

Advanced Protection:

An Adaptive, Turn-Based Strategy Game
by Soren Johnson

CS 377B: Adaptive User Interfaces

Stanford University

Introduction

Turn-based strategy games have been a popular form of computer entertainment over the last two decades, from early wargames like "Lords of Conquest" to contemporary civilization-building games like "Alpha Centauri." In nearly all of the programs, the human player is able to match strategies with a computerized opponent, controlled by some form of AI. However, because these AI's were relatively static, the games often included multiple "difficulty levels" to challenge the users. Usually, each level had different parameters and rules to allow the computer's AI to perform better- to match the human's experience and ability.

While these methods did allow the user manually to choose between levels of competition, a better alternative might be for the system to adapt its AI automatically to match the user's ability and strategy. In other words, if the system had a limited search space of strategies, they could all be tested against the user's moves. Then, the program could determine which strategies worked best against the user and which strategies worked worst. This approach would provide three distinct advantages over systems with difficulty levels.

First, the system could dynamically switch between strategies depending on how well or poorly the user has been performing- a struggling user would be faced with weakly-performing strategies while an expert could be faced with the strategies which best countered his or her moves. This method would require a system which could rate the users' abilities, to distinguish more successful users from less successful ones. The second advantage of this system would be that the game does not need to change its rules to allow the computer's AI to perform better. The game will always function the same- only the computer's strategy would change. In other words, the computer will not "cheat" through rules and parameters unique to higher levels, a method which has traditionally been looked down upon by the gaming community. The final advantage of this system is that the AI would truly know which strategies are most effective (and which are least effective) against each specific user because the strategies will have been tested against the user's previous moves. Games with difficulty levels are inferior in this regard because although the higher levels will probably challenge the user to a greater degree, the program has no way of guaranteeing that fact.

Thus, my project involves constructing a game which allows such an adaptive AI to be developed. The game, "Advanced Protection," was carefully designed to allow for such an adaptive AI system to be created. In other words, the game has only a few decision points for the user, so that the system has a limited amount of data on which to train. This fact is important because the AI needs to switch quickly between strategies- few users will enjoy a game which takes hours, minutes, or even many seconds to train between turns. This paper will first outline the rules of "Advanced Protection." The next section will describe how the AI switches between strategies. Finally, the paper will address how the search space of strategies was established and the results of the project.

Advanced Protection

The game of "Advanced Protection" is fairly complicated and therefore will only be discussed briefly. (The full rules are included in Appendix A.) The game is played on a randomly-generated, wrap-around 24 x 24 grid in a sequence of turns, which are split into 50 phases. Each square on the map has a different elevation, ranging from "water" to "peak." The lower elevations yield more money for farming units and minions. The higher elevations give defensive bonuses. However, the highest and lowest terrain types (water and peaks) are impassable to most units and minions. The human and the computer player (known as "Chaos") both start with a predetermined amount of money. Before each turn begins, the human is able to purchase units and place them on the grid. Also, units which have survived from the previous turn can be salvaged for extra money. As the turn begins, Chaos buys minions and places them at random on the grid. Then, the 50 phases occur, during which Chaos's minions move around the grid and attempt to destroy the human's unit. During each phase, all of Chaos's minions are allowed to make one or two moves, depending on the type of the minion. The human's units do not move, but some of them produce money and others can attack Chaos's minions. At the end of the turn, all of Chaos's minions are destroyed, and Chaos receives an amount of money equal to their total value. The game ends when either when Chaos surrenders or when the human's units and money have been eliminated.

The human has eight types of units from which to choose. Three of the units (the drone, farmer, and settler) farm their squares, producing money each phase. One other unit (the jammer) prevents Chaos's minions from communicating with each other. One unit (the mine) attacks minions which move onto its square and then disappears. The other three (the infantry, armor, and artillery) are valuable for their high defensive/counter-attack abilities. The only proactively offensive unit is the artillery, which attempts to bomb every one of Chaos's minions in its radius each phase. All eight units have defense and counter-attack strengths for combat with Chaos's minions. Only one unit can exist in a square.

Chaos can deploy up to eight types of minions. One minion (the scout) can broadcast a signal which most of the other minion's can here if they are within a certain radius. Unlike other minions, the scout can see mines and detect the radius of jammers and artillery. Another minion (the scavenger) farms its square, producing money for Chaos each phase. Unlike other minions, the scavenger can detect the farming bonus of the square it occupies. The other six minions (known as barbarians) can all attack the human's units. Thus, all of the barbarians have attack/defense values for combat. Barbarians which destroy farming units acquire the amount of the money those units have produced during the turn. Three of the barbarians (the common, mobile, and armored) have no special abilities. One of the barbarians (the amphibious) can move through water. Another one (the jump) can jump over a square occupied by a human unit or impassable terrain. One other barbarian (the kamikazee) always wins its attacks but is automatically destroyed in the process. All of the barbarians can detect the scout's broadcasts- the armored and mobile barbarians can detect the signal within a radius of three squares while the others can sense it within a radius of two squares. Finally, all of the minions move once per phase except for the mobile and kamikazee barbarians, which both move twice. Multiple minions can co-exist within the same square. Further, each minion also has a facing (north, east, south, or west). Accordingly, each move consists of one of four actions: move forward one square, turn right 90 degrees, turn left 90 degrees, or take a special action. For scouts, the special action is to broadcast. For scavengers, the special action is to farm. For barbarians, the special action is to attack.

Artificial Intelligence

Every move made by each minion is chosen by a four-state automata, which inputs three bits and outputs four bits (two for the new state and two for the action). In total, the AI includes eight automaton, one for each type of minion. An example of such an automata is shown in Figure 1. (This automata would control a barbarian because one of the possible actions is "attack.") Each of these four-state automaton can be encoded into 128-bit strings- the four states each have eight transitions (one for every possible input) and each transition outputs four bits. Thus, 4 bits x 8 transitions x 4 states = 128 bits are needed to encode the entire automata. Further, 8 x 128 = 1024 bits are needed to encoded all 8 minions' automaton. Finally, Chaos's "preference" for each type of minion can be represented simply by a four-bit string, in which a higher value means a higher preference. Thus, all eight preferences can be specified by 8 x 4 = 32 bits. Therefore, Chaos's entire artificial intelligence can be encoded into 1024 + 32 = 1056 bits. The exact arrangement of the encoding is shown in Figure 2. The exact meaning of the three-bit inputs varies from minion to minion- Figures 3-5 show the different ranges of inputs for scouts, scavengers, and the six barbarians.

Thus, the entire AI for "Advanced Protection" can be represented by a 1056-bit string. Because "Advanced Protection" is adaptive, the exact encoding of the string changes dynamically as the user plays the game. More specifically, the program chooses the one string which best matches the user's skill level from 250 pre-defined strings. Each of the pre-defined strings has a "performance rating," which details the success or failure of the string against the current user. This value is measured by subtracting the change in the value of Chaos's minions and money from the change in the value of the human's units and money. In other words, if the human's farmers produce a great deal of money and most of Chaos's minions are destroyed, this rating will be very positive. However, if most of the human's units are destroyed and Chaos gains some money, this rating will be very negative. Every time the user begins a turn by finishing his or her set-up, the game forks off a background thread which test how each of the 250 string performs against the arrangement of the user's units.
 The rating of each string is then averaged with the string's old rating to produce the new performance ratings. These ratings are then sorted into order from highest (worst-performing) to lowest (best-performing) value. The program then subtracts 0.500 from the user's historical winning percentage and doubles the resulting floating point value.
 If this product is a negative number, it is changed to 0. The program then multiples the final result of the preceding calculations with the rating of the best-performing string (meaning the one with the lowest performance rating). This new product is deemed the "optimal performance rating," meaning that the string with such a rating would be best suited for the user's skill level.
 Then, the program searches through the performance ratings of all 250 strings to find the one with a rating closest to this value. This string will be the encoding of the computer's AI for the next turn.
 The reasoning behind this algorithm is that users who have never lost to the computer should be faced with the best-performing string while users who have a winning percentage at or below 0.500 should be faced with a string which will neither help nor hurt the user's position.
 Those users with a winning percentage between 0.500 and 1.000 will face increasingly more difficult competition from the computer as their winning percentage increases.

Thus, "Advanced Protection" is a game which adapts to the user by improving the computer's strategy against each human's specific strategy as his or her skill level increases. Further, all of the game's rules are the same regardless of the ability of the user- only the AI controlling Chaos's minions changes. Finally, all strategies are rated in relation to their performance against each specific user, so that the program truly knows which strings work best (and worst) against every user.

The adaptive interface of "Advanced Protection" is very unobtrusive because to the user, the game looks just like any other turn-based strategy game. The only concession to the adaptive algorithm which is made is that each user must create his or her own user profile (simply by typing in his or her name) and reload that profile every time he or she restarts the game. The profile is a text file (the extension is ".apu") composed of 252 numeric values separated by tabs. The first two numbers represent, respectively, the number of wins and losses the user has experienced. The next 250 values are the current performance ratings of the corresponding 250 AI strings against that specific user. (Four example .apu files are included in Appendix B.)

The game itself is a 164K executable program which runs on Windows95/98/NT. The code was written in C++ and compiled using Microsoft's Visual Studio 6.0. The interface was designed using Microsoft Foundation Classes. The program is available by e-mail from soren@cs.stanford.edu.

Search Space

The search space of strategies (namely, the 250 AI strings hard-coded into the game) was created in two ways. First, 20 strategies were hand-written by myself to cover a variety of concrete tactics and minion preferences. In other words, some of the strings emphasized armored barbarians while other emphasized amphibious barbarians while others emphasized two or three different types of minions. Further, the automaton varied so that no one movement pattern was used.

However, while these strategies were often effective, they were rarely as effective (or as ineffective) as the much more creative 230 string evolved using genetic algorithms. When the basic interface of "Advanced Protection" was first created (using a balanced, hand-written string as its AI), I added a few lines which wrote the user's unit arrangements into a text file and then distributed the program to a number of users. These user log-files trickled back over the next few weeks and recorded a wide variety of user strategies. I then performed genetic algorithm runs against unique unit arrangements from this user data.
 In every case, the genetic algorithm was able to evolve a strategy which resulted in negative performance rating, meaning that the computer always learned how to beat the human's strategy. In the end, 53 genetic algorithm runs were completed on data provided by 12 separate users. The 230 evolved strings were picked from the best individuals of these 53 runs, with an emphasis on later runs which were executed against more complex user strategies. I have included a listing of the average minion preferences from the best 50 individuals of all 53 runs in Appendix C.

The purpose behind this two-fold approach for designing AI strings was to provide a wide variety of strategies which could hopefully counter the infinite number of strategies which a new user could adopt. The handwritten strategies were written to challenge the most basic strategies which the user could employ. Conversely, the evolved strategies were meant to address very specific strategies which real users practiced, many of which I could not have anticipated on my own. The variety of evolved minion preferences shown in Appendix C provides strong, anecdotal evidence that the best-of-run individuals extended across a large percentage of the overall, possible search space. Certainly, no one minion type emerged as being the most useful in all situations. Furthermore, every type of minion was needed a number of times to combat various user strategies. Thus, the variety of minion preferences evolved by the 53 genetic runs and the balanced nature of the 20 handwritten strategies strongly suggest that a healthy distribution of user strategies are addressed by the 250 hard-coded strategies included in the game.

Results

Although the scope of this project does not allow for an extensive round of user testing, I would like to provide some anecdotal evidence that my program was adapting successful to the user to provide an enjoyable playing experience (meaning not too easy and not too hard). When the system was not adaptive, one of the problems was that a few strategies worked all of the time and that novices were killed off very quickly.

The former problem is now fixed as no one strategy is a "silver bullet," so to speak. Even I, the designer of the program, have a very difficult time getting my winning percentage over 0.700! Indeed, when Chaos now faces a difficult challenge from a successful human user, the results are quite interesting. Instead of wasting minions with ineffective strategies, the AI often chooses to buy many, many scavengers to increase its resources. Then, when the computer detects a weakness in the human's defenses, the AI quickly shifts to a more offensive strategy, which will often work because Chaos has been building up a large amount of money to be able to create a large number of minions. Moreover, the complexity of the evolved automaton which control the minions is quite impressive. Some have learned to search the local area after encountering human units. Others have learned to turn at regular intervals while traveling in a straight line so as not to miss any hidden human units. Finally, communication proved to be an important aspect of the AI as nearly every optimal solution for every run required at least some scouts.

Further, the problem of novices being killed off too quickly has been solved by the adaptive system. Now, Chaos rarely kills off the user within the first four or five turns. Because the system senses that the user is a novice from his or her win-loss record (which is likely below 0.500), the AI quickly shifts to one which sustains the current balance of power. Therefore, the user must slightly improve his or her strategy in order to win, which is the challenge I wanted to provide beginners. I have distributed the current, adaptive game to a number of users, and although the timing has been too short to provide conclusive results, the initial signs are encouraging. The win-loss records of the four users who have completed at least six games with the adaptive system are (in descending order) 11-6 (0.647), 4-3 (0.571), 2-4 (0.333) , 2-5 (0.286). Certainly, none of these records can be considered "extreme." Indeed, the overall record of the four users is 19-18 (0.514), which is very close to my "optimal" winning percentage of 0.500.

In the future, I would like to conduct more extensive user testing by introducing the game to a representative sample of users who have not previously been exposed to "Advanced Protection" and then having them play a set number of games. The hypothesis is that their winning percentages would form a standard deviation curve centered on 0.500. A separate question which needs to be answered is what is the real "optimal" winning percentage. In other words, what target winning percentage would provide the user with the most enjoyable playing experience. Do most users expect to win more games than they lose or vice-versa? Do some users value being constantly challenged? Do others strongly dislike losing more than half the time? I suspect that the answer is different from user to user, but these questions need to be answered before I can say with any confidence that I have determined the true, "optimal" winning percentage.

Future Work

Although I believe that the project can now stand on its own, a great deal of future work needs to be done. These improvement range from minor points (such making the AI string selection algorithm smoother for users with only a few completed games or providing a more detailed assessment of user performance than his or her win-loss record) to major points (such as a full user study). Concerning the question of the "optimal" winning percentage, one solution might be to allow the user to categorize him/herself as a "novice," "intermediate," or "expert." The "optimal" winning percentage could then be adjusted accordingly with the underlying assumption being that experts aren't afraid to be challenged and novices still need some time to feel comfortable with the game.

Another major area of work might be to allow the game to dynamically alter the 250 hard-coded strings in some constrained manner. Obviously, the game can't use straight genetic algorithms on the strings as these runs often take many hours to complete. However, the program could experiment with some very limited crossover operations which might combine the minion automata/preference pairs from different strings to produce dynamic, hybrid strings. The best-performing hybrid strings could be saved in the user's .apu file for use between different game sessions. While such a process might produce interesting results, they would likely only be applicable to the most advanced users as the 250 strategies already included in the program have been able to prevent every user so far from winning more than 2 out of every 3 games.

Conclusion

"Advanced Protection" is an adaptive, turn-based strategy game which is superior to its counterparts with static "difficulty levels" in three ways. First, the system can dynamically switch between strategies depending on the actual performance of the user- expert will be treated like experts, and novices will be treated like novices. Next, the rules and parameters of the game will be the exact same for all strategies, which means that Chaos will not "cheat" to be capable of challenging advanced users. Finally, the system can ensure that Chaos's "best" strategies truly are best for each individual user. Indeed, this fact is true virtually by definition- when the user start to play the game, all of the 250 strategies are given equal weight. Only those strategies which historically succeed against that specific user will be considered Chaos's best strategies against him or her. Furthermore, the game's interface functions like virtually every other turn-based strategy game on the market, which means that the program obtains its information in a very unobtrusive manner. Indeed, unless they are told how the game works, most users will only sense that the game is learning from their moves once Chaos starts changing strategies.

 In conclusion, I would like to address the question of whether my system includes user profiles. Although the .apu files, which contain the user data, may not appear like traditional user profiles, they are actually quite indicative of the user's personal strategies. Even a cursory glance through the .apu files included in Appendix B reveals that different AI strings have widely different results for different users. In essence, these data points provide a kind of "anti-profile" from which the user's strategy can be determined. However, the system does not need to actually know the user's strategy, only how well its own strategies perform against them so that the game can choose between the 250 AI strings. Furthermore, the files record the user's win-loss record to provide information concerning the user's abilities. All of this information is then used by the program to select a strategy for Chaos which will provide an enjoyable playing experience for the user by being neither too difficult nor too easy. Thus, the .apu files function as user profile by providing the system with the information needed to adapt the game to the user's style and ability.

EMBED PBrush[image: image1.png]Figure 2: Al Encoding
A1 Usits (1056 bits)

Uit Preference and States (132 bits)

State Transitions (32 bits)

0110 00 10

Unit Preference Action New state

EMBED MSWorks.Table.4[image: image2.wmf]Figure 3: Scout Inputs

Input

Meaning

000

No input

001

Facing impassable terrain

010

Senses jamming radius

011

Senses artillery radius

100

Facing drone or farmer

101

Facing infantry, settler, jammer, or artillery

110

Facing armor

111

Facing mine

[image: image3.wmf]Figure 4: Scavenger Inputs

Input

Meaning

000

Facing human

001

Facing impassable terrain

010

Sense gold

011

Facing gold

100

No farming bonus

101

+1 farming bonus

110

+2 farming bonus

111

+3 farming bonus

[image: image4.wmf]Figure 5: Barbarian Inputs

Input

Meaning

000

No input

001

Facing impassable terrain

010

Senses scout broadcast

011

Facing scout broadcast

100

Facing drone or farmer

101

Facing infantry or settler

110

Facing armor

111

Facing jammer or artillery

Appendix A

Advanced Protection Rules
The game of Advanced Protection is played between a human player and a computer

opponent (known as Chaos) on a 24 x 24 wraparound grid. The game is split into turns,

which are composed of 50 phases. Before each turn, the human player is able to buy,

distribute, and salvage as many units as his or her treasury allows. When the turn

begins, Chaos's minion are randomly placed on squares not occupied by the human's

units. During each phase of the turn, every minion is allowed one or two moves and

every human farming unit generates money. The four moves minions can make are 1) Move Forward, 2) Turn Right, 3) Turn Left, and 4) Special Action. (The Special Action

varies between different minions. The special action of Scouts is to broadcast. The

Special Action of Scavengers is to farm. The Special Action of barbarians is to attack

a human unit.) When the turn ends, Chaos's remaining units are removed from the board,

and then salvaged for the units' full costs. The money gained from salvaging is then

added to Chaos's treasury. Both the human player and Chaos create new units between

turns by purchasing them from the money in their respective treasuries. Chaos and the

human both start the game with $2000. The human player wins when Chaos surrenders.

Chaos wins when the human has no units and no money left in his or her treasury.

There are six different types of terrain: water, wetlands, forest, hills, mountains,

and peaks. Water and peaks are impassable to most units. Some types of terrain have a

farming bonus, meaning the amount of food generated by units farming that square is

increased (or decreased) by the bonus each phase. Some types of terrain have a defense

bonus, which is the amount the defense strength of an unit occupying such terrain is

increased. Also, some squares have a gold resource, symbolized by a gold diamond. The

farming bonus of these squares is increased by two. Each square can hold either one

human unit or an unlimited number of Chaos's minions.

[image: image5.wmf]Figure A-1: Terrain Types

Terrain

Color

Farming Bonus

Defense Bonus

Impassable?

Water

Blue

0

0

Y

Wetlands

Light Green

2

0

N

Forest

Dark Green

1

0

N

Hills

Brown

0

1

N

Mountains

Gray

-1

2

N

Human Units

There are eight unique types of human units. The attack and defense strengths affect

combat. The cost is how much money must be spent to buy one unit. The salvage is how

much the unit is worth when it is salvaged (meaning removed from the board) by the

human. The farming rate determines how much money, per phase, the unit generates. The special abilities are described below the chart.

[image: image6.wmf]Figure A-2: Human Units

Unit

Cost

Salvage

Attack

Strength

Defense

Strength

Farming

Rate

Special

Ability

Drone

$20

$20

0

1

1

-

Mine

$50

$25

0

0

0

(1)

Farmer

$100

$80

0

1

1

-

Infantry

$100

$90

3

6

0

-

Settler

$150

$120

2

4

3

-

Jammer

$150

$90

0

2

0

(2)

Armor

$200

$150

8

10

0

-

Artillery

$400

$300

3

2

0

(3)

(1) When a minion enters a square occupied by a Mine, the Mine attacks the minion with

an attack strength of 10. Regardless of the outcome of that combat, the mine is

destroyed. Mines cannot be attacked (or seen) by barbarians.

(2) The Jammer unit blocks all barbarians within a radius of 4 squares from receiving

Scout broadcasts.

(3) Every minion with 2 squares of an artillery unit must suffer a bombing attack once

per phase. Minions which are one square away from the artillery have a 1/8 chance of

suffering a minor hit. Minions which are two squares away have a 1/8 chance of

suffering a major hit and a 1/8 chance of suffering a minor hit. When struck by a

minor hit, minions must defend against an attack strength of 5. When struck by a

major hit, minions must defend against an attack strength of 10.

Chaos's Minions
Cost, attack strength, and defense strength are essentially the same as above.

Movement rate describes the number of actions the unit may take per phase. Hearing

radius is the number of squares from a broadcasting Scout the barbarian can be and

still hear the broadcast. Special abilities are described below the chart.

[image: image7.wmf]Figure A-3: Chaos's Minions

Unit

Cost

Attack

Strength

Defense

Strength

Movement

Rate

Hearing

Radius

Special

Ability

Scout

$10

0

1

1

-

(4)

Scavenger

$100

0

1

1

-

(5)

Common Barbarian

$50

6

3

1

2

-

Amphibious Barbarian

$60

6

3

1

2

(6)

Mobile Barbarian

$70

5

3

2

3

-

Jump Barbarian

$70

6

2

1

2

(7)

Kamikazee Barbarian

$70

0

10

2

2

(8)

Armored Barbarian

$200

15

10

1

3

(9)

(4) The Scout may broadcast a signal which barbarians can hear. Armored Barbarians and

Mobile Barbarians can sense the signal up to 3 squares away. All other barbarians

can sense the signal up to 2 squares away.

(5) Unlike all other minions, Scavengers can farm. Like human units, Scavengers can

farm once per phase. Their farming rate is 2.

(6) Amphibious Barbarians can travel through water.

(7) Jump Barbarians can jump over one square when their path is blocked. If the square

into which the Jump Barbarian attempts to land is occupied by a human unit, combat

occurs. If the combat is resolved without any deaths, the Jump Barbarian returns to

its square of origin.

(8) Kamikazee Barbarians automatically win all combat battles they initiate. However,

after killing a human unit, the Kamikazee Barbarian itself is destroyed.

(9) Armored Barbarians serve as mine sweepers. In other words, when an Armored

Barbarian enters a square occupied by a Mine, the Mine is destroyed without the

Armored Barbarian having to defend against an attack.

Combat
Combat is initiated in one of four ways:

1) A minion (which is not an Armored Barbarian) enters a square occupied by a Mine.

2) An Artillery unit successfully bombs a minion.

3) A barbarian attacks a human unit (which is not a Mine).

4) When a barbarian attacks fails, the human unit counter-attacks.

Combat is resolved by comparing attack and defense strengths and generating a random

number. The random number is between 1 and the sum of the attack and defense

strengths. If the random number is greater than the defense strength, the attacker

wins, and the defender is destroyed. If the random number is not greater than the

defense strength, nothing happens. (note: in the case that a barbarian is attacking

a human, if the random number is not greater than the defense strength, the human is

then allowed to counter-attack the barbarian- using the human's attack strength and

the barbarian's defense strength.)

Money
Money is not sent from units and minions to the respective treasuries of the human or

Chaos until the end of the turn. Thus, units and minion possess money during the

phases of the turn. Thus, farming units gradually acquire wealth as the turn

progresses. However, when human farming units are attacked and destroyed, the

attacking barbarian acquires their money. Further, when minions are destroyed in

combat, any money they possess is lost forever.

Inputs
Scouts, Scavengers, and barbarians have different input abilities. Scouts are able to

detect when they are facing all types of human units (including Mines), when they are

in a Jammer's radius, when they are in an Artillery's radius, and when they are facing

impassable terrain. Scavengers are able to detect when they are facing all types of

human units except Mines, when they are within three squares of gold, the farming

bonus of the square they occupy, and when they are facing impassable terrain.

Barbarians are able to detect when they are facing all types of human units except

Mines, when they are within the hearing radius of a broadcasting Scout, and when they

are facing impassable terrain.

Appendix B

Example .apu Files

11
6
-207
-42
1006
1814
972
1017
1011
1229
399
686
415
492
1487
1117
168
1316
1011
262
633
773
-326
29
265
8
632
-556
322
1452
473
318
295
463
-499
-430
362
207
-687
-538
248
246
448
1703
850
1138
1069
1388
1469
415
1320
1163
1157
958
806
304
-202
1893
316
1681
1346
2011
1299
717
1153
1770
1615
543
2044
1386
512
1865
-412
-288
-548
-287
843
1113
886
1299
986
1954
1185
-869
624
1287
-554
2572
2664
1954
2219
2595
1376
450
-463
534
227
806
1968
2561
2300
1807
1517
2425
2254
2025
2635
1663
1646
1771
1466
1413
1150
755
-769
1556
-49
1435
583
249
1456
1243
-469
379
603
287
-906
1092
844
374
-343
2146
442
-178
2307
1592
672
913
949
1089
1329
1686
2345
2791
1214
1888
1619
669
1424
1341
586
1283
1646
1492
2231
1941
1536
1800
1617
1274
1026
769
858
744
468
91
1307
1247
-118
1921
2001
1410
2272
1202
1303
1886
902
1226
1888
1804
1294
1520
1450
1224
937
2257
1940
1434
1871
2280
2097
2425
2787
1871
2382
1406
1800
1471
2131
1743
2322
2197
783
761
984
877
765
624
146
1892
1472
185
1020
920
1714
1146
2300
973
1325
1765
1241
736
1584
2396
2511
2412
2355
1050
1106
1567
1503
1562
-674
113
-1391
4
445
423
-540
-868
-906
203
2156
2008
2141
2424
2378
1971
2171
2186
2104
2211

4
3
-7720
-11228
-2682
-6836
-9742
-9035
2522
-12108
-14488
-6348
-10508
-4870
-2737
-2774
-10450
-5603
-4201
-11646
-9141
-3520
-24197
-19608
-826
-14528
-12224
-8733
3772
10027
-13963
-16673
1530
2592
5057
-2106
7969
-14991
-23092
-17471
-14980
-14419
826
7144
9517
8444
7977
2155
7866
-8041
6638
8284
5223
550
7295
9126
-3853
29995
24332
26409
14584
18352
10497
7494
11038
9923
3105
2443
-4876
-2090
4421
-7580
-20167
-21301
-20326
-21737
-7293
12366
-797
4132
7851
19599
-1409
-3875
-1682
-3695
4986
31420
30907
30829
25809
29662
14707
3300
4254
1577
1285
21797
19977
20284
20859
19430
15781
20354
22287
22965
22230
16994
21826
21569
23116
20800
2135
1425
3221
10661
4159
17500
17815
14870
20024
19293
-9
-10138
-2713
-5507
-14812
8623
1731
-4134
6366
1086
-7500
-6600
2891
-2542
-2430
22239
25118
23792
22723
18342
28157
22873
20901
27419
25765
18376
26951
22877
25324
16421
3898
10719
8282
4401
6064
6741
8949
3916
-71
12245
9329
-7209
2941
8179
18374
4720
5526
5350
8565
2855
14740
18988
18192
18938
13228
12732
19790
4708
9997
6736
19132
20442
18857
19163
11460
24733
23709
31698
22429
23748
25306
20317
20503
13020
14078
11773
16612
11544
15705
11564
-6115
9551
-3502
683
1894
13877
4611
11087
16811
-1046
3562
-5148
2664
9332
-1313
15329
19783
17641
7118
12122
5446
13043
19575
16201
15190
7217
16333
7116
15593
22004
-13750
-11111
-12754
-13510
-15245
-12981
-11619
-16017
-21381
-18496
11055
12323
11782
11591
11109
11138
11053
11059
11739
12495

2
4
-9735
-17531
10731
10359
15781
5585
16009
3438
14263
14875
349
-16156
6664
6828
22985
3335
-4343
-10763
8439
15737
36799
-2954
5933
-8553
-463
24223
4294
30090
-13006
9086
6218
-680
1650
11770
-1302
21696
3560
1901
-4346
8358
32821
6520
16106
31
26176
-4649
14908
231
-1049
-2757
-5410
-731
4719
818
5100
20733
5593
14787
3876
18416
3954
2510
1072
14200
-4737
8769
15783
10728
14262
13074
4139
1795
-16841
30209
7811
10105
9345
14402
29809
18405
2126
-250
-7228
14323
-9603
18026
28859
22528
12323
31072
16287
19443
10523
9629
12808
22580
25983
18673
20674
21726
12932
16941
8690
22788
31851
26544
14330
30700
27321
23042
10789
-6293
-11146
-15798
-13188
1640
4085
1993
-2214
3576
-4735
-12408
5150
-5359
-202
-4471
8548
-953
8709
-1580
-4663
1542
9730
14764
17052
9877
15125
12528
10366
13404
19899
16587
14774
25622
6292
3608
2031
5536
8336
8321
6977
22719
19094
24431
22913
25389
8944
19972
29511
19279
-793
-2708
7757
7096
10567
2194
1040
-2630
9661
-2698
6988
15749
17986
14000
2089
-2492
6313
7939
8165
404
5347
10687
23745
8338
-5217
12014
23660
24512
8099
24317
5571
-2262
-5301
21738
2787
11646
1207
-4578
681
-7800
-7940
225
-10700
-6641
9105
22839
13401
21700
-1953
11264
18132
18448
4459
14615
13753
12323
10202
12195
18875
-3250
19415
26186
28552
27542
35360
10786
3968
8253
9822
2124
-12384
-5268
-5908
-20237
-13384
-10270
-10305
-8790
-2024
-11824
45017
25103
22133
23106
23764
44943
21469
44713
45852
43700
11173

2
5
3109
3482
5628
3912
-319
5496
-7310
-1152
1829
8184
-778
3221
5167
6951
-4567
6882
161
3316
-7795
10460
2538
2509
5857
-7790
-8973
6221
3979
7698
7903
6293
7177
10357
6730
5175
7394
-5185
-9023
-6232
-5785
-6718
2621
3426
7647
6318
13919
7887
5935
5694
8064
3986
4086
1570
6522
10187
9062
14751
12979
12981
14578
12560
13337
12486
14886
15506
3225
69
2621
-2356
743
-1029
754
1098
-251
1300
5748
7961
2886
7890
9816
8579
555
1220
1742
6348
3123
11733
10339
11513
12176
12786
10926
1592
10896
8327
8134
18428
19317
18676
17987
18351
14610
15820
17772
18233
19521
15928
16080
18041
17513
18096
7681
7133
4004
5484
8601
14625
16723
13093
13356
14348
-3503
-3099
-3625
-2789
-8415
9129
9819
6677
9537
10350
-8261
-4019
5416
-4460
-192
16485
19313
15713
17921
17248
16963
18923
17577
21027
16730
14616
16008
11626
11369
14662
13987
6238
14160
10638
8322
8752
13248
8576
10516
11007
13036
3152
7453
10837
14273
5957
7026
8625
9760
10360
16006
14764
15173
15776
15003
3518
1651
7321
5137
5172
14526
17723
16361
15870
10939
19498
17597
18368
10178
16238
1983
-2221
-5038
3250
-2965
664
3920
807
-4720
-6012
2216
-482
-1383
-2574
4170
2736
266
5913
1155
7574
900
-713
3128
6624
1843
-408
1335
7234
4061
14
10034
11420
15291
15060
13398
12235
14489
11102
14757
18308
-10056
-4022
-11071
-8810
-5626
-2452
-6490
-9005
-5499
-6905
11220
11846
10467
11489
10825
11066
12168
11855
10655
11173

Appendix C

Genetic Runs

Users:

A = Soren

B = Claudia

C = Phil

D = Henry

E = Bill

F = Eric

G = Allen

H = Nicolas

I = Joe

J = Wayne

K = Jan

L = Jay

-----------------Minion Preferences (0-15)-------------------

Run
User
Scout
Scav.
Comm.
Amph.
Mobile
Jump
Kami.
Armor

1
A
0
15
0
0
0
0
0
0

2
A
0
15
0
0
0
0
0
0

3
A
1
14
0
0
0
0
1
13

4
A
12
14
1
1
15
2
13
0

5
A
11
9
1
0
15
0
8
0

6
B
8
15
0
0
0
0
0
6

7
A
0
14
1
15
0
14
0
0

8
C
12
15
1
9
1
0
0
10

9
A
0
4
15
0
0
13
0
0

10
A
1
9
14
0
0
15
0
0

11
B
11
15
5
3
1
2
0
10

12
A
13
7
0
1
12
12
14
0

13
A
3
9
3
2
1
2
3
13

14
A
0
12
1
4
0
1
0
13

15
B
8
4
3
13
2
3
2
12

16
A
3
9
6
0
14
13
2
0

17
A
1
3
4
15
1
15
1
0

18
D
4
12
3
1
13
12
7
2

19
D
1
15
1
0
0
1
0
0

20
D
2
14
1
2
1
14
2
14

21
A
1
1
2
10
6
15
2
5

22
E
1
2
3
3
0
1
2
15

23
E
0
8
2
6
1
1
2
15

24
E
3
4
2
2
1
2
2
14

25
E
1
6
2
1
1
1
2
14

26
E
1
5
2
1
1
1
2
15

27
F
5
8
1
15
1
0
0
0

28
F
2
3
1
14
2
2
2
1

29
F
6
5
0
13
0
1
15
0

30
F
2
3
1
14
2
14
2
0

31
G
10
1
1
1
14
1
14
0

32
G
4
3
3
11
5
4
5
15

33
H
4
4
11
6
3
13
5
8

34
H
2
11
3
4
2
2
3
13

35
I
1
2
13
1
15
1
2
0

36
I
2
4
5
4
15
3
4
13

37
I
11
1
3
1
1
14
4
14

38
I
3
2
1
14
1
1
2
15

39
I
3
2
2
15
4
2
2
2

40
I
11
1
7
15
1
4
7
14

41
J
2
0
3
13
2
2
1
14

42
J
2
6
13
13
10
10
5
3

43
J
3
8
13
9
12
2
1
0

44
J
2
5
11
2
1
3
1
14

45
K
7
8
1
0
14
1
15
0

46
K
3
1
3
14
13
2
13
0

47
K
1
13
1
2
14
1
11
0

48
K
2
11
3
2
13
2
5
0

49
L
1
7
3
2
14
1
0
3

50
L
1
11
11
4
14
1
1
1

51
L
2
9
3
2
2
3
3
14

52
G
2
3
14
15
3
13
3
2

53
L
8
7
2
11
14
1
14
0

� Chaos's surrender occurs automatically when the human's money and the value of the his or her units is more than 20 times Chaos's value (minions plus money). Also, a slowly, yet exponentially, increasing amount of money is given to Chaos each turn to prevent the game from continuing forever. Thus, the human must perform slightly better than Chaos in order to win.

� A number of priority rules dictate the input when a number of situations conflict. In general, when a minion faces a human unit or impassable terrain, that input will take priority over all other inputs. For example, if a barbarian sense a scout's broadcast and faces a farmer, then the input will be 100 (Facing drone or farmer).

� In these test games, Chaos is given an amount of money equal to the total value of the human's units.

� The value of 0.500 is semi-arbitrary. I am functioning under the assumption that an "optimal" computer game would challenge the user enough so that he or she wins some of the time and loses some of the time. In other words, the game will try to be neither too hard nor too easy. Therefore, I chose the "optimal" winning percentage for the user to be 0.500, which means that he or she has won as many games as he or she has lost.

� Because half of this rating comes from the latest test and the other half of the rating comes from previous tests, the new "optimal performance rating" is a mix of short-term and long-term learning.

� When the user first plays the game (meaning before the program has any information about that specific user), he or she will be faced in the first turn with a pre-determined "starter" AI, which was written to have average performance against most user strategies.

� The rationale behind having users with a winning percentage at or below 0.500 face strings with the performance rating closest to 0 is that these users need time to develop their own personal strategies. The string should not have a negative performance rating because then the user would likely be frustrated by the computer's success. On the other hand, the string should not have a positive performance rating because then the computer would be letting the human win regardless of his or her strategy. Thus, a performance rating of 0 will require the user only to improve his or her strategy slightly in order to win, which in my opinion is the best way to slowly bring along novices who are having difficulty learning the subtleties of the game.

� The genetic string used by the GA was the 1056-bit string which encoded the minion automaton and preferences. In each test game, Chaos was given an amount of money equal to the total value of the human's units. The evaluation function was a slightly modified version of the performance rating. In this case, the change in the human's value was doubled. This modification (which was adopted for the ninth genetic run) encouraged the algorithm to develop more offensive combinations of units. In the first eight runs, the AI strings had concentrated their resources on scavengers, which were guaranteed to produce money for Chaos but which also did not attack any of the human's units. This bias is less important in the real game because buying only scavengers to increase Chaos's money can be a quite successful strategy. However, because genetic algorithms were being used to expand the search space of strategies, the modified performance rating was adopted to steer the algorithm away from emphasizing scavengers. The GA was run using the GENESIS program with the following parameters: population size = 10,000; number of trials = 2,000,000; crossover percentage = 0.60; mutation percentage = 0.001.

� As mentioned earlier, minion preferences range from 0 to 15, with the higher values signifying a higher preference by the AI for that type of minion.

_998346807.wps

_998346828.wps

_998346829.wps

_998346808

_998346826.wps

_998346804.wps

_998346805.wps

_998346802

