prove different for operators to characterize.

An important aspect of future work in this area will be to explore the generality of our

techniques. Our methods may need to be adapted to be effective for vastly different

types of systems or different types of failures.

Our approach may even be applicable to outside the domain of computer systems.

Many general problems fit the profile of correlating low level properties with some

high level metric. For example, statistical and machine learning algorithms have been

successfully applied to the credit risk assessment process that banks use to determine

whether or not to grant a loan (based on credit history, income, education, and a

wide array of other factors), although in that case, the classification prediction itself

is what is most important to the users of the technique. However, our signature based

approach allows representation of the robust patterns captured by good classifiers and

how those patterns may change over time. We believe our techniques demonstrate a

framework for extracting and leveraging such information, which may prove valuable

in many situations.

Chapter 11

Conclusions

This dissertation attacks the problem of using automatically-computed statistical

digest representations to diagnose problems in complex systems. We advocate a

signatured based approach that captures essential system state in an indexable form.

We demonstrated the efficacy of a statistical machine learning technique as the

basis for signature generation. A statistical approach is able not only to analyze enor-

mous amounts of data about observed behavior, but also to quickly adapt to system

changes, a major advantage over techniques that require a priori knowledge of sys-

tem structure. We showed the ability of signatures to accurately identify similarity

between performance based problem instances in two traces, one from a controlled

experimental testbed system with three injected failures, and the other from a glob-

ally distributed production environment that experienced several problems over a

month-long period. Signatures aid system operators by offering a systematic way of

leveraging past diagnosis efforts for future problems. In addition, the clustering of

signatures offers a summary of the different types of failures that have affected the

system and how frequently each occurs, allowing administrators to prioritize their ef-

forts. In effect, we are able to cast diagnosis as an information retrieval task, allowing

well-known techniques from that domain to be incorporated.

We also addressed challenges that not only impacted our approach but also have

bearing on other statistical approaches for system diagnosis. We introduced a method

for adapting statistical models to rapidly evolving system behavior using an ensemble

116

CHAPTER 11. CONCLUSIONS 117

of models. Also, we characterized the dynamic nature of not only failures but also

desirable system states and developed a technique for making signatures more robust

to this variance.

We believe the success of our approach makes it a promising start for leveraging

statistical and information retrieval techniques to address the challenges posed by the

complexity of today’s and tomorrow’s systems.

Bibliography

[1] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and

Athicha Muthitacharoen. Performance debugging for distributed systems of black

boxes. In Proc. 19th ACM Symposium on Operating Systems Principles, Bolton

Landing, NY, 2003.

[2] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan.

Magpie: real-time modelling and performance-aware systems. In Proc. 9th Work-

shop on Hot Topics in Operating Systems, Lihue, Hawaii, June 2003.

[3] Peter Bodik, Armando Fox, Michael I. Jordan, David Patterson, Ajit Banerjee,

Ramesh Jagannathan, Tina Su, Shivaraj Tenginakai, Ben Turner, and Jon In-

galls. Advanced tools for operators at amazon.com. In First Workshop on Hot

Topics in Autonomic Computing (HotAC’06), Dublin, Ireland, June 2006.

[4] Peter Bod́ık, Greg Friedman, Lukas Biewald, Helen Levine, George Candea,

Kayur Patel, Gilman Tolle, Jon Hui, Armando Fox, Michael I. Jordan, and David

Patternson. Combining visualization and statistical analysis to improve operator

confidence and efficiency for failure detection and localization. In Proceedings of

the 2nd IEEE International Conference on Autonomic Computing (ICAC ’05),

June 2005.

[5] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[6] Eric Brewer. Lessons from giant-scale services. IEEE Internet Computing,

5(4):46–55, July 2001.

118

BIBLIOGRAPHY 119

[7] G.W. Brier. Verification of forecasts expressed in terms of probability. Monthly

weather review, 78(1):1–3, 1950.

[8] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Ar-

mando Fox. A microrebootable system – design, implementation, and evaluation.

In Proc. 6th USENIX OSDI, San Francisco, December 2004.

[9] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Ar-

mando Fox. A microrebootable system - design, implementation, and evaluation.

In Proc. 6th USENIX OSDI, December 2004.

[10] R. Caruana, Al. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection

from libraries of models. In International conference on Machine learning ICML,

2004.

[11] Mike Chen, Emre Kıcıman, Eugene Fratkin, Eric Brewer, and Armando Fox.

Pinpoint: Problem determination in large, dynamic, internet services. In Proc.

International Conference of Dependable Systems and Networks, pages 595–604,

Washington, DC, June 2002.

[12] Mike Chen, Alice Zheng, Jim Lloyd, Michael Jordan, and Eric Brewer. A statis-

tical learning approach to failure diagnosis. In Proceedings of the First Interna-

tional Conference on Autonomic Computing, May 2004.

[13] Darya Chudova and Padhraic Smyth. Sequential pattern discovery under a

markov assumption. Technical report 02-08, Information and Computer Science

Dept., University of California, Irvine, 2002.

[14] I. Cohen and M. Goldszmidt. Properties and benefits of calibrated classifiers. In

8th European Conference on Principles and Practice of Knowledge Discovery in

Databases (PKDD), pages 125–136, September 2004.

[15] I. Cohen, M. Goldszmidt, T.P. Kelly, J. Symons, and J. Chase. Correlating

instrumentation data to system states: A building block for automated diagnosis

BIBLIOGRAPHY 120

and control. In 6th Symposium on Operating Systems Design and Implementation

(OSDI’04), December 2004.

[16] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and

Armando Fox. Capturing, indexing, clustering and retrieving system history.

In Proceedings of the 20th ACM Symposium on Operating Systems Principles

(SOSP-16), October 2005.

[17] P. Domingos. Bayesian averaging of classifiers and the overfitting problem. In

International Conference on Machine Learning ICML, pages 223–230, 2000.

[18] R Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley and

Sons, New York, 1973.

[19] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as inconsistent be-

havior: A general approach to inferring errors in system code. In Proceedings of

the 18th ACM Symposium on Operating Systems Principles, pages 57–72, 2001.

[20] G. Forman and I. Cohen. Learning from little: Comparison of classifiers given

little training. In 8th European Conference on Principles and Practice of Knowl-

edge Discovery in Databases (PKDD), pages 161–172, September 2004.

[21] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Ma-

chine Learning, 29:131–163, 1997.

[22] Hewlett-Packard. Management software: Hp openview, 2007. http://openview.

hp.com.

[23] System Management Arts (SMARTS) Inc. Automating root causes analysis,

2001. http://www.smarts.com.

[24] Ravi Jain. The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling. Wiley-

Interscience, New York, NY, 1991.

BIBLIOGRAPHY 121

[25] Guofei Jiang, Haifeng Chen, Christian Ungureanu, and Kenji Yoshihira. Mul-

tiresolution abnormal trace detection using varied-length n-grams and automata.

In Proceedings of the 2nd IEEE International Conference on Autonomic Com-

puting (ICAC ’05), June 2005.

[26] Jeffery O. Kephart and William C. Arnold. Signatures. In Proc. 4th Virus Bul-

letin International Conference, 1994. http://www.research.ibm.com/antivirus/

SciPapers/Kephart/VB94/vb94.html.

[27] Emre Kıcıman and Armando Fox. Detecting application-level failures in

component-based internet services. Submitted for publication, September 2004.

[28] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In International Joint Conference on Artificial Intelligence

(IJCAI), pages 1137–1145, 1995.

[29] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial

Intelligence, 97(1-2):273–324, 1997.

[30] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. Correlation

exploitation in error ranking. In SIGSOFT ’04/FSE-12: Proceedings of the 12th

ACM SIGSOFT twelfth international symposium on Foundations of software en-

gineering, pages 83–93, New York, NY, 2004. ACM Press.

[31] Ted Kremenek and Dawson Engler. Z-ranking: Using statistical analysis to

counter the impact of static analysis approximations. In Proceedings of the 10th

International Static Analysis Symposium, June 2003.

[32] D. Richard Kuhn. Sources of failure in the public switched telephone network.

IEEE Computer, 30(4), April 1997.

[33] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via

remote program sampling. In ACM SIGPLAN 2003 Conference on Programming

Languages Design and Implementation, June 2003.

BIBLIOGRAPHY 122

[34] Dimitrios Makris and Time Ellis. Automatic learning of an activity-based se-

mantic scene model. In Proc. of IEEE Conference on Advanced Video and SIgnal

Based Surveillance, July 2003.

[35] Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia dis-

tributed monitoring system: Design, implementation and experience, 2003.

http://ganglia.sourceforge.net/.

[36] Michael Mesnier, Eno Thereska, Gregory R. Ganger, Daniel Ellard, and Margo I.

Seltzer. File classification in self-* storage systems. In Proceedings of the 1st

International Conference on Autonomic Computing, pages 44–51, May 2004.

[37] Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems. Tech-

nical report, HP Laboratories Palo Alto, 2005.

[38] David Mosberger and Tai Jin. httperf: A tool for measuring Web server perfor-

mance. In First Workshop on Internet Server Performance (WISP). HP Labs

report HPL-98-61, June 1998.

[39] Biswanath Mukherjee, L. Todd Heberlein, and Karl N. Levitt. Network intrusion

detection. IEEE Network, 8(3):26–41, May 1994.

[40] Sujay Parekh, Neha Gandhi, Joe Hellerstein, Dawn Tilbury, T. S. Jayram, and

Joe Bigus. Using control theory to achieve service level objectives in performance

management. Real-Time Systems, 23(1-2):127–141, July-September 2002.

[41] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.

[42] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000.

[43] Richard J. Povinelli. Identifying temporal patterns for characterization and pre-

diction of financial time series events. Lecture Notes in Computer Science, 2001.

BIBLIOGRAPHY 123

[44] James Reason. Managing the Risks of Organization Accidents. Ashgate Publish-

ing Limited, 1997.

[45] Reuters. Cbot suffers 3 electronic trading outages in 2 days. Chicago Business,

January 2007. http://chicagobusiness.com/cgi-bin/news.pl?id=23473.

[46] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Mordern Approach.

Prentice Hall, 2nd edition, 2002.

[47] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian

approach to filtering junk E-mail. In Learning for Text Categorization: Papers

from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical Report

WS-98-05.

[48] Malgorzata Steinder and Adarshpal S. Sethi. A survey of fault localization tech-

niques in computer networks. Science of Computer Programming, (53):165–194,

2004.

[49] David Sullivan. Using probabilistic reasoning to automate software tuning. PhD

thesis, Harvard University, Cambridge, MA, September 2003.

[50] The Open Group. Application Response Measurement (ARM) 2.0 Technical

Standard, July 1998. http://www.opengroup.org/onlinepubs/009619299/toc.

pdf.

[51] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools

and Tecniques with Java Implementations. Academic Press, 2000.

[52] Shaula A. Yemini, Shmuel Kliger, Eyal Mozes, Yechiam Yemini, and David

Ohsie. High speed and robust event correlation. IEEE Communications Maga-

zine, pages 82–90, May 1996.

[53] Steve Zhang, Ira Cohen, Moises Goldszmidt, Julie Symons, and Armando Fox.

Ensembles of models for automated diagnosis of system performance problems.

In DSN, 2005.

BIBLIOGRAPHY 124

[54] Steve Zhang, Ira Cohen, Moises Goldszmidt, Julie Symons, and Armando Fox.

Ensembles of models for automated diagnosis of system performance problems.

In The International Conference on Dependable Systems and Networks (PDS

Track), Yokohama, Japan, July 2005.

