
1

A Dynamic Lookup Scheme for Bursty Access
Patterns

Funda Ergun
�

Suvo Mittra
�

Süleyman Cenk Şahinalp
�

Jonathan Sharp
�

Rakesh K. Sinha
�

Abstract—The problem of fast address lookup is crucial to
routing and thus has received considerable attention. Most of
the work in this field has focused on improving the speed of
individual accesses – independent from the underlying access
pattern. Recently, Gupta et al. [7] proposed an efficient data
structure to exploit the bias in access pattern. This technique
achieves faster lookups for more frequently accessed keys while
bounding the worst case lookup time; in fact it is (near) opti-
mal under constraints on worst case performance. However, it
needs to be rebuilt periodically to reflect the changes in access
patterns, which can be inefficient for bursty environments.

In this paper we introduce a new dynamic data structure to ex-
ploit biases in the access pattern which tend to change dynam-
ically. Recent work shows that there are many circumstances
under which access patterns change quickly [11], [12]. Our
data structure, which we call the biased skip list (BSL), has a
self-update mechanism which reflects the changes in the access
patterns efficiently and immediately, without any need for re-
building. It improves throughput while keeping the worst case
access time bounded by that of the fastest (unbiased) schemes.
We demonstrate the practicality of BSL by experiments on data
with varying degrees of burstiness.

I. INTRODUCTION

A fundamental requirement for a router is to de-
cide, upon the arrival of each packet, on which out-
going line to forward the packet, i.e., to compute the
next hop. Given the exponential growth of the Inter-
net, Internet traffic, and the increase in link speeds,
it has become crucial that this decision be made at
extremely high speeds. In traditional IP this deci-
sion is based on the destination address of the packet
received. In this paper, we mainly focus on the IP
lookup problem, where, given a set of prefixes, the
task of a router is to quickly find the longest pre-
fix that matches the destination address of an incom-
ing packet and forward the packet along the outgoing

�
Dept. of EECS, Case Western Reserve University; email:�

afe, cenk, jps17 � @eecs.cwru.edu�
Bell Labs, Murray Hill; email:

�
mittra, rks1 � @research.bell-

labs.com
The authors are listed alphabetically.

Prefix Next hop
* a
0* b

001* c
100* d

Fig. 1. Sample table of prefixes

link associated with that prefix. The destination ad-
dresses are ��� bits long in the current IPv4 standard
and will include 	
��� bits in the next generation IPv6.
Figure I shows an example set of prefixes and the
corresponding next hops. In this example, the desti-
nation address ���
	�� matches the first three prefixes,
but the longest matching prefix is “ ���
	�� ”. 	��
	�� , on
the other hand, only matches “ � ”.

The most commonly used data structure for the
IP lookup problem is the binary trie, a tree where
every edge has a bit label and each prefix is repre-
sented by a path from the root to a leaf. The internal
nodes in a trie can have a single child or two chil-
dren. The search time in a trie is proportional to the
number of bits in the address space and a trie does
not distinguish between high frequency (commonly
occurring) and low frequency (rarely occurring) pre-
fixes; this may result in poor performance especially
for 128 bit IPv6 addresses.

Many data structures have been proposed for im-
proving the performance of tries ([2], [6], [9], [13],
[16]. The majority of this work focuses on intelligent
schemes to minimize expected or worst case lookup
times for individual accesses, independent from the
underlying access pattern. It is conceivable, how-
ever, that one can improve the throughput of a data
structure by tuning it according to lookup biases.

An interesting work by Cheung and McCanne [3]
exploits the bias in access with a trie-based approach
under space limitations. More recently, Gupta et
al. [7] proposed an efficient data structure to exploit
the bias under worst case performance constraints.

2

The main features of this method are, (i) the prefixes
are treated as intervals (ranges) in the address space�
��� ������� ; the number of ranges obtained is shown to

be at most twice the number of prefixes, (ii) access
counts are maintained for ranges over long periods,
(iii) a binary search tree is constructed on the range
set. To guarantee worst case performance, the depth
of the tree is bounded by a user specified parame-
ter. The tree is then optimized according to access
counts under this maximum depth constraint. While
this data structure achieves (near) optimal lookup
time for a given set of data, it assumes relatively sta-
ble access patterns and prefixes; i.e. the addresses
and access probabilities do not change much over
time. In the event of a change in the form of an
addition/removal of an address, or the change of an
access probability, the data structure cannot be eas-
ily modified (this is the case in [3] as well). Instead,
it must be rebuilt from scratch in 	�

����������� time
where � is the number of items. (It is suggested
that one can wait for a number of such changes to
accumulate before reconstructing the tree.) Similar
search times are achieved by [10] at the cost of even
higher reconstruction time.

Contributions. In this paper we present a new
data structure which we call a Biased Skip List,
or BSL. BSL exploits the access probabilities and
achieves a search time similar to the above scheme.
In addition, it allows fast updates, and therefore is
suitable for highly dynamic environments where the
access patterns are bursty and the addresses tend to
change often. It has been observed in many circum-
stances that access patterns do show a highly dy-
namic character, i.e. the “working set” is quite small
and is subject to change, and the access probabili-
ties are not static over long periods of time [11]. In
such circumstances, BSL “adjusts itself” to the new
environment through insertion and deletion of keys
without resorting to reconstruction. The updates can
be in the form of a change to an access probability,
or the insertion/deletion of a prefix. As a result, any
change in the router’s data or address set can be re-
flected in the data structure as soon as it happens,
rather than being accumulated.

BSL is based on the Skip List data structure [14].
Skip lists are simple, randomized data structures
which do not require complex balancing operations.
They are generally regarded as the best performing

search data structure in practice. Skip lists support
	�
���������� time search, insert and delete operations
for uniform access patterns. However, they do not
distinguish between keys in terms of search and up-
date times. BSL improves the Skip List by exploiting
the bias in the access pattern. This is done by ranking
the addresses according to the number of accesses
and partitioning them into dynamic classes based on
their current rank.

We consider two fundamentally important access
patterns, and adapt BSL to each for obtaining effi-
cient solutions.
1. Independently skewed access patterns. Certain
items are accessed more than others but the access
frequencies remain relatively stable over time. This
is the type considered in [7], where an elegant so-
lution is given. We present a variant of BSL which
provides a solution for this case; this gives insight
for our approach for bursty access patterns, which is
our main focus.
2. Bursty access patterns. A few items get “hot”
for short periods of time and are accessed very
frequently. Such patterns have been observed by
a number of studies ([11], [12]) in various appli-
cations. There are a number of data structures
([15], [1]) which are designed to exploit such bi-
ases, however they do not support efficient insertion
and deletion operations within this context. Also,
these data structures perform complex balancing
schemes which hinder their practical performance.
We present a variant of BSL for these patterns which
employs a novel lazy maintenance scheme for fast
and immediate reflection of updates to the access
pattern or to the data structure. Our maintenance
scheme should not be confused with those that do
not reflect updates to the data structure immediately,
but accumulate them to reduce the overhead.

Both variants of BSL require 	�

��� space, and can
be constructed in 	�

��� time when keys are given in
sorted order. The keys are ranked 1 through � ac-
cording to how frequently or recently they have been
accessed. Searching for a key � takes 	�
���������
������
time, where ��
���� denotes the rank of the key. The
novel feature of BSL is that for bursty patterns, it
supports insertions and deletions in 	�
������ �"!�#%$&
������
time, where � !�#'$
���� denotes the maximum rank of �
during its lifespan. Because the maximum rank is � ,
all operations have a worst case bound of 	�
������ ���

3

Range Next hop�
��������� �����
	�� b�
���
	���� ���
	�	�� c�
�
	������ �
	�	�	�� b�
	�������� 	����
	�� d�
	��
	���� 	�	�	�	�� a

Fig. 2. Sample table of ranges

as with skip lists and other efficient data structures –
which is optimal.
Organization of the Paper. In the following sec-
tion, we describe our problem more formally and ex-
plain how BSL works. In Section III we describe
and analyze the cost of construction and search. In
Section IV we investigate dynamic BSL. Section V
presents some experimental results.

II. PRELIMINARIES

The Setup. We are given a set of rules
� �

� �����
	
	
	�����
��
which are in the form of bit strings

corresponding to IP address prefixes, and and an ac-
tion to be taken for a packet that “matches” a given
rule. When multiple prefixes match an address (e.g.,
the destination address on the packet), the rule with
the longest matching prefix is chosen. We represent
the prefixes as non-overlapping intervals in the ad-
dress space, as in [9] and [7]; the number of inter-
vals required is at most twice the number of prefixes.
In Figure II we show the translation of the prefixes
from Figure I into non-overlapping intervals.

Thus, we represent our rule set as ��� ��� keys,
each key consisting of the two endpoints delimiting
the interval. We borrow the process for translating
the prefixes to intervals to be inserted and deleted as
necessary from the above papers and do not go into
the details of this translation. Instead, we concen-
trate on operations on intervals.
Efficiency. Our main concern is throughput; i.e. we
would like to minimize total lookup time over a se-
quence of lookups. In most applications certain pre-
fixes are accessed much more frequently than others,
giving a biased distribution. The distribution may ei-
ther (i) change rapidly, as in the case of end routers to
which connections are short lived but frequent (such
as HTTP), or, (ii) may remain relatively stable as
in the case of backbone routers. Our data structure,

the Biased Skip List, adapts to maximize throughput
once the type of traffic pattern is identified.
Regular Skip List in a Nutshell. A skip list is
a search data structure for � ordered keys [14]. It
allows linear time construction (if keys are given in
sorted order) and logarithmic time search, insert and
delete operations. To construct a skip list, we first
make up level ����� � , which is a sorted linked list of
all of the keys. (for simplicity of notation, through-
out the paper we write ����� � instead of �
����� � ��� .)
Levels
������������ 	 �
	
	
	�� � are built randomly in a
bottom-up fashion as follows. Each level � is a sorted
linked list consisting of a subset of the keys in level
��� 	 obtained as follows: each key in level ��� 	 is
copied to level � independently with probability 	�� � .
Each key has vertical pointers to and from its copies
(if they exist) on adjacent levels. Because there are
����� � levels, we expect to have one key in level 	 .
Note that since the construction is randomized, it
only makes sense to talk about expected values rather
than absolute numbers when talking about the num-
ber of keys.

To search for a key � , we start from the smallest
(leftmost) key in the top level (level 0) . On each
level, we go right until we encounter a key which is
greater than � . We then take a step to the left and
go down one step (which leaves us in a key less than
�). The search ends as soon as � is found, or when,
at the lowest level, a key greater than � is reached.
To delete a key, we perform a search to find its high-
est occurrence in the structure and delete it from ev-
ery level it appears. To insert a new key � , we first
search for � in the data structure to locate the correct
place to insert � in the bottom level. Once the key
is inserted into the bottom level, a fair coin is tossed
to decide whether to copy it to the level above. If
� is indeed copied, the procedure is repeated itera-
tively for the next level, otherwise the insertion is
complete.

III. BIASED SKIP LIST (BSL)

Some characteristics. With regular skip lists, since
searches start at the top level, it takes less time to
search for keys on appearing on higher levels than
those appearing only on lower levels. Since the lo-
cations of keys in the structure are determined com-
pletely randomly, with non-uniform access pattern,
some of the most frequently searched keys may end

4

up at low levels and have long search times, making
the throughput unnecessarily poor. Our data struc-
ture, BSL, maintains the good characteristics of the
skip lists while remedying the above shortcoming by
making sure that keys with smaller ranks (those fre-
quently accessed) are located close to the top of the
data structure, and thus can be quickly accessed.
Interval Search. Even though skip lists are de-
signed to search for exact matches, our task is to
locate an interval containing a given address. Each
key contains two endpoints, representing an interval.
Since the intervals are non-overlapping, we define an
ordering between keys as follows. For keys � ��� , we
say ��� �

if the right (second) endpoint of � is less
than the left (first) endpoint of

�
, implying that all ad-

dresses within � are smaller than those within
�
. An

address can be compared to a a key in a similar way
as well; the address is said to be smaller than a key
if it is less than the key’s left endpoint, and greater if
greater than its right endpoint. The address is said to
match (be equal to) a key if it falls within the key’s
interval. We then make the following observation.

Observation 1: Given the above ordering be-
tween keys and between keys and addresses, it is
possible to treat the keys in a BSL as integers and
perform a range search as an exact search.
The Data Structure. There are � keys, each of
which are assigned distinct ranks

�
	 	
	
	 � � depend-

ing on how often or how recently they have been ac-
cessed. The rank of a key � is denoted by ��
 � � . The
keys are partitioned into classes � �
� � � 	
	
	�� �����
	�� : if
keys
 and � are in classes �
 and �
�� � respectively,
then ��
�
 ��� ��
���� , and the keys in �
 are more “hot”.

BSL has multiple levels; since searches start from
the top levels, keys located higher than others are
accessed faster. Since we would like the keys with
smaller ranks (those in classes with small index) to
be quickly accessible, we place those classes higher
in our data structure. To ensure this, the bottom level
contains all keys. As we go up to the higher lev-
els, some of the keys belonging to higher-numbered
classes are gradually left out (not promoted to the
next level). The intuition is that as we go higher and
higher, the remaining keys tend more and more to
be from the more popular classes with the result that
those keys can be searched faster. A schematic ex-
ample of how classes containing keys of small rank
preserve their initial size and how those containing

keys of large rank get smaller in the upper levels is
illustrated in Figure 3.

�� �� �� ������������ � � � !�!�!�!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!�!�!�!"�"�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�"�" #�##�##�#$�$$�$$�$%�%�%�%�%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%�%�%�%�%&�&�&�&�&�&�&�&�&�&&�&�&�&�&�&�&�&�&�&
'�'�'�'�'�'�'�'�'�'�''�'�'�'�'�'�'�'�'�'�'(�(�(�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�(�(�()�)�)�)�)�))�)�)�)�)�))�)�)�)�)�)*�*�*�*�*�**�*�*�*�*�**�*�*�*�*�* +�++�++�+,�,,�,,�,-�-�-�-�-�-�--�-�-�-�-�-�-.�.�.�.�.�..�.�.�.�.�./�/�//�/�/0�0�00�0�0 1�1�11�1�12�22�2 3�33�33�34�44�44�45�55�55�56�66�66�6

7�77�77�78�88�88�8999
9:::;�;;�;;�;<<<=�==�==�=>
>>

?�?�??�?�?@�@�@@�@�@ A�AA�ABBC�CC�CD�DD�D EEFF G�G�G
G�G�GHH II
I JJJ

C C C C

Level 5

Level 4

Level 3

Level 2

Level 1

C
 5 4 3 2 1

Classes:

Fig. 3. Schematic display of the sizes of classes through
levels of BSL.

We first describe the data structure when the ranks
are static.
Construction. In addition to the main random-
ized data structure described below, BSL maintains
a master list of all the keys in ascending rank order, 1

partitioned into classes � �
� � � 	
	
	�� �����
	�� . The class
sizes are geometric, K���LMK � � L�N � . (2 is not special,
our analysis holds for K�� L K �PO L�N � for any

ORQ 	 .)
BSL is constructed in a randomized way; it con-

tains a sorted doubly linked list of keys for each
level. The levels are labeled, starting at the bottom,
as ST���
	�� � SVU���
	W� N � � ST���
	�� N � �
	
	
	 � S � � STU � � S � , and are
constructed in a bottom-up, randomized fashion as
follows. The bottom level, SV���
	�� , includes all of the
keys in the BSL. To obtain the keys on a level S�UL
we copy from S L � � to S UL , (1) all � L � 	 keys from
classes � L � � L�N ��	
	
	�� � � (by definition all should be
present in S L � �), and (2) a subset of the remain-
ing keys of S L � � picked independently with proba-
bility 	�� � each. (the expected number of these is
� LXN � .) We form S L slightly differently by copying
the following keys from SVUL : (1) all keys from classes� LXN ��� � L�N � 	
	
	�� � � , and (2) a subset of the remain-
ing keys in SVUL picked independently with probability
	�� � each. An example BSL is presented in Figure 4.

When keys are given in sorted order, a BSL can be
constructed in expected linear time.

Lemma 2: A BSL with � keys can be con-
structed in 	�

��� expected time.

Proof: Consider how many times a key is
copied. Each time a randomized decision is made,
the copying probability is 1/2. This process gener-
ates an expected single copy (not counting the orig-Y

This list contains pointers to and from the main data structure
as needed.

5

97

97

97

97

97

97

1

2

3

1

2

3

4

L’

L’

L’

L

L

L

L

Level

 to next level
: Randomly copied

 copied to next level
: Automatically

: Class 4: Class 3: Class 2: Class 1

11

11

11

13

21

24

31

31

31

31

31

34

38

38

54

61

61

68

68

71

77

77

77

84

91

91

91

61

61

61

24

24

2413 38 71 91

61

61

Fig. 4. BSL and its levels. For simplicity, only the left endpoints of the keys are shown.

inal) of each key subjected to it; the expected total
for randomly made copies is 	�

��� . Now consider
the automatically made copies. None of the

� �
	 � � � keys in �����
	W� are automatically copied. The

� � 	 � ��� keys in �����
	W� N � are automatically copied
to two levels. The keys in �����
	�� N � are copied to four
levels. In general, the keys in �����
	W� N�� are copied
to ��� levels. Summing all automatic copies for each
key in each class, we find a total of 	�

��� copies;
adding the expected 	�

��� randomized copies, the
expected total copying (thus construction) time is
	�

��� .
Search. Searching for a match for an address � in
a BSL is similar to searching in a regular skip list.
We start from the smallest (leftmost) key in the top
level. On each level, we follow the linked list to the
right until we encounter a key which is greater than
� . Then we take a step back (left) and go down one
level in constant time using vertical pointers, (ending
up on a key less than �). We end the search when we
locate an interval containing � .

The following theorem analyzes the search time.
Recall that ��
���� is the rank of key � .

Theorem 3: A search for an address matched
by a key � in a BSL of � keys takes 	�
������ ��
������
expected time.

Proof: To bound the total search time, we
bound the number of horizontal and vertical links
that we traverse. Consider searching for a key �
which belongs to class ��� , with 	 � ����� ��
���� � 	 . By
construction, all of the keys in � � are present on levelS U � , which is �
	 � 	 steps down from the top, which
bounds the vertical distance that we travel. Let us

now consider the horizontal links that we traverse
on each level. The top level has an expected sin-
gle key, thus we traverse at most 2 links. Now let
our current level be S ! (resp. STU!). We must have
come down from level S U! N � (resp. S�!), following
a vertical link on some key � . Let � be the key im-
mediately following � on the level above, i.e. S U! N �
(resp. S !). Then, it must be that � � � �
� (re-
call the ordering between intervals). Thus, on the
current level, we need to go right at most until we
hit a copy of � . The number of links that we tra-
verse on the current level is then at most 1 plus the
number of keys between � and � . Note that these
keys do not exist on the level above, even though �
and � do. The problem then is to determine the ex-
pected number of keys between � and � on this level.
In a scheme with no automatic copying (all copying
is random with probability 1/2), given two adjacent
keys on some level � , the expected number of keys
between them on the level below (not copied to �) is
1. This is because, due to the 1/2 probability, one
expects on the average to “skip” (not copy upwards)
one key for each that one does copy. In our scheme,
some keys get copied automatically; therefore, we
are less likely to see skipped keys. Thus, in our case,
one would expect to see fewer than 1 uncopied key
between two copied keys. The expected number of
horizontal links that we travel on the current level
between � and � then is at most 2. 2 Since we visit
at most �
	 � 	 levels, traversing an expected 2 links
on each level, the total (expected) running time is
�
In fact, on the average we expect to go only halfway between� and � before going down; for simplicity we ignore this subtlety.

6

	�
 	 � � 	�
���������
������ .
IV. DYNAMIC BSL

BSL as described above performs well on
searches, however, the fact that keys with small rank
have many copies makes insertions problematic. For
instance, when we insert a key with rank 1 (which
will be the case later for our bursty pattern), we need
to make 	�
������ ��� copies of the key that we are in-
serting, one per level. If we know that the key will
always stay close to the top of the structure, it is
wasteful to copy it all the way to the bottom. The
culprit for this problem is the fact that all elements
are present at the bottom, for the sake of simplicity.
To improve BSL, we propose that elements in class� L not be present in all the levels below S�UL , but be
randomly copied down for only a few levels. (Not
copying down from S UL at all causes gaps which af-
fect efficiency.) This improves the time, as well as
the space efficiency of the data structure.

We show below how to incorporate the above
changes into BSL so that these updates can be per-
formed efficiently. We call this variant of the data
structure a dynamic BSL.
Construction. A fundamental difference between
the dynamic and the static BSL is in how each of
the levels are constructed. In dynamic BSL there is
no automatic copying of keys to an upper level. To
construct the dynamic BSL we start with the bottom-
most level SV���
	W� and make our way up. Level SV���
	��
is made up of all the keys that belong to class � ���
	W� .
For � � ����� � , an upper level S UL is constructed from
level S L � � by choosing and copying keys from levelSTL � � independently with probability 	�� � . In addi-
tion to those copied from below, S UL includes all keys
in class ��L ; these are called the default keys of S�UL . To
facilitate efficient search some of the default keys ofSTUL are chosen and copied to the lower level S L � � in-
dependently with probability 	�� � . Each key copied
to level S L � � may further be copied to lower lev-
els SVUL � � � STL � � � STUL � � �
	
	
	 using the same randomized
process. Once we have level S UL , we construct levelS L by simply choosing and copying keys from levelS UL independently with probability 	�� � for each key.
For an example of a dynamic BSL see Figure 5.

We now show that the construction time for the
dynamic BSL is the same as the static version.

Lemma 4: A dynamic BSL with � keys can be

constructed in 	�

��� expected time.
Proof: The expected number of keys on each

level is bounded by that in the static BSL. In static
BSL, level SVUL contains all keys in classes � � through� L , which number 	�
MK�� L K � . S L contains (an ex-
pected) half of those. Thus, S L and SVUL contain 	�
 � L �
keys.

Let us look at the cost per level. S�UL is formed fromSTL � � and Class ��L in time 	�
MK���LMK � . SVL is formed
from S UL in time 	 K�� L K . The only other cost is for
copying down the default keys of S�UL . The expected
number of times that a key will be copied down is
just under 1. Thus, the expected number of copies
from ��L below SVUL is 	�
MK���L K � . To copy a key � down,
we go to its left neighbor on the same level, and keep
going left until we find a down link, which we take.
Then, we go right until we come to a key greater than
� and insert � before it. The expected number of left
steps is less than 2, because the probability that a
key on this level will not exist on the previous level
is less than 1/2. Likewise, the expected number of
right steps is less than 2. Thus, we spend 	�
 	 � time
per copy, and 	�
MK�� L K � time for the entire � L . The
costs associated with S UL and S L add up to 	�
MK�� L K � ;
summing over � we get 	�

��� .
Search. To search for an interval matching an ad-
dress � in a dynamic BSL we start from the leftmost
key in the top level. As in the static BSL, we fol-
low the linked list to the right until we encounter a
key greater than � . We then take a step to the left,
and attempt to go down one level. However, it is
possible that a down pointer may not exist from our
current location. In that case, we go left until we hit
a key � from which we can go down, 3 follow the link
down, and repeat, starting from the copy of � at that
level. When we encounter an interval (a key) which
matches � , we return the key as the search result.
Rank Assignment. When a key is accessed
(through search/insertion/deletion), its rank, along
with the ranks of some of the other keys, changes
according to a rank assignment policy. We focus on
two rank assignment policies, each suitable for han-
dling one of the two types of commonly observed
access patterns mentioned in Section I.

1. Most Frequently Accessed (MFA) policy is de-

�

Remember that a key on this level does not necessarily have
a copy one level below.

7

1

2

3

1

2

3

4

L’

L’

L’

L

L

L

L

Level

: Randomly copied
 copied to next level

: Class 4: Class 3: Class 2: Class 1

97

97

 to previous level
: Randomly

11

11

11

13

21

24

31

31

31

31

34

38

38

54

61

61

68

68

71

77

77

77

84

91

91

91

24

38

61

61

13 31

24

Fig. 5. Dynamic BSL. Only the left endpoints of the keys are shown.

signed for independently skewed access patterns,
where the rank of key � reflects how many times it
has been accessed. The number of accesses is de-
noted by

�
���� . Thus, if
�
 � � Q �
 � � for two keys

� ��� , then ��
 � ��� ��
 � � .
2. Most Recently Accessed (MRA) policy is de-
signed for bursty access patterns, which are our main
focus. In this policy the rank of a key � is the number
of unique keys accessed since the last access to � .
The next two sections describe how BSL implements
these policies.

A. BSL for MFA

In this section we show how dynamic BSL can
self-adjust to the slight change in the access pattern
after each search. An elegant solution is provided
for this problem in [7]; our running times are sim-
ilar. Our main goal is to present a simpler variant
of dynamic BSL in this section as a motivation for
the variant that we will use in the next section for
our main focus area, bursty access patterns. The dy-
namic data structure that we use in this section is
self-adjusting; after each search, if necessary, it read-
justs the ranks to reflect the new access statistics. In-
sertions and deletions must also leave the class sizes
intact.
Search. To comply with the MFA policy, BSL may
need to update the rank (and possibly the class) of
a key � after it is accessed due to a search. We use
the rank ordered master list of all keys in the BSL
to check, once the access count of � is incremented,
whether the new count is more than that of the key
ranked ��
���� � 	 . If so, then the rank of � is changed

and � is moved to its new rank position in the list. 4

Let ��L be the class of � before it was accessed.
Once the new rank of � is determined, we need to
check whether � has now moved to class � L�N � . If so,
we need to assign S UL�N � as the default level of � and
shift the bottommost and topmost levels of � up by �
by manipulating the pointers to and from the copies
of � on the levels involved. Once � moves up to
class � L�N � , another key � from � L�N � is moved down
to � L to preserve the class sizes. We need to change
the default level of � and push down the topmost and
bottommost levels of � by two as well.

Theorem 5: In the MFA implementation of
BSL with � keys, search for an address matched by
key � takes 	�
������ ��
������ expected time.

Proof: To bound the number of vertical
steps taken during the search, note that � will be
	�
���������
������ steps down from the top as a default
key on that level. Following the arguments for static
BSL, in each level the expected number of right steps
that we take until we reach a key greater than � is at
most 3. We might, however, need to go left to find
a key from which we can go down. Again, the ex-
pected number of left steps that we need to take is
less than 2 with an analogous argument, this time
considering downward copies. Therefore, the ex-
pected number of horizontal steps per level is 	�
 	 � ,
and the whole search takes 	�
���������
������ time.
Insertion/deletion Since MFA is not our main focus,
�
If there are multiple keys with access counts same as the key

ranked �������
	�� , we need to move � a few steps in the linked
list. This can be done in
������ time by grouping each set of keys
with the same access count in a separate linked list.

8

we skip the details of insertion and deletion, as well
as the proof of their running time. We mention very
briefly how they are performed and give a theorem
stating their complexity.

When inserting a key � to BSL, it is assigned rank
� � 	 according to the MFA policy, and therefore
needs to be inserted at the bottom of the structure. If
� � ��� � 	 for some integer

�
, then it means class�����
	�� is full, and we need to establish a new class�����
	�� � � with � as its sole member. To do this, we

create two levels S U���
	W� and ST���
	�� � � and simply in-
sert � in level S����
	W� � � . For promoting � to upper
levels, we again use the independent random process
(fair coin) with probability 	�� � .

To delete key � , we first identify its location in
BSL, then delete all of its copies from the BSL as
well as from the master list. This changes the ranks
of keys with rank greater than ��
���� . We update the
default levels of all keys whose classes change –
there can be at most ������� of them – by pushing their
top- and bottommost levels up by two.

The proof of the theorem below is left out for
space considerations; it can be accessed at [8].

Theorem 6: In the MFA implementation of
BSL with � keys, insertions and deletions can be
done in 	�
������ ��� expected time.

B. Most recently accessed (MRA)

This scheme, to be used with highly burst access
patterns, is our main focus. The versions of BSL
that we have described so far handle insertions and
deletions in 	�
������ ��� time. This is good enough for
keys that remain in the data structure for a long time,
but in many applications, the majority of the keys
have very short lifespans. Once inserted, these keys
are rapidly accessed a few times, then deleted after
a short period. As a result, their MRA ranks always
remain close to 	 . In such applications, insertion and
deletion of such hot keys are the main bottleneck.

To facilitate more efficient implementation of in-
sertions and deletions, we employ a lazy updating
scheme of levels and allow flexibility in class sizes.
The size of a class � L is allowed to be in the range

 � L�N � �
	
	
	�� � L � 	 � ; recall that the default size of � L
is � LXN � . The lazy updating allows us to postpone up-
dates until the size of a level becomes too large or
too small.

Example: Let the number of elements in classes

� ��� � � �
	
	
	�� ��� be 	 � � � � � � � 	�� respectively (the de-
fault sizes). A sequence of eight insertions would
respectively yield the following class sizes.

1 1 1 1 1 1 1 1 1
2 3 2 3 2 3 2 3 2
4 4 6 6 4 4 6 6 4
8 8 8 8 12 12 12 12 8

16 16 16 16 16 16 16 16 24

Observe that the effects of most insertions and dele-
tions are confined to upper levels. As a result, the in-
sertion or deletion of a key � takes 	�
������ �"!�#%$&
������
time, where � !�#'$&
���� is the maximum rank of key �
in its lifespan.
Search. In accordance with the MRA policy, when
a key � is searched for, its rank becomes 	 and the
ranks of all keys whose rank were smaller are incre-
mented by one. The rank changes are reflected in the
BSL as described for MFA. Although the class sizes
are not rigid, to make the analysis simple, we main-
tain the class sizes after a search without affecting
the overall cost. 5

Lemma 7: In the MRA implementation of BSL
with � keys, search for a key � takes 	�
���������
������
expected time.

Proof: We follow the same lines as the dy-
namic BSL for MFA with a slight difference in level
sizes. In this model, the size of a class is always
at least half its default size. Thus, the height of the
BSL is at most 2 plus its “ideal” height with the de-
fault class sizes. The expected number of horizon-
tal steps per level during search is still 	�
 	 � using
the same argument as the MFA. Since we go down
	�
���������
������ steps for a search the lemma follows.
Insertion/deletion. When a key � is inserted into
the BSL it is assigned a rank of 	 and the ranks of
all keys in the data structure are incremented by one.
After an insertion, if the size of a class � L reaches
its upper limit of � L , then half of the keys in � L with
the largest rank change their default level from S UL toSTUL � � . This is done by moving the topmost and bot-
tommost levels of each such key by two as described
for the MFA implementation. One can observe that
such an operation can be very costly; for instance, if
�
This is possible by shifting the largest ranked key down by

one class for all the classes numbered lower that the initial class
of � ; � is moved to the top class.

9

all classes � � � � � �
	
	
	 � ��� are full, an insertion will
change the default levels of 1 key in class � � , 2 keys
in class � � , and in general � L�N � keys from class � L .
However a tighter amortized analysis is possible by
charging more costly insertions to less costly ones.
The amortized analysis gives the average insertion
time for a key � as 	�
������ � !�#%$�
������ , where � ! #'$&
����
denotes the maximum rank of � in its lifespan.

To delete a key � , we first search for it in the BSL,
which changes its rank to 	 and then we delete it
from all the levels where it has copies. If the num-
ber of keys in class � L after the deletion is above its
lower limit of � LXN � then we stop. Otherwise, we go
to the next class � L � � and move its lowest ranked
� L�N � keys to class � L by moving their default levels
upwards by two. We continue this process until all
levels have a legal number of keys. As in insertion it
is possible to do amortizations to show that the aver-
age deletion time for a key � is 	�
�������� !�#%$�
������ .

The proof for the theorem below stating these run-
ning times is presented in the full version of the pa-
per; it can be accessed at [8].

Theorem 8: The MRA implementation of BSL
facilitates insertion or deletion of a key � in amor-
tized 	�
������ � !�#%$&
������ time, where � !�#%$&
���� is the
maximum rank of key � in its lifespan.

In bursty patterns, when a key is hot, it is accessed
a large number of times rapidly. This means that,
according to the MRA scheme, the key maintains a
small rank compared to the number of keys in the
data structure. Thus, having the running times de-
pend on the rank rather than the total number of keys
yields significant gains.

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of BSL
in practice we provide a comparative experimen-
tal study that involves implementations of BSL and
other data structures on both real traces and simu-
lated data with varying biases.

Our experiments on simulated data compare
search times when the keys are accessed with a ge-
ometric distribution on MRA ranks. At each stap of
the simulation, a key � with rank ��
���� was accessed
with probability

�
���� � ���
�
��

 	 � � � , where � is the

bias parameter. By varying � we changed the aver-
age rank of the keys that are accessed and hence sim-
ulated the “hot” working set phenomenon observed

in packet traces [4], [12]. It was noticed in many
contexts [11], [12] that the probability of accessing a
key drops exponentially with the time the key is kept
inactive; thus geometric distribution provides appro-
priate means for modeling the bias in bursty patterns.

Our analysis using real data uses the publicly
available LBL trace data [5]. This trace contains 	 	 �
million TCP packets flowing between the Lawrence
Berkeley Labs and the rest of the Internet.

There are a number of parameters which affect the
practical performance of a BSL implementation. For
example, the size of the topmost class � � can be
tuned to capture the bias in the data for “optimizing”
BSL’s performance. Figure 6 shows how the size
of class � � affects the search times for accesses fol-
lowing geometric distributions with different � val-
ues. An interesting observation is that with increas-
ing bias (i.e. the average rank of the searched keys),
the optimal size for class � � increases. For exam-
ple, when the average rank is 	�� the optimal size of� � becomes 	�� , when the average rank is increased
to 	�� � � 	���� the optimal size of � � increases to
	���� � �	� � .

0

100

200

300

400

500

600

700

2 4 6 8 10

T
im

e

Log |C1|

average rank 10
average rank 40

average rank 100

Fig. 6. Search times for different class 1 sizes –
���

searches on 98K keys

The summary of our experiments on simulated
data with geometric access distribution on MRA
ranks is provided in Figure 7. 6 Here we compare
performance of several variants of BSL with that of
regular skip lists7 and a simple move-to-front (MTF)
�
We performed our experiments on a desktop PC with

400MHz Pentium II microprocessor.�
The implementation we use was written by William Pugh and

is available at
ftp://ftp.cs.umd.edu/pub/skipLists/

10

linked list implementation. The choice of these data
structures for our experiments is clear. On unbiased
or slightly biased data, the regular skip list is consid-
ered to be the best performing search data structure.
Thus, it provides excellent means to measure the per-
formance of BSL on data with low bias. An MTF
list, on the other hand, is a very simple data struc-
ture which provides the best performance on highly
biased data. Although it has a worst case search per-
formance of 	�

��� (which is unacceptable for many
applications), it provides a very good benchmark on
how well BSL evaluates on highly biased distribu-
tions.

The first observation we make is that the BSL
implementations consistently outperform the regular
skip lists on all bias figures we tested. This shows
that the added complexity in maintaining multiple
classes in BSL is more than compensated by the
gains in efficiency due to the exploitation of bias. Al-
though it is conceivable that skip lists may perform
slightly better than BSL on even lower biases than
we tested, we can safely predict that for all biases of
practical interest BSL is a favorable choice.

Another observation is that BSL implementations
outperform the MTF lists by at least one order of
magnitude when the bias is low. However MTF lists
perform better with high bias. Although this phe-
nomenon is partially due to the simplicity of MTF
lists we suspected that an even bigger factor is the
cache effects: while running BSL or the regular skip
list implementation, it is expected that the caches
need to keep some of the intermediate nodes that
are encountered during the searches, losing valuable
space; this is not the case for MTF lists. To check our
hypothesis and also see how well BSL would com-
pare to MTF lists in next generation architectures,
where it would be possible to place the whole data
structure in an on-chip memory, we tested both BSL
and MTF list implementations on the same data after
disabling caches. Results of this test are summarized
in Figure 8, where one can observe that BSL catches
up with the performance of move-to-front lists much
earlier. Yet, the initial gains of MTF lists give the
idea that it can be combined with BSL in a hybrid
scheme where a short MTF list can act as an initial
filter before a search is forwarded to BSL; we imple-
mented and used such a hybrid data structure in our
tests.

Three different BSL data structures were included
in our experiments. One uses � for the size of class� � and another used a size of � 	
� . We see that set-
ting K�� � K � � works well for highly biased data,
but the overhead of maintaining small classes gives
worse performance for accesses with smaller biases.
Using K�� � K � � 	
� gives better performance over a
larger range and shows improvement over regular
skip lists beyond a working set size of 500. The per-
formance of a hybrid scheme where keys are initially
searched in a move-to-front linked list can also be
found in the plots. We used a list of 50 keys before
resorting to regular BSL with � 	
� keys in � � .

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450 500

T
im

e

Average rank

BSL with initial mtf
mtf list

BSL |C1|=8
BSL |C1|=512

skip list

Fig. 7. Search times on geometrically distributed data
with varying biases; a total of
��
 searches were per-
formed on
 ��� K keys.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300 350 400 450 500

T
im

e

Average rank

mtf list
BSL

Fig. 8. Comparison of BSL (� �����	� �
) and MTF list per-

formances with disabled caches on geometrically dis-
tributed data; a total of
 ��
 searches were performed
on

���
K keys.

Our final experiments compare the data structures
mentioned above using the LBL trace data. For ease

11

Data Structure Time (secs)
Skip List 4.4
MTF List 1.97
BSL K�� � K � � 7.23
BSL K�� � K � � 	
� 5.87
BSL+mtf(length 50) K�� � K � � 	
� 3.3
BSL+mtf(length 256) K�� � K � � ��� � 2.61

TABLE I
Running times for the LBL trace data.

of implementation the flows are initially identified
and mapped to a unique integer key in a preprocess-
ing phase. Since the LBL trace data already uses
modified IP addresses for privacy reasons and the
data structures in question should not be effected by
the values of the keys this should not change the re-
sults of the test. The trace uses about 1.8 million
packets and includes about 15 thousand insert op-
erations. The timing results of the data structures
considered in our study on the LBL data are summa-
rized in table I, which are again quite favorable for
(hybrid) BSL implementations.

VI. DISCUSSION AND FUTURE WORK

We present BSL, a dynamic lookup data structure
which exploits the bias in access patterns to provide
faster lookup. In addition to supporting fast lookups
for more commonly accessed keys, BSL adapts to
changes in the access pattern without the need for an
explicit and costly reconstruction. An interesting fu-
ture direction is to make the solution more general
so that it can handle multiple fields in the form of
prefixes and ranges. Such a data structure is highly
desirable in various Layer 4 classification/filtering
applications where lookups may involve other fields
such as source address, port number, TCP flags, etc.,
and we need to find the best matching rule for these
fields. The results presented here naturally extend to
packet classification with one field specified as a pre-
fix (source or destination address), or a range (port
number), and all the remaining fields specified ex-
actly. This is achieved by the concatenation of the
fields within a single key. Firewall specifications are
usually compatible with this format. It remains a
highly interesting open question to extend our result
to the general packet classification/filtering problems

where burstiness may result in higher gains in perfor-
mance.

REFERENCES

[1] S. Bent, D. Sleator, and R. Tarjan. Biased search trees.
SIAM Journal of Computing, 14, 1985.

[2] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink.
Small forwarding tables for fast routing lookups. In Proc.
ACM SIGCOMM, 1997.

[3] G. Cheung and S. McCanne. Optimal routing table design
for IP address lookups under memory constraints. In IEEE
INFOCOM, 1999.

[4] K.C. Claffy, H.W.Braun, and G.C.Polyzos. A parame-
terizable methodology for internet traffic flow profiling.
In IEEE Journal on Selected Areas in Communications,
1995.

[5] LBL-TCP-3 Trace Data.
http://ita.ee.lbl.gov/html/contrib/lbl-tcp-3.html.

[6] P. Gupta, S. Lin, and N. McKeown. Routing lookups in
hardware at memory access speeds. In Proc. IEEE INFO-
COM, 1998.

[7] P. Gupta, B. Prabhakar, and S. Boyd. Near-optimal routing
lookups with bounded worst case performance. In Proc.
IEEE Infocom, 2000.

[8] http://vorlon.cwru.edu/ � cenk.
[9] B. Lampson, V. Srinivasan, and G. Varghese. IP lookups

using multiway and multicolumn search. In Proc. IEEE
Infocom, 1998.

[10] L. Larmore and T. Przytycka. A fast algorithm for optimal
height-limited alphabetic binary trees. SIAM J. on Com-
puting, 1994.

[11] S. Lin and N. McKeown. A simulation study of IP switch-
ing. In Proc. ACM SIGCOMM, 1997.

[12] Suvo Mittra and Anindya Basu. Packet classification: An
argument for a working set model. Technical report, 1999.

[13] S. Nilsson and G. Karlsson. Fast address look-up for inter-
net routers. In Proc. IEEE Broadband Communications,
1998.

[14] W. Pugh. Skip lists: a probabilistic alternative to balanced
trees. Comm. of the ACM, 33,6, 1990.

[15] D. Sleator and R. Tarjan. Self-adjusting binary search
trees. Journal of the ACM, 32, 1985.

[16] V. Srinivasan and G. Varghese. Faster IP lookups using
controlled prefix expansion. In In Proc. ACM Sigmetrics,
1998.

