
A Flow-Based Approach to Datagram Security

Suvo Mittra

Stanford University

suvo@cs.stanford.edu

Thomas Y.C. Woo

Bell Laboratories

woo@research.bell-labs.com

Abstract

Datagram services provide a simple, 
exible, robust, and

scalable communication abstraction; their usefulness has

been well demonstrated by the success of IP, UDP, and

RPC. Yet, the overwhelming majority of network security

protocols that have been proposed are geared towards

connection-oriented communications. The few that do

cater to datagram communications tend to either rely on

long term host-pair keying or impose a session-oriented

(i.e., requiring connection setup) semantics.

Separately, the concept of 
ows has received a great deal

of attention recently, especially in the context of routing

and QoS. A 
ow characterizes a sequence of datagrams

sharing some pre-de�ned attributes. In this paper, we

advocate the use of 
ows as a basis for structuring secure

datagram communications. We support this by propos-

ing a novel protocol for datagram security based on 
ows.

Our protocol achieves zero-message keying, thus preserv-

ing the connectionless nature of datagram, and makes use

of soft state, thus providing the per-packet processing e�-

ciency of session-oriented schemes. We have implemented

an instantiation for IP in the 4.4BSD kernel, and we

provide a description of our implementation along with

performance results.

1 Introduction

A datagram service is one in which self-contained mes-

sages, or datagrams, are transmitted from one principal1

to another, and whereby each datagram is transmitted

and received atomically and independently, in isolation

of others. No prior setup is needed between the source

and destination principals, nor is there any required state

maintained between the two.

1We use the term principal here to avoid referring to a speci�c

protocol layer. In general, a principal can be a host, a process or a

user. The term principal is commonly used in security literature.

Appears in Proceedings of the ACM SIGCOMM '97, September 14-18, 1997, Cannes, France.

Copyright c
1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard

copies of part or all of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or direct commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from Publications

Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Datagram services have been widely adopted. Their

success has been mainly attributed to their simplicity,


exibility, robustness and scalability. For example, many

of the most important networking protocols, such as IP

[22], UDP [21], and RPC [6], make use of an underlying

datagram service model.

Recently, much attention has been paid to securing

network communications, especially those based on data-

grams. This can be seen most apparently in the many

proposals for IP security [4, 11, 18]. In addition, both

IPv4 and IPv6 [8], now have built-in provisions for secu-

rity in the form of an Authentication Header (AH) and an

Encapsulating Security Payload Header (ESPH) [1, 2, 3].

Unfortunately, existing proposals are neither satisfac-

tory nor completely address the problem of datagram

security. For example:

� They tend to adopt a connection-based session model

for adding security. That is, they require extrane-

ous message exchange for setting up security as-

sociations and the creation of \hard" state for se-

curity processing in the two communicating prin-

cipals. The key advantages of a connection-based

model are its well-de�ned unit of protection based

on a connection, and the possible e�ciency gain

from the use of \hard" state. We believe, however,

that the sacri�ce of datagram semantics (and its de-

sirable features as a result) may be too expensive a

price to pay. In addition, as we shall describe, it is

not necessary for providing security.

� They focus only on speci�c protocol layers, e.g., IP,

instead of presenting general solutions that apply

across protocol layers or stacks. We believe that se-

curity solutions are subtle enough to get right even

once, thus any solution that we design should be

consistently applicable across protocol layers. In

addition, there is a great deal of debate regarding

the correct placement of security functions in a pro-

tocol stack. A solution committed to any particular

layer or stack may become obsolete before it ever

gains popularity.

� They concentrate mostly on speci�c mechanisms

without reference to policy issues. Separation of

mechanism and policy is good system practice; but

1



the design of certain mechanisms are heavily in-


uenced by the types of policies that are to be

enforced. We believe it is critical to make explicit

and investigate the coupling between the two.

What is needed is a unifying abstraction that o�ers

a unit of protection and e�ciency similar to that of a

connection-based model, is meaningful across di�erent

protocol layers, and is amenable to policy control. A par-

ticularly �tting candidate for this is the notion of 
ows.

Loosely speaking, a 
ow is a sequence of datagrams

satisfying some pre-de�ned attributes. It characterizes

communications that are between that of datagram and

connection. That is, a 
ow is neither datagram nor con-

nection | it has the 
avor of both.

The 
ow notion can be applied across di�erent proto-

col layers. At the application layer, datagrams belonging

to the same application \conversation" constitute a 
ow.

At the transport layer, datagrams in a connection can be

considered a 
ow.

The boundary of a 
ow is dynamically adjustable, by

varying the set of attributes of interest. A policy can be

used to specify the set of attributes of interest and the

corresponding security requirements.

In this paper, we propose a new protocol for datagram

security, called the Flow-Based Security Protocol (FBS),

based on the concept of 
ows. FBS makes use of zero-

message keying and soft states. The former allows it to

maintain datagram semantics, while the latter makes its

e�ciency comparable to a connection-based approach.

FBS is not de�ned for any speci�c protocol layer. It

assumes only the availability of an underlying (insecure)

datagram transport. As an example of its application,

we have de�ned a mapping to IP and implemented the

mapping in the 4.4BSD kernel.

The balance of this paper is organized as follows. In

the next section, we give a brief overview of existing work.

In Section 3, we present the requirements and constraints

for the design of our protocol. In Section 4, we elaborate

on the concept of the 
ow and its application to security.

In Section 5, we describe our proposed FBS protocol. In

Section 6, we discuss features and vulnerabilities of FBS

against speci�c attacks. In Section 7, we present a map-

ping of the FBS protocol to the IP layer. We also describe

our implementation of this mapping and the performance

results. In Section 8, we conclude.

2 Existing Approaches

The challenge of providing secure datagram services is not

new. Many approaches have been proposed. These ap-

proaches can be broadly classi�ed into two basic paradigms,

namely, session-based and host-pair keying.
2
The former

has an explicit notion of session, and sets up explicit se-

curity association prior to data exchange. The latter,

on the contrary, does not require explicit state setup nor

security negotiation prior to data exchange.

2This classi�cation is not intended to be comprehensive or ex-

act. Many schemes have the 
avor of both.

2.1 Session-based Keying

Session-based keying takes many forms, some rely on a

third party such as a key distribution center (KDC) and

others agree on a key between the two corresponding prin-

cipals.

In a KDC-based approach, before a source sends a

datagram, it contacts the KDC to request a session key

and an authentication ticket. The ticket, encrypted with

the destination's secret key, allows the destination (and

only the destination) to authenticate and decrypt trans-

missions from the source. To send a datagram, the source

encrypts the payload with the session key and sends the

encrypted payload together with the ticket. The destina-

tion recovers the session key from the ticket, and uses it

to decrypt the payload. Protocols that use this approach

include Kerberos [25], Sun RPC [26] and DCE [24].

In session-based keying without a third party, a dy-

namic key exchange is performed between the source and

destination principals. This establishes a shared secret,

which can be used to derive a session key. The ses-

sion key is stored as part of the security association, and

is used in securing ensuing communications. Protocols

supporting this method include Oakley [18] and Photuris

[11].

The key advantage of session-based keying is the pos-

sible e�ciency gain with explicit state setup, especially

in case of long-lived communications. However, this is

achieved at the expense of datagram semantics.

2.2 Host-Pair Keying

The basic idea behind host-pair keying is that each pair

of hosts have an implicit key, called the pair-based mas-

ter key, that can be computed only by that host pair.

The implicit key exists a priori, thus allowing a message

encrypted using this key to be sent without arranging

anything in advance. An immediate consequence of this

is that protocols based on host-pair keying support data-

gram semantics. That is, no extra message exchange is

required to set up secure communication, nor is there a

need for hard state to be maintained.

When using host-pair keying, the precise meaning of

host must be properly understood. Otherwise, \unex-

pected" vulnerabilities can result. As an example, con-

sider the application of host-pair keying to a network

layer protocol (e.g., IP). A host here would mean a net-

work layer entity, such as a host with an IP address.

Under host-pair keying, all tra�c from di�erent connec-

tions and users would be encrypted by the same implicit

key. In other words, security is only provided at the host

level; this may or may not be what is intended. Some

of the problems with IP level host-pair keying are dis-

cussed in [5]. In particular, the compromise of a master

key exposes all tra�c (past and future) between the two

hosts.

Basic host-pair keying can su�er from a \cut-and-

paste" attack. That is, the encrypted payload from one

datagram can be cut and inserted into another datagram

without being detected. A simple countermeasure is to

extend host-pair keying with per-datagram keys. Instead

2



of using the master key to directly encrypt data, the mas-

ter key is used to encrypt a per-datagram key, which

is used to actually encrypt the data. A subtle prob-

lem with this is that the per-datagram keys should be

cryptographically random, so that the compromise of one

datagram key should not reveal past or future keys. Cry-

tographically secure random number generators such as

the quadratic residue generator [7] can be a performance

bottleneck.

3 Requirements and Constraints

The basic requirement of any security protocol is to pro-

vide a prescribed set of security properties. In this case,

it is to enforce separation between datagrams belonging

to di�erent 
ows. That is, datagrams sent in a 
ow must

only be \readable" by the intended recipient, and data-

grams accepted in a 
ow must have been originated by

the claimed source and have not been modi�ed in tran-

sit. The precise \boundary" of a 
ow is de�ned by an

application or user.

Apart from the above, we have the self-imposed re-

quirement that the protocol should preserve datagram

semantics. That is, it should not require state set up

messages nor the maintenance of hard state in the two

corresponding parties.

Note that the standard \features" of datagram com-

munication, such as lack of sequencing and 
ow control,

possibility of omission and duplication,
3
are not changed

with the addition of the security protocol.

The main constraint in our protocol design is that it

should be layer- and protocol stack-independent. That

is, it should not assume that it will operate in a particu-

lar stack (e.g., TCP/IP) or a speci�c protocol layer (e.g.,

network layer). We accommodate this by �rst developing

an abstract protocol, and then de�ne mappings for di�er-

ent instantiations of the protocol. In this way, the system

and implementation speci�c details are all encapsulated

in the mappings only.

4 The Flow Concept

The concept of 
ow is not new. It has received much

attention lately, especially in relationship to routing (e.g.,

in IPv6 [19]) and quality of service (e.g., RSVP [29]).

Broadly speaking, a 
ow is a sequence of datagrams

satisfying some pre-de�ned attributes of interest [20]. This

de�nition could be very general. But, typically, 
ows are

used to refer to groups of datagrams that are to receive

similar treatment in their network transport. For ex-

ample, datagrams in an QoS 
ow are expected to enjoy

similar quality of service.

Indeed, 
ows are a natural and 
exible way to struc-

ture protocol data units at di�erent layers of the protocol

architecture. For example, at the application layer, ap-

plication data with di�erent semantics (e.g., video, audio,

and whiteboard data) could be separated into their own

3Except some malicious form of duplication | so called replay

attacks (see Section 6).


ows. At the transport layer, data going from one trans-

port end point (e.g., TCP/UDP ports) to another can be

considered a 
ow.

The concept of 
ow subsumes both datagram and

connection-oriented communications, thus sidestepping

the debate between the two paradigms. From a security

perspective, the model of datagram as a unit of protec-

tion is �ner than necessary. This is because successive

datagrams often belong to the same high-level communi-

cations and can be processed in a similar manner, making

it ine�cient to treat them as autonomous, independent

units. The model of connection-oriented communication

provides a well-de�ned unit of protection, i.e., all the

datagrams in a connection should be protected the same

way. Its main drawback is the fact that it is often en-

cumbered with notions of connection setup and teardown,

which are not necessarily required nor desired for security

purposes. Flows o�er the connectionless nature of data-

gram communication, while retaining the natural unit of

protection of connection-oriented communication.

The key challenge in basing security on 
ows is 
ow

identi�cation. The ability to di�erentiate and isolate


ows is as important as the actual security mechanism

used to protect them. Depending on which layer the

datagram service is implemented, this may or may not

be easy. At the application layer, this can be easy if the


ow semantics is built into an application. At the trans-

port layer, it could be based on the available connection

information. At the network layer, the requisite connec-

tion information may not be readily available and may

need to be \deduced."

5 The FBS Protocol

In this section, we provide a detailed description of our

proposed protocol. The discussion below is deliber-

ately kept generic. Speci�cally, we avoid stipulating the

use of speci�c cryptographic algorithms (e.g., encryption

and hash functions) and the exact size of the security

parameters (e.g., encryption key and confounder). The

determination of these is often based on implementation

choices, desired level of security, patent and export is-

sues. As an example of a realization of our protocol, a

mapping to IP is presented in Section 7.

5.1 Overview

The core of the FBS protocol consists of two mecha-

nisms, namely, a 
ow association mechanism (FAM) and

a zero-message keying mechanism. The former separates

outgoing datagrams into 
ows, while the latter estab-

lishes the security parameters for a 
ow without incurring

end-to-end message exchange.

These two mechanisms work tightly together. Specif-

ically, the output of the 
ow association mechanism is

an opaque 
ow identi�er, called security 
ow label (s
 in

short), which feeds into the zero-message keying mecha-

nism to produce the per-
ow key.

For generality, the FAM should be policy driven; this

presents a signi�cant design challenge. On one hand, the

mechanism should be cleanly separated from policies. On

3



.

.

.

.

.

.

Sweeper

header

sfl state info

outgoing datagram

Mapper
Module

Module

Flow State Table

Figure 1: The Flow Association Mechanism

the other hand, it should be general enough to be able to

support most policies, which could sometimes be protocol

layer or operating system speci�c.

In our current design, policies are expressed by policy

modules (e.g., the mapper and sweeper modules in Fig-

ure 1) which plug into the FAM, whose structure is shown

in Figure 1. The design has three key elements:

� Flow state table |Each entry in this table stores in-

formation about an active 
ow. In particular, each

entry contains the s
 for a 
ow and the necessary

state information required for the operation of the

mapper and sweeper modules below.

� Mapper module | This takes as input a set of

attributes (e.g., destination principal address) of

a datagram and possibly other system parameters

(e.g., process id, time), and produces an index into

the 
ow state table. If the indexed entry is \valid,"

the datagram is deemed to belong to the corre-

sponding 
ow, and s
 contained therein is used as

the security 
ow label for the datagram. Otherwise,

a new 
ow with a new s
 is created, and installed

into the entry. The validity of an entry is deter-

mined by inspecting its state information.

� Sweeper module | This is responsible for expiring


ows. It removes 
ows that are no longer \active."

It operates by scanning the entries in the 
ow state

table and examining their state information.

In this approach, the desired security is encoded in

the mapper and sweeper modules. Depending on the

policy, a mapper, or a sweeper or both may be needed.

Note also that although the 
ow association mechanism

is stateful, the state is not distributed between the source

and destination principals. Speci�cally, the source prin-

cipal actively assigns the 
ow for a datagram, while the

destination principal passively demultiplexes a datagram,

based on its 
ow assignment, into the individual 
ows.

No state synchronization is needed between the source

and destination principals.

The zero-message keying mechanism is based on the

basic Di�e-Hellman key exchange scheme [9]. It makes

use of the Di�e-Hellman scheme to obtain a pair-based

master key, and further derives from it a 
ow key. The

derivation of the 
ow key is easy knowing the pair-based

master key and the s
 for the 
ow. Knowledge of the 
ow

key, however, does not allow one to recover the pair-based

master key, or any other 
ow keys.

Thus, by including s
 in the datagram header, the

correct destination principal can easily compute the 
ow

key without incurring end-to-end message exchange. In

addition, by caching the 
ow key as soft state at both

ends, the computation of the 
ow key can be amortized

over all datagrams in the 
ow (see Section 5.3).

5.2 Protocol Description

Notation and Basic Parameters

The protocol description makes use of a number of basic

parameters. Their meaning and notation are explained

here.

Let S and D denote, respectively, the source and des-

tination principals. A minimal requirement of S and D

is that they are uniquely addressable within the data-

gram services. In a speci�c realization of the protocol,

the principals could be network interfaces on hosts, the

hosts themselves, network protocol layers, applications,

or end users.

Let s and d be the private values, as de�ned in the

Di�e-Hellman key exchange scheme, of S and D respec-

tively. The corresponding public values of S and D would

then be gs mod p and gd mod p where g and p are re-

spectively the (common and well-known) generators and

prime modulus in the Di�e-Hellman key exchange scheme.

The con�dentiality of the private values and the au-

thenticity of the public values are assumed. However, the

mechanisms for ensuring these are outside of the scope of

the protocol speci�cation. Typically, the private value

is kept by a principal; while the public values are made

available and authenticated via a distributed certi�cation

hierarchy (e.g., X.509 certi�cates [28]) or a secure DNS

service [10].

We denote by

KS;D = g
sd

mod p

the implicit pair-based master key between S and D.

Note that KS;D can be computed by either S or D (but

no others) using their own private value and the other

principal's public value.

The 
ow key for a 
ow f , identi�ed by security 
ow

label s
, going between S and D is denoted by Kf . It is

de�ned to be

Kf = H(s
 j KS;D j S j D)

where j is the concatenation operator and H a one-way

cryptographic hash function. S and D are included to

explicitly tie the 
ow key Kf to that of a 
ow between S

and D; KS;D also implicitly provides a similar function.

Candidates for H are MD5 [23], SHS [17] or even DES

[15]. The derivation of Kf could potentially be highly

expensive, especially if KS;D is not already known. In

such a case, communication (hence roundtrip delay) to

obtain the values for computingKS;D is required. Ideally,

the computation of Kf should be done only once per 
ow,

4



Secure Flow
Label

Confounder
Message

Authentication
Code

Timestamp

Figure 2: Security Flow Header Format

thus amortizing the cost over all datagrams in the 
ow.

To accomplish this, we have introduced several levels of

caching (see Section 5.3).

Security Flow Header

To maintain datagram semantics, our protocol requires a

security 
ow header or FBS header to be added to each

datagram. The �elds in this header are shown in Figure 2.

Most of these �elds should be self-explanatory, we brie
y

explain them here:

� security 
ow label | s
 for the datagram.

� confounder | a statistically random value gener-

ated on a per-datagram basis for use in the compu-

tation of MAC (see below) and as the initialization

vector (IV) for encryption. Typically, encryption

is performed using a block cipher such as DES [15].

The confounder is used as the IV in the CBC, CFB,

or OFB modes [16]. In case of ECB mode, the

confounder is XOR'ed with every block of plaintext

prior to encryption.

A confounder helps to hide the presence of identical

datagrams in the same 
ow, as the knowledge of

such may be useful to an attacker. In general, the

size of the confounder should match the block size

of the encryption algorithm used.

� message authentication code (MAC) | a keyed mes-

sage authentication code for the datagram. It should

be keyed on the 
ow key and calculated over the

confounder, timestamp and payload. The MAC

serves two purposes: (1) it ensures the integrity of

the datagram body and the other �elds in the se-

curity 
ow header; (2) it provides a form of \
ow"

authentication, i.e., the datagram does belong to

the 
ow indicated in the s
.

In our current design, the MAC is de�ned as:

HMAC(Kf j confounder j timestamp j payload)

where HMAC is some one-way cryptographic hash

function. Note that the function HMAC need not

be the same as the hash function H used in the

computation of 
ow keys.

� timestamp | a time value for countering replay

attacks.

The chosen size of these �elds is generally a tradeo�

between protocol overhead and security. An example set

of choices is given in Section 7. The placement of these

�elds is an implementation choice.

For generality, the security 
ow header should also in-

clude an algorithm identi�cation �eld, which speci�es the

cryptographic algorithms used (e.g., for MAC computa-

tion, encryption). It is straightforward, and we omit its

description here.

Protocol Operation

The basic structure and operation of the FBS protocol is

shown in Figure 3. As shown, the protocol consists of two

communicating halves, namely, the send and the receive

sides. The actions performed on the receive side is the

\inverse" of that on the send side.

We describe the operation of the protocol below, and

defer the discussion of implementation considerations to

Section 5.3. In particular, the various caches as shown

in Figure 3 are critical for protocol implementation, but

strictly speaking, they are not part of the protocol.

The FBS protocol operation is shown in Figure 4. We

�rst describe the convention. The operation of the un-

derlying (insecure) datagram transport is abstracted in

the two functions: Send() on the send side and Receive()

on the receive side.

Each datagram P entering the FBS protocol layer

is assumed to have a uniform structure. Speci�cally,

it contains: (1) a header, denoted by P .header, which

in turn includes �elds indicating the source (P .source)

and destination (P .destination) principals; (2) a body,

denoted by P .body, that carries the higher-layer proto-

col payload; and (3) an FBS protocol header, denoted

by P .FBSheader. From the point of view of Send() and

Receive(), P .FBSheader may be treated as part of the

datagram header or body, depending on the datagram

transport format.

Send Processing. FBSSend() in Figure 4 shows the op-

eration of sending a datagram P from S to D. The secret


ag, if set, indicates that data con�dentiality, i.e., en-

cryption, is desired for the datagram body.
4

The pseudo code should be fairly self-explanatory.

The key steps are: (S1) classify the datagram into a 
ow

using the 
ow association mechanism. To perform the

classi�cation, the 
ow association mechanism can inspect

the whole packet
5
(the argument P ) and other system

parameters (denoted by \. . . "), such as time and pro-

cess id. The precise input is determined by the policy

module plug-ins; (S2{3) generate the 
ow key. Note

that this is only a logical step. In a practical imple-

mentation, the 
ow key is computed once per 
ow, and

cached in a so called transmission 
ow key cache (TFKC)

(see Section 5.3); (S4{7) generate and insert the security


ow header into the datagram; (S8{9) optionally encrypt

the datagram body if data con�dentiality is desired; and

(S10) forward the resulting datagram to the lower layer

for transport.

Receive Processing. FBSReceive() in Figure 4 shows

the operation D undertakes to receive a datagram P from

S. The key steps are: (R1) receive a datagram from the

lower layer; (R2) retrieve the security 
ow header from

the datagram; (R3{4) check the timestamp for freshness.

The checking should be based on a sliding window cen-

tered on the current time; (R5{6) recover the 
ow key

based on the s
. Again, this is only a logical step. The

4In general, the value of secret is determined by the security


ow policy for the datagram. We have omitted the details here.
5Though typically P .header should be su�cient.

5



Flow
Association
Mechanism

Secure Flow
Header

Generation

Payload
Processing
(optional)

TFKC

Flow
Demultiplexing

Secure Flow
Header

Verification

Payload
Processing
(optional)

RFKC

MKC

Policy
Module

Send Side Receive Side

data flow

control flow

Figure 3: FBS Protocol Architecture and Operation

function FBSSend (Datagram P , boolean secret) f

(S1) Flow s
 = FAM (P , . . . );

(S2) Principal D = P .destination;

(S3) Kf = H(s
 j KS;D j S j D);

(S4) Confounder c = Random ();

(S5) Timestamp t = Time ();

(S6) MAC m = HMAC(Kf j c j t j P .body);

(S7) P .FBSHeader = (s
, c, m, t);

(S8) if (secret)

(S9) P .body = Encrypt (Kf , c, P .body);

(S10) return Send (P );

g

function FBSReceive (boolean secret) f

(R1) Datagram P = Receive ();

(R2) (s
, c, m, t) = P .FBSHeader;

(R3) if (: Fresh (t))

(R4) return error;

(R5) Principal S = P .source;

(R6) Kf = H(s
 j KS;D j S j D);

(R7) MAC m
0 = HMAC(Kf j c j t j P .body);

(R8) if (m 6= m
0)

(R9) return error;

(R10) if (secret)

(R11) P .body = Decrypt (Kf , c, P .body);

(R12) return P ;

g

Figure 4: FBS Protocol Processing

actual 
ow key may be retrieved from a receive 
ow key

cache (RFKC) (see Section 5.3); (R7{9) verify the MAC

�eld; (R10-11) optionally decrypt the datagram body if

data con�dentiality was indicated; and (R12) forward the

datagram to the upper layer for processing.

Observations. The following observations can be made

about the FBS protocol:

� Flows are unidirectional. This is a direct result

of the asymmetric roles played by the source and

destination of a datagram. The source principal dic-

tates the 
ow assignment of a datagram, while the

destination principal \accepts" it. Thus, a duplex

protocol will have two 
ows, one in each direction.

� It requires no hard state in either side for its oper-

ation, thus maintaining datagram semantics. Each

datagram is self-contained, and can be processed

independently. As we will show in the next subsec-

tion, key caching can be used to speed up protocol

processing, but the contents of the cache represent

only soft state.

� The 
ow key is used to directly encrypt data. With

use, an encryption key will \wear out" and should

be changed. The lifetime of an encryption key de-

pends on the encryption algorithm, the length of

time it has been used, and the amount of data that

has been encrypted with it. With FBS, rekeying

can be easily accomplished via the FAM by chang-

ing the s
. Rekeying decisions, though, are made

by policy modules.

5.3 Implementation Considerations

Generating the Security Flow Label

The FAM, and in turn the policy modules, is responsible

for \starting" new 
ows. Generating the value of s
 it-

self is not di�cult. The essential requirement is that the

same value of s
 not be assigned to two di�erent 
ows.

This can be done by simply keeping a large (at least 64-

bit) counter that serves as the value of the next s
 and

incrementing the counter each time an s
 is allocated.

The initial value of the counter should be randomized to

prevent attackers who try to exploit reuse of s
 values

by continuously reseting the protocol subsystem (e.g., by

bringing the machine down). It is assumed that the pair-

based master key will be changed (e.g., by changing the

private value of a principal) before this counter wraps

6



around. Note that s
 need not be random, because it is

fed into a one-way, pseudorandom hash function.

Generating the Timestamp

The main purpose of the timestamp is to ensure that

datagrams from an earlier 
ow can not be replayed and

accepted. The value of the timestamp should be based

on real time. For example, it could be encoded as the

number of minutes elapsed since some �xed time in the

past. The use of minute resolution is su�cient as the

timestamp is only intended as a coarse protection against

replays.

The use of timestamps also implies loose time syn-

chronization is needed across machines. The precise syn-

chronization requirement depends on the nature of the

freshness check and the level of acceptable risk.

Generating the Confounder

Although a confounder is required on a per-datagram ba-

sis, its generation is not computationally expensive. This

is because a confounder needs only be statistically ran-

dom, as opposed to cryptographically random. For ex-

ample, the confounder can be generated using the highly

e�cient linear congruential generators [12]. Of course,

the seed for the generator must be randomized in each

initialization of FBS.

Computing the MAC

The size of MAC is dependent on the algorithm used.

For example, MD5 produces 128-bit hashes while SHS

produces 160-bit hashes. To reduce header overhead, it

is possible though, with reduced security, to use only part

of these hashes as the MAC.

The MAC computation is an expensive operation. It

requires touching all the data in the datagram. An e�-

cient implementation should try to combine all such data

touching operation into a single pass. For example, if

data con�dentiality is desired, then the MAC computa-

tion and encryption should be rolled into one loop. To

take this one step further, an in-kernel implementation

of FBS can combine this with other data touching opera-

tions such as checksumming or user space-kernel crossing

data transfer.

Key Caching

Besides the MAC computation and the optional encryp-

tion, the major protocol overhead of FBS are: (1) com-

putation of the 
ow keys; (2) computation of pair-based

master keys; and (3) fetching of the public values of the

correspondent principal. Ideally, (1) should be performed

once per 
ow, while (2) and (3) should be performed once

per correspondent principal. Key caching can be used to

approximate this, hence amortizing the cost over all data-

grams. Indeed, many levels of key cache can be used, we

describe them below (see Figure 5
6
).

6The �gure is drawn for an in-kernel implementation of FBS.

The structure for a user-level implementation is similar, except for

the user space-kernel boundary.

Public values cache (PVC). This is a cache of the

public value certi�cates of the correspondent principals.

Caching of public value certi�cates, instead of the public

values themselves, is preferred because the former need

not be secure; a certi�cate can be veri�ed each time it is

used.

In case of a cache miss, the public value certi�cate

must be fetched from some certi�cate authority on the

network. The fetch request should not and need not be

secure. It should not be secure because this will otherwise

create a circularity problem, i.e., generating new fetch

requests that themselves need to be secured. It need not

be secure because the certi�cates are to be veri�ed on

receipt. The secure 
ow bypass in Figure 5 allows such

requests to bypass FBS. An alternative is to \pin" certain

certi�cates in the cache upon initialization.

PVC cache misses are served by the master key dae-

mon (MKD) and are extremely expensive. It incurs at

the minimum a round trip communication delay. There-

fore, the minimum size of PVC should be at least the

average number of correspondent principals that a prin-

cipal can concurrently communicate with.

Master key cache (MKC). This is a cache of pair-

based master keys, indexed by names of principals. These

master keys are computed using entries in the PVC and

installed by the MKD.

Pair-based master key computation is fairly expen-

sive, because it involves modular exponentiation.

Transmission 
ow key cache (TFKC). This a cache of

transmission 
ow keys indexed by a combination of s
,

D and S.7 With TFKC, a 
ow key is computed once

and installed in the TFKC at the start of a new 
ow.

Subsequent datagrams in the same 
ow can be processed

by the stored 
ow key, as long as it remains in the cache.

Figure 6 shows the modi�cation of the FBS send side

operation with the use of TFKC. Speci�cally, the code

in Figure 6 replaces line (S3) in FBSSend() in Figure 4.

The expression e 2 C and C[e] denote respectively the

operation to verify the existence of entry mapped to e in

cache C and the operation to retrieve the entry mapped

to e in cache C. Upcall() is an OS primitive that allows

kernel functions to directly call a user-level function.

A TFKC cache miss is not as expensive as an MKC

cache miss. Speci�cally, a 
ow key can be recomputed

from the s
 and pair-based master key (from MKC). To

minimize cache miss, the TFKC cache size should be at

least the average number of active 
ows.

Receive 
ow key cache (RFKC). This is a cache of

receive 
ow keys indexed by a hash of s
, S and D. It

can be understood as the analogue of the TFKC on the

receive side. Thus, its structure and use is very similar

to TFKC. We omit the details here.

With proper caching, the overhead of the FBS proto-

col can be reduced to the bare minimum, i.e., only MAC

7The inclusion of S is for \multi-homed" principals, i.e., prin-

cipals with more than one addresses.

7



Network

Kernel Space

User Space

TFKC RFKCMKC

Public Values
Cache

Master Key
Daemon

Secure Flow Mechanism

secure
flow
bypass

Figure 5: Key Cache

if ((s
,D,S) 2 TFKC) f

Kf = TFKC[(s
,D,S)].key;

g else f

if (D 2 MKC) f

KS;D = MKC[D].key;

g else f

KS;D = Upcall (MKDaemon, D);

MKC[D].key = KS;D

g

Kf = H(s
 j KS;D j S j D);

TFKC[(s
,D,S)].key = Kf ;

g

Figure 6: FBS Send Processing using Cache

computation and encryption. Thus, it is critical to un-

derstand the factors a�ecting the cache performance.

Cache misses can be divided into three types: com-

pulsory (cold), capacity, and collision misses. Cold misses

can not be avoided, they are necessary for the initializa-

tion of the cache entries. Capacity misses can be curtailed

by making the cache size at least the average number

of simultaneously active cache entries. A cache entry is

considered active if it may be referenced again. This

is generally not a problem because the number of 
ows

into a given principal is not very large compared to the

amount of memory available to store the 
ow information

in a modern kernel.

Care, however, must be taken to not delete active


ow information because of collision misses. Collision

misses can be avoided by increasing the associativity of

the cache, by using a better replacement policy, or by

indexing the cache with a better hash function that dis-

tributes entries uniformly. Because it is imperative that

these caches are implemented in software and because

they must exhibit quick access time, the associativity of

the caches can not be too great. In turn, low degrees

of associativity reduce the in
uence of the replacement

policy. Therefore, we must look to better hash functions.

Simple hash functions, such as modulo and XOR'ing,

are fast but have the disadvantage that they provide little

randomness unless the input to the hash function is al-

ready random. The input for all our cache could be highly

correlated, e.g., local network addresses and sequential

s
s. Therefore, the hash function for these caches must

randomize the input to a number whose modulo can then

be used to index the cache. An example of such a hash

function is CRC-32. Using such a hash function and a

reasonable size direct-mapped cache, we can reduce cache

lookup time to O(1) time in most cases.

6 Analysis

This section examines the features and vulnerabilities of

the FBS protocol with respect to a number of common

attacks. The discussion is by no means exhaustive; it is

intended to highlight some of the design rationale behind

FBS.

6.1 Perfect Forward Secrecy and Back Tra�c Protec-

tion

A protocol has perfect forward secrecy if the compromise

of any long-term keying material does not compromise

future session keys or tra�c. Back tra�c protection is

a similar idea but it relates to the compromise of past

session keys or tra�c. These protections are typically

accomplished by not using any long-term keys to encrypt

session keys or tra�c, but using them only for authenti-

cation.

However, it can be seen that no zero-message keying

protocols can provide these protections. This is because

in such a protocol, the sender must generate the session

key and make it known to the receiver while keeping it

private from other parties. There is no other secure chan-

nel, though, between the sender and the receiver except

the one protected by the long-term key.

FBS does, however, provide better protection than a

scheme based on host-pair keying. Under host-pair key-

ing, easy access to the master key is available as it is used

to directly encrypt the tra�c. Under FBS, the master key

is never used for encryption, and breaking a 
ow key does

not help in recovering the master key nor compromising

other 
ow keys.

6.2 Replay Attacks

Replay attacks can be used to trick a receiver into ac-

cepting the same data twice. It can also be used to

compromise the con�dentiality of data (see Section 7.1).

FBS uses a window-based timestamp scheme to counter

replay attacks. The key advantage of such a scheme

is that it does not require maintenance of hard state

information. The drawback is the need for loose time

synchronization.

Many other security protocols use a nonce-based scheme

to protect against replay. This, however, requires extra

communication for the initial nonce agreement as well as

hard state information, thereby violating datagram se-

mantics.

In any case, the replay protection a�orded by a data-

gram security protocol can not be perfect. If an attacker

8



struct FSTEntry {

boolean valid; /* valid flag */

byte proto-num; /* protocol number */

uint64 sfl; /* security flow label */

uint32 saddr; /* source ip address */

uint16 sport; /* source port # */

uint32 daddr; /* destination ip address */

uint16 dport; /* destination port # */

uint32 last; /* last packet arrival time */

} FST[FSTSIZE];

sweeper ()

{

i = 0;

do {

if (FST[i].valid &&

(curtime - FST[i].last) > THRESHOLD)

FST[i].valid = FALSE;

i = (i + 1) mod FSTSIZE;

} while (i != 0);

}

mapper (saddr, sport, daddr, dport, proto-num)

{

i = CRC-32 (saddr, sport, daddr, dport,

proto-num) mod FSTSIZE;

e = FST[i];

if (e.valid &&

(e.proto-num == proto-num) &&

(e.saddr == saddr) &&

(e.sport == sport) &&

(e.daddr == daddr) &&

(e.dport == dport))

return e.sfl;

e.sfl = sfl++;

e.proto-num = proto-num;

e.saddr = saddr; e.sport = sport;

e.daddr = daddr; e.dport = dport;

e.valid = TRUE;

FST[i] = e;

return e.sfl;

}

Figure 7: Security Flow Policy Modules

is able to replay a datagram within the allowable \fresh-

ness" window, the attack will succeed. For wide-area

networks, the \freshness" window may be large (on the

order of minutes) to account for transmission delays and

unsynchronized machines.

Ultimately, complete replay protection can only be

achieved in high-layer protocols. Fortunately, most clients

of datagram services already have some form of replay

protection in terms of built-in sequencing, for dealing

with occasional omission and duplication of datagrams.

7 A Mapping to IP

There has been a lot of controversy regarding the ap-

propriateness of IP security. A complete discussion of

the pros and cons of this debate is (fortunately) beyond

the scope of this paper. Whatever one's view is on IP

security, the mapping in this section is useful for under-

standing FBS. In particular, (1) it provides a concrete

demonstration of how FBS can be applied in practice;

(2) it presents a speci�c security policy that could be of

general interest; (3) it �lls in some implementation de-

tails not covered earlier in the generic description. For

concreteness, we have implemented our IP mapping as

part of the IP code [27] in the 4.4BSD kernel [14].

7.1 Security Flow Policy

At the IP level, host/gateway to host/gateway security

can be easily provided. This can be done by encrypting

all datagrams going from one host/gateway to another.

A more ambitious goal of IP security, however, is to

provide some form of \conversation"-level
8
security. This

clearly can only be an approximation because IP does

not have access to all the necessary system and protocol

information for determining the extent of a conversation.

8Conversation here means a sequence of datagrams belonging

to the same high-level communication. For example, a TCP con-

nection is typically a conversation, and so is a sequence of UDP

datagrams in a whiteboard session.

Strictly speaking, this also violates layering, because it

requires IP to look at information from higher layers.9

A 
ow is de�ned by its s
. To approximate conversation-

level security, we need to allocate s
s such that the same

label is not shared among di�erent conversations. The

challenge is how to detect when a conversation begins

and ends.

In FBS, the extent of a conversation is de�ned by

the FAM. A �rst approximation to a conversation can

be obtained by considering the sequence of datagrams

sharing the same 5-tuple of

< protocol number; source ip address; source port number;

destination ip address; destination port number >

This policy separates di�erent \types" of application

communication into individual 
ows, but fails to cap-

ture the time variant nature (hence ownership changes)

of such communications. Speci�cally, datagrams sent on

the same host-port pairs belonging to di�erent incarna-

tions of high-level communications are classi�ed into the

same 
ow.

To tighten this policy, some element of time should be

introduced. One possibility is encoded in the 
ow state

table (FST) de�nition, mapper and sweeper modules in

Figure 7. This is also the security 
ow policy we have

used in our implementation.
10

We emphasize that these

de�nition and modules are intended as illustrations, and

express a speci�c example policy that we believe captures

our notion of conversation.

The de�nition and modules in Figure 7 should be

fairly self-explanatory. In words, they encode the fol-

lowing security 
ow policy:

9This is not uncommon in security. For example, it is routinely

practiced in packet-level �rewalls. Also, the implementation of

TCP/IP in 4.4BSD already performs this sort of layer violation

for the sake of e�ciency.
10These de�nition and modules do not handle raw IP (including

ICMP and IGMP) packets. For brevity, we do not discuss the issue

of raw IP in this paper. Essentially, raw IP can be considered as

host-level 
ows.

9



a secure 
ow is de�ned as a sequence of data-

grams of the same transport layer protocol

(mostly either TCP or UDP) going from a

port on a host to another port on another

(not necessarily distinct) host such that the

datagrams do not arrive more than THRESHOLD

apart11

This policy nicely separates most of the interactive (e.g.,

TELNET, X-window) and sustained or periodic data trans-

fer (e.g., FTP, NFS) conversation into individual 
ows.

A 
ow under this example policy is orthogonal to a

connection. Speci�cally, a connection may be broken up

into multiple 
ows, and a 
ow may span multiple con-

nections.

An example of the former is a long TELNET session

with large quiet periods. Interestingly, the partitioning of

a long duration conversation into multiple 
ows is better

from a security perspective.

An example of the latter occurs when a process quickly

begins (within a time of THRESHOLD) using a port that was

just freed up by another process. The FAM would fail to

detect the change of conversation and continue to use the

same s
. This can potentially pose a security problem.

Speci�cally, an attacker can recover the encrypted data

sent in a 
ow by (1) recording the datagrams in the 
ow;

(2) reallocating the same port used for the 
ow right af-

ter the original destination principal exited; (3) replaying

the recorded datagrams to itself at this port. FBS would

gladly decrypt the datagrams and hand them to the at-

tacker if they are still \fresh." One way to counter this

problem is to impose a wait of THRESHOLD on port reallo-

cation. This �x is, strictly speaking, outside the scope of

FBS, as it requires changes in the networking code out-

side of FBS (e.g., the in pcballoc function in 4.4BSD

TCP/IP implementation).

7.2 Our Implementation

Crytographic Operations. The CryptoLib library [13] is

used for all cryptographic operations. It includes most of

the commonly used cryptographic primitives, e.g., Di�e-

Hellman key exchange, DES, RSA, MD5, etc. The key

reasons for its choice are its general availability and porta-

bility (Sparc and Intel, Solaris and NT).

When data con�dentiality is desired, we use DES for

encryption and MD5 for MAC computation.
12

Other-

wise, keyed MD5 is used to compute the MAC. The per-

formance numbers for CryptoLib on a Pentium 133 with

512kB L2 cache are: 549kB/s for DES in CBC mode and

7060kB/s for MD5.

FBS Header. For our implementation, the FBS header

�eld sizes are as follow: s
 is 64 bits, confounder is 32

bits, timestamp is 32 bits, and MAC is 128 bits. For DES

encryption, the confounder is �rst duplicated to provide a

11A hash collision can prematurely terminate a 
ow. This does

not a�ect security though. Also, almost no collision is observed

with a reasonable FSTSIZE, e.g., 32 or above.
12For e�ciency, DES could have been used for both encryption

and MAC computation.

64-bit quantity. The timestamp is encoded as the number

of minutes since 00:00 GMT January 1, 1996 GMT. With

32 bits, the timestamp will not wrap around in the next

8000 years.

In our current implementation, the FBS header is

placed in between the normal IPv4 header and the IP

payload. This is unusual but can be understood as a

short-cut form of IP encapsulation. An alternative is to

implement it as an IP option, but the 40 byte maximum

is fairly limiting.

Protocol Code. Our FBS implementation was done

in FreeBSD 2.1.5, a PC-variant of 4.4BSD. The whole

FBS implementation consists of a number of program and

header �les. Most of the FBS protocol processing code is

contained within the �le ip fbs.c. The implementation

mostly follows the pseudo-code presented in Sections 5.2,

5.3 and 7.1 with a few exceptions pointed out below.

On the send side, IP output processing as implemented

in 4.4BSD can be thought of as having three logical parts.

In the �rst part, it performs the bulk of the output pro-

cessing, including options processing and route selection.

In the second part, it fragments the packet, if necessary.

In the last part, it sends the packet(s) out on the interface

chosen in the �rst part. We modi�ed the code to include

a hook to our FBSSend() function between the �rst and

second parts. This allows FBS send processing to be ba-

sically transparent to IP, while receiving the bene�ts of

IP fragmentation and reassembly.

For e�ciency reasons, we have combined the 
ow as-

sociation mechanism and the 
ow key generation. More

speci�cally, FBSSend() hashes on the 5-tuple as described

in Section 7.1 and uses the result as an index into the

TFKC. If the indexed entry is \active" (last use is less

than THRESHOLD ago), it uses the stored 
ow key. Oth-

erwise, it begins a new 
ow by assigning a new s
 and

calculating the new 
ow key. In this way, the mapper

module and the key cache lookup are combined (by com-

bining the FST and the TFKC), thus saving an extra

lookup. The job of the sweeper module also becomes

implicit as it is absorbed into the mapping phase.

After creating the FBS header, FBSSend() inserts it

between the IP and the transport layer headers. It �xes

the IP header to account for the increase in the packet

size. To IP, the FBS header is simply a part of the higher

layer header.13 A forwarding router also will not see any-

thing \strange" about FBS processed IP packets.

Similar to the output processing, IP input process-

ing in 4.4 BSD can also be thought of as having three

logical parts. The �rst part performs the bulk of the in-

put processing except for reassembly. Then, if the packet

is not being forwarded, the second part reassembles the

packet, if necessary. Finally, the third part dispatches it

to the correct higher-layer protocol. The hook to our

FBSReceive() is between the second and third parts.

Thus, as in output processing, FBS receive processing is

basically transparent to IP. The operation of FBSReceive()

is similar to what was described in Section 5.2. It removes

13This is as it should be given that FBS is an end-to-end

protocol.

10



0

2000

4000

6000

8000

10000

64 128 256 512 1024 2048 4096 8192

T
ra

ns
fe

r 
R

at
e 

(in
 K

bi
ts

/s
ec

on
d)

Payload Size (in bytes)

FBS DES+MD5
FBS NOP
GENERIC

(a) ttcp

1

2

4

8

16

32

64

128

256

512

64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M

T
ra

ns
fe

r 
T

im
e 

(in
 s

ec
on

ds
)

File Size (in bytes)

FBS DES+MD5
FBS NOP
GENERIC

(b) rcp

Figure 8: FBS Performance Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 16 64 256 1024 4096 16384 65536

%
 o

f F
lo

w
s

Number of Packets

file server
WWW server

compute server
desktop

(a) Flow Size in Packets

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 64 256 1K 4K 16K 64K 256K 1M

%
 o

f F
lo

w
s

Number of Bytes

file server
WWW server

compute server
desktop

(b) Flow Size in Bytes

Figure 9: Flow Size

the FBS header, performs processing on the header, and

hands the packet back to IP for dispatch. We omit the

details here.

Our implementation required only minor modi�ca-

tions to the rest of the 4.4BSD networking code. In par-

ticular, only three �les had to be changed: ip input.c,

ip output.c, and tcp output.c. Files ip input.c and

ip output.c each required two lines of changes to pro-

vide the hooks to our FBSSend() and FBSReceive() func-

tions. tcp output.c was changed because of a depen-

dency unique to the BSD implementation. Speci�cally,

tcp output(), for the sake of performance, attempts to

calculate exactly how much data it can place in a packet

without triggering fragmentation. It then places exactly

this much data in the packet and sets the DF (Don't

Fragment) 
ag when �lling in the IP header. This breaks

when we insert our FBS header. We modi�ed its calcu-

lation to include the FBS header size.

7.3 Experimental Results

We have performed two types of experiments. The �rst

type measures the raw performance of FBS. The use of

any security protocol will incur a performance penalty.

This provides an idea on the cost of using FBS. The sec-

ond type collects data on 
ow characteristics in a typical

server-based campus LAN environment. This is useful

30%

40%

50%

60%

70%

80%

90%

100%

1 4 16 64 256 1024 4096 16384

%
 o

f F
lo

w
s

Duration (in seconds)

file server
WWW server

compute server
desktop

Figure 10: Flow Duration

for understanding the suitability and general dynamics

of a 
ow-based approach to datagram security.

Setup. Our experimental setup consists of a number of

Pentium 133s with 512 L2 cache running FreeBSD 2.1.5.

For timing measurements, these machines are put on a

dedicated 10M Ethernet segment. We measure through-

put using both ttcp and regular rcp.

For 
ow measurements, we use the Pentium 133s as

network sni�ers (using tcpdump) on our workgroup wide

11



0%

10%

20%

30%

40%

50%

1 4 16 64 256 1024

M
is

s 
R

at
e

Cache Size (in lines)

MKC
TFKC
RFKC

(a) Cache Miss in a File Server

0%

10%

20%

30%

40%

50%

1 4 16 64 256 1024

M
is

s 
R

at
e

Cache Size (in lines)

MKC
TFKC
RFKC

(b) Cache Miss in a Web Server

Figure 11: Cache Miss Results

LAN, which has a number of �le and compute servers

in addition to individual users' desktops. Separately, we

also collected packet-level traces for a lightly hit (about

10,000 hits per day) WWW server. The collected traces

are fed into a number of 
ow simulation programs to gen-

erate the �nal 
ow characteristics. These characteristics

provide an idea on the dynamics of 
ows had every ma-

chine on the LAN implemented FBS and the security 
ow

policy de�ned in Section 7.1.

Results. The timing results are shown in Figure 8. FBS

DES+MD5, FBS NOP, and GENERIC represent respec-

tively FBS with data con�dentiality and MAC compu-

tation, FBS with \nulli�ed" encryption and MAC com-

putation (i.e., both encryption and MAC returns imme-

diately), and regular 4.4BSD IP. As can be seen, FBS

incurs very little overhead outside of the cryptographic

operations, as it should be. A heavy penalty (7,700kb/s

reduced to 3,400kb/s) is paid though when cryptographic

operations are included. The extent of the penalty is

mostly a function of the quality of the crypto implemen-

tation and how it is integrated with the networking code.

To evaluate the e�ectiveness of our 
ow-based ap-

proach for IP security, we consider the following aspects:

(1) Is our approach suitable for IP security? That is,

does our formulation of 
ow-based security match well

with IP? (2) Is our approach feasible for IP security?

That is, can it be applied to IP and achieve reasonable

performance? (3) How should 
ows be de�ned for IP se-

curity? This may be too general to have a single answer.

A more concrete question would be what does the policy

proposed in Section 7.1 capture in our environment?

Due to space limitation, we can not present all the

details of our experimental results. Instead, we will high-

light only a few key observations. We emphasize that

this represents only a preliminary study of 
ow charac-

teristics. We also caution that the 
ow characteristics are

very much dependent on the type of tra�c and network

environment.

To answer (1), consider Figures 9(a){(b) and 10. We

observe that the majority of 
ows are short, consist of few

packets and transfer only a small amount of data. This

strongly argues for the bene�ts of maintaining datagram

semantics. The graphs also show that there are a few

long-lived 
ows (e.g., for NFS) that carry the bulk of the

tra�c. Our approach also correctly captures and handles

these long-lived 
ows with minimal overhead.

0

10

20

30

40

50

60

70

80

90

100

10AM 11AM 12PM 1PM 2PM 3PM 4PM 5PM 6PM

N
um

be
r 

of
 A

ct
iv

e 
F

lo
w

s

Time

file server
WWW server

compute server
desktop

Figure 12: Number of Active Flows

To answer (2), consider Figures 11(a){(b). The cache

miss rate drops o� sharply even with reasonably small

cache sizes. This could indicate a packet train nature of

datagrams in a 
ow. Figure 12 shows that the number

of simultaneous active 
ows in a host are not exceedingly

high, and can be easily handled by a modern operating

system kernel.

To answer (3), consider Figure 13. As THRESHOLD in-

creases from 300s to 600s, it shows the expected increase

in the number of active 
ows, as 
ows are taking longer

to expire. Interestingly though, the policy becomes rel-

atively insensitive to the THRESHOLD value when it gets

higher than 900s. Similarly, Figure 14 shows that the

number of repeated 
ows, i.e., di�erent 
ows with the

same 5-tuple as de�ned in Section 7.1, drops o� quickly

as THRESHOLD increases. One way to interpret this is that

THRESHOLD values of 300s or 600s provide good di�erentia-

tion between 
ows, while maintaining reasonable stability

in the 
ow dynamics (e.g., number of active 
ows).

12



40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

10AM 11AM 12PM 1PM 2PM 3PM 4PM 5PM 6PM

N
um

be
r 

of
 A

ct
iv

e 
F

lo
w

s

Time

Threshold = 300
Threshold = 600
Threshold = 900

Threshold = 1200
Threshold = 1500
Threshold = 1800

Figure 13: Active Flows for Di�erent Thresholds

0%

10%

20%

30%

300 600 900 1200 1500 1800

%
 o

f R
ep

ea
te

d 
F

lo
w

s

Threshold Value (in seconds)

WWW server
file server

compute server
desktop

Figure 14: Repeated Flows

7.4 Comparison with IP Security Work

Strictly speaking, a comparison of FBS with IP security

work is not appropriate. First, FBS is designed for gen-

eral datagram security; it is not speci�cally targeted for

IP. Second, the motivation for the design of FBS is dif-

ferent. FBS is concerned with how to structure secure

communications as much as how the communications are

secured. Most existing IP security work, on the other

hand, focuses only on the protocol and mechanism as-

pects.

If one must compare, there are two key aspects of

FBS: (1) the notion of 
ow-based security and FAM; and

(2) the speci�c protocol and mechanism of FBS. (1) can

be directly applied to most IP security work. It deals

with policy issues and is complementary to protocol and

mechanisms. Speci�cally, the FAM de�nes the unit of

protection that should be enforced by the underlying IP

security mechanism.

For (2), FBS makes use of zero-message keying and

an explicit security 
ow label. SKIP [4] also provides

zero-message keying based on Di�e-Hellman. The key

advantage of FBS is that it provides security based on

the unit of 
ows rather than hosts. This results in im-

proved security because a compromised (
ow) key only

a�ects datagrams within that 
ow | it does not provide

access to the master key which can be used to \unlock"

all datagrams between a pair of hosts. FBS also provides

better performance because key generation need only be

done on a per-
ow basis rather than a per-datagram ba-

sis.

8 Conclusion

The concept of 
ow o�ers a natural way to characterize

network communications. On one hand, a 
ow recognizes

the fact that individual datagrams may be correlated

(e.g., belonging to the same high-level communication).

On the other hand, a 
ow is not subject to the rigid

boundary structure (delimited by explicit setup and tear-

down) of a connection.

The 
exibility of 
ow makes it ideal as a base for de�n-

ing security. Using 
ow as the unifying base, our FBS

protocol is able to marry the bene�ts of a connectionless

scheme (no extraneous message exchange and hard state)

with the e�ciency of a connection-oriented scheme.

Our implementation of the mapping of FBS to IP

demonstrates both the feasibility and suitability of our


ow-based approach for providing security to a datagram

service such as IP.

In some cases, our notion of 
ow coincides with other

notions of 
ow that have been proposed, e.g., QoS 
ows,

while in other cases, it is orthogonal, e.g., 
ows for high-

speed routing. A more thorough study of the relationship

among these di�erent notions of 
ow and the dynamics of

13




ows for di�erent tra�c types and network environments

is needed.

Acknowledgments

We would like to thank Craig Partridge and the anony-

mous referees for their very helpful comments. We are

also grateful to the Distributed Systems Group at Stan-

ford for providing us with access to their systems. Finally,

we thank Scott Miller and the systems sta� at Bell Lab-

oratories for their help in setting up our testbed and

collecting packet traces.

Suvo Mittra was partially supported by a National

Defense Science and Engineering Graduate (NDSEG) Fel-

lowship sponsored by the U.S. Air Force.

References

[1] R. Atkinson. Security Architecture for the Internet Pro-

tocol. RFC 1825, August 1995.

[2] R. Atkinson. IP Authentication Header. RFC 1826, Au-

gust 1995.

[3] R. Atkinson. IP Encapsulating Security Payload (ESP).

RFC 1827, August 1995.

[4] A. Aziz, T. Markson, and H. Prafullchandra. Simple

Key-Management For Internet Protocols (SKIP). Inter-

net Draft, August 14 1996.

[5] S. Bellovin. Problem areas for the IP security protocols.

In Proceedings of 6th USENIX Security Symposium, San

Jose, California, July 22{25 1996.

[6] A. Birrell and B. Nelson. Implementing remote procedure

calls. ACM Transactions on Computer Systems, 2(1):39{

59, February 1984.

[7] L. Blum, M. Blum, and M. Shub. A simple unpredictable

pseudo-random number generator. SIAM Journal on

Computing, 5(2):364{383, 1986.

[8] S. Deering and R. Hinden. Internet Protocol, Version 6

(IPv6) Speci�cation. RFC 1883, December 1995.

[9] W. Di�e and M.E. Hellman. New directions in cryp-

tography. IEEE Transactions on Information Theory,

22(6):644{654, November 1976.

[10] D.E. Eastlake and C.W. Kaufman. Domain Name System

Security Extensions. Internet Draft, August 5 1996.

[11] P. Karn and W.A. Simpson. The Photuris Session Key

Management Protocol. Internet Draft, June 1996.

[12] D. Knuth. The Art of Computer Programming: Volume

2, Seminumerical Algorithms. Addison-Wesley Publish-

ing Company, 2nd edition, 1981.

[13] J.B. Lacy, D.P. Mitchell, and W.M. Schell. CryptoLib:

Cryptography in software. In Proceedings of USENIX

Unix Security Symposium IV, pages 1{17, Santa Clara,

California, October 4{6 1993.

[14] M.K. McKusick, K. Bostic, M.J. Karels, and J.S. Quar-

terman. The Design and Implementation of the 4.4BSD

Operating System. Addison-Wesley Publishing Company,

1996.

[15] National Bureau of Standards, U.S. Department of Com-

merce, Washingtion, D.C. Data Encryption Standard.

FIPS Pub 46, January 15 1977.

[16] National Bureau of Standards, U.S. Department of Com-

merce, Washingtion, D.C. DES Modes of Operations.

FIPS Pub 81, December 1980.

[17] National Institute of Standards, U.S. Department of

Commerce, Washingtion, D.C. Secure Hash Standard.

FIPS Pub 180, April 1993.

[18] H.K. Orman. The OAKLEY Key Determination Proto-

col. Internet Draft, May 1996.

[19] C. Partridge. Using the Flow Label Field in IPv6. RFC

1809, June 14 1995.

[20] L.L. Peterson and B.S. Davie. Computer Networks | A

Systems Approach. Morgan Kaufmann Publishers, 1996.

[21] J. Postel. User Datagram Protocol. RFC 768, August 28

1980.

[22] J. Postel. Internet Protocol: DARPA Internet Program

Protocol Speci�cation. RFC 791, September 1981.

[23] R. Rivest. The MD5 Message-Digest Algorithm. RFC

1321, April 16 1992.

[24] W. Rosenberry, D. Kenny, and G. Fisher. Understanding

DCE. O'Reilley & Associates, Inc., 1992.

[25] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos:

An authentication service for open network systems. In

Proceedings of USENIX Winter Conference, pages 191{

202, Dallas, TX, February 1988.

[26] Sun Microsystems, Inc. Remote Procedure Call Protocol

Speci�cation Version 2. RFC 1057, June 1988.

[27] G.R. Wright and W.R. Stevens. TCP/IP Illustrated,

Volume 2 | The Implementation. Addison-Wesley Pub-

lishing Company, 1995.

[28] CCITT Recommendation

X.509 The Directory|Authentication framework, 1988.

See also ISO/IEC 9594-8, 1989.

[29] L Zhang, S.E. Deering, D. Estrin, S. Shenker, and D. Zap-

pala. RSVP: A new resource ReSerVation Protocol. IEEE

Network Magazine, 9(5), 1993.

14


