
MODELS AND ALGORITHMS FOR DATA PRIVACY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Krishnaram Kenthapadi

September 2006

c© Copyright by Krishnaram Kenthapadi 2006

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Rajeev Motwani Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Dan Boneh

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Nina Mishra

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

Over the last twenty years, there has been a tremendous growth in the amount of private data

collected about individuals. With the rapid growth in database, networking, and computing

technologies, such data can be integrated and analyzed digitally. On the one hand, this has

led to the development of data mining tools that aim to infer useful trends from this data.

But, on the other hand, easy access to personal data poses a threat to individual privacy. In

this thesis, we provide models and algorithms for protecting the privacy of individuals in

such large data sets while still allowing users to mine useful trends and statistics.

We focus on the problem of statistical disclosure control – revealing aggregate statistics

about a population while preserving the privacy of individuals. A statistical database can

be viewed as a table containing personal records, where the rows correspond to individuals

and the columns correspond to different attributes. For example, a medical database may

contain attributes such as name, social security number, address, age, gender, ethnicity, and

medical history for each patient. We would like the medical researchers to have some form

of access to this database so as to learn trends such as correlation between age and heart

disease, while maintaining individual privacy. There are broadly two frameworks for pro-

tecting privacy in statistical databases. In the interactive framework, the user (researcher)

queries the database through a privacy mechanism, which may deny the query or alter

the answer to the query in order to ensure privacy. In the non-interactive framework, the

original database is first sanitized so as to preserve privacy and then the modified version

is released. We study methods under both these frameworks as each method is useful in

different contexts.

The first part of the thesis focuses on the interactive framework and provides models

and algorithms for two methods used in this framework. We first consider the online query

v

auditing problem: given a sequence of queries that have already been posed about the

data, their corresponding answers and given a new query, deny the answer if privacy can

be breached or give the true answer otherwise. We uncover the fundamental problem that

query denials leak information. As this problem was overlooked in previous work, some of

the previously suggested auditors can be used by an attacker to compromise the privacy of a

large fraction of the individuals in the data. To overcome this problem, we introduce a new

model called simulatable auditing where query denials provably do not leak information.

We also describe a probabilistic notion of (partial) compromise, in order to overcome the

known limitations of the existing privacy definition. We then present simulatable auditing

algorithms under both these definitions. The second problem we consider is output pertur-

bation, in which the database administrator computes exact answer to the query and then

outputs a perturbed answer (by adding random noise) as the response to the query. Inspired

by the desire to enable individuals to retain control over their information, we provide a

fault-tolerant distributed implementation of output perturbation schemes, thereby eliminat-

ing the need for a trusted database administrator. In the process, we provide protocols for

the cooperative generation of shares of random noise according to different distributions.

The second part of the thesis focuses on the non-interactive framework and considers

two anonymization methods for publishing data for analysis from a table containing per-

sonal records. We consider the k-Anonymity model proposed by Samarati and Sweeney,

and present approximation algorithms for anonymizing databases. Then we propose a new

method for anonymizing data records, where the data records are clustered and then cluster

centers are published. To ensure privacy of the data records, we impose the constraint that

each cluster must contain no fewer than a pre-specified number of data records. We provide

approximation algorithms to come up with such a clustering.

vi

Acknowledgements

I owe my foremost gratitude to my advisor, Rajeev Motwani for providing tremendous

guidance and support over the last five years. He has always been a source of inspiration

and motivation for me. He has excellent insight at suggesting research problems that are

well-motivated and also theoretically challenging. My interactions with him have greatly

shaped my perspectives about research. I am especially thankful for his support and en-

couragement during the initial stage of my PhD program.

I would like to thank my professors at the Indian Institute of Technology, Madras for

providing me an excellent undergraduate education. In particular, I thank my undergraduate

advisor, C. Pandu Rangan for motivating me to pursue research in the area of algorithms.

I am grateful to Nina Mishra for being a wonderful mentor and collaborator over these

years. I thank Hector Garcia-Molina for providing valuable inputs on various topics such

as choosing research problems, giving effective talks, and job search. I would like to thank

my reading committee members: Rajeev Motwani, Dan Boneh, and Nina Mishra and other

members on my orals committee: Hector Garcia-Molina and Amin Saberi. I also wish to

thank my other mentors: Kobbi Nissim and Cynthia Dwork.

I thank my officemates over the years, Dilys, Gurmeet, and Rina, for the lively discus-

sions we had over a variety of topics. I would also like to thank Shubha, Gagan, Ying,

Sergei, An, Brian, David, Mayur, Utkarsh, Adam, Anupam, Sriram, Ilya, Satish, Vijay,

Prasanna, Mayank, Arvind, and all other colleagues who provided a wonderful academic

environment at Stanford. I would like to thank Kathi DiTommaso for all the help and feed-

back she provided from time to time on the progress of the PhD program. I am thankful to

the theory admins, Lynda, Maggie, and Wendy for helping me on numerous occasions and

for making the theory wing feel like a community.

vii

I thank all my friends, especially my roommate for the last four years, Bhaskaran, for

making Stanford life such a great experience. Irrespective of whether they are nearby or

far away, they have made my life so colorful.

Above all, I thank my parents and brother Venkatesh who have always been very un-

derstanding and encouraging, showering unconditional love and affection upon me all the

time. My gratitude to them is beyond expression.

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Frameworks for Protecting Privacy . 2

1.1.1 Relative Merits of Different Privacy Techniques 3

1.2 Privacy Protection in the Interactive Framework 4

1.2.1 Query Auditing . 4

1.2.2 Output Perturbation . 5

1.3 Privacy Protection in the Non-interactive Framework 6

1.3.1 K-Anonymity . 6

1.3.2 Anonymity via Clustering . 7

I Privacy Protection in the Interactive Framework 9

2 Privacy-preserving Auditing Algorithms 11

2.1 Contributions . 12

2.2 Related Work . 14

2.2.1 Online Auditing . 15

2.2.2 Offline Auditing . 15

2.3 Examples where Denials Leak Information 16

2.3.1 max Auditing Breach . 17

ix

2.3.2 Boolean Auditing Breach . 18

2.3.3 SQL Queries . 19

2.4 Simulatable Auditing . 20

2.4.1 A Formal Definition of Simulatable Auditing 20

2.4.2 A Perspective on Auditing . 21

2.4.3 A General Approach for Constructing Simulatable Auditors 23

2.5 Simulatable Auditing Algorithms, Classical Compromise 24

2.5.1 Simulatable Auditing of sum Queries 24

2.5.2 Simulatable Auditing of max Queries 24

2.5.3 Improving the Running Time of the max Simulatable Auditor . . . 28

2.5.4 Utility of max Simulatable Auditor vs. Monitoring 31

2.6 Probabilistic Compromise . 32

2.6.1 Privacy Definition . 32

2.6.2 Evaluating the Predicate AllSafeλ,β 34

2.7 Simulatable sum Auditing, Probabilistic Compromise 35

2.7.1 Properties of Logconcave Distributions 36

2.7.2 Estimating the Predicate AllSafeλ,β using Sampling 37

2.7.3 Constructing the Simulatable Auditor 41

2.7.4 Running Time . 43

2.8 Summary and Future Work . 43

2.9 Miscellaneous Technical Details . 45

2.9.1 Proof of Lemma 2.6.1 . 45

2.9.2 Proof of Claim 2.7.3 . 46

3 Distributed Output Perturbation 48

3.1 Cryptographic and Other Tools . 51

3.1.1 Math for Gaussians and Binomials 55

3.1.2 Adaptive Query Sequences . 57

3.2 Generating Gaussian Noise . 58

3.3 Generating Exponential Noise . 60

3.3.1 Poisson Noise: The Details . 62

x

3.3.2 Implementation Details: Finite Resources 63

3.3.3 A Circuit for Flipping Many Biased Coins 64

3.3.4 Probabilistic Constructions with Better Bounds 66

3.4 Generalizations . 68

3.4.1 Alternatives to Full Participation 69

3.4.2 When f is Not a Predicate . 69

3.4.3 Beyond Sums . 69

3.4.4 Individualized Privacy Policies . 70

3.5 Summary . 70

II Privacy Protection in the Non-interactive Framework 73

4 K-Anonymity 75

4.1 Model and Results . 77

4.2 NP-hardness of k-Anonymity . 79

4.3 Algorithm for General k-Anonymity . 82

4.3.1 Algorithm for Producing a Forest with Trees of Size at least k . . . 84

4.3.2 Algorithm to Decompose Large Components into Smaller Ones . . 85

4.4 Algorithm for 2-Anonymity . 88

4.5 Algorithm for 3-Anonymity . 91

4.6 Summary and Future Work . 94

5 Achieving Anonymity via Clustering 96

5.1 r-Gather Clustering . 102

5.1.1 Lower Bound . 102

5.1.2 Upper Bound . 103

5.1.3 (r, ε)-Gather Clustering . 105

5.1.4 Combining r-Gather with k-Center 106

5.2 Cellular Clustering . 110

5.2.1 r-Cellular Clustering . 114

5.3 Summary and Future Work . 118

xi

6 Conclusions 119

Bibliography 121

xii

List of Figures

2.1 Online query auditing approaches . 22

2.2 General approach for designing simulatable auditors 23

2.3 max simulatable auditor is more useful than max query restriction auditor.

The values within the boxes correspond to the second scenario. 31

4.1 A possible generalization hierarchy for the attribute “Quality”. 78

4.2 The table shows the 3-anonymity instance corresponding to the graph on

the left when the edges (3, 4), (1, 4), (1, 2), (1, 3), (2, 3)are ranked 1 through

5 respectively. 81

4.3 The decompositions corresponding to the sub-cases of the algorithm DECOMPOSE-

COMPONENT. 86

4.4 The decomposition corresponding to case B; the left partition contains a

Steiner vertex v′ that does not contribute to its size. 87

4.5 Three vectors and their corresponding “median” and “star” vectors 89

5.1 Original table and three different ways of achieving anonymity 97

5.2 Publishing anonymized data . 98

5.3 A sample table where there is no common attribute among all entries. . . . 100

5.4 Optimal clusters and the greedy step . 108

5.5 Structures of open and leftover clusters . 116

xiii

xiv

Chapter 1

Introduction

Over the last twenty years, there has been a tremendous growth in the amount of private

data collected about individuals. This data comes from a variety of sources including med-

ical, financial, library, telephone, and shopping records. With the rapid growth in database,

networking, and computing technologies, such data can be integrated and analyzed digi-

tally. On the one hand, this has led to the development of data mining tools that aim to infer

useful trends from this data. But, on the other hand, easy access to personal data poses a

threat to individual privacy. In this thesis, we provide models and algorithms for protecting

the privacy of individuals in such large data sets while still allowing users to mine useful

trends and statistics.

We focus on the problem of statistical disclosure control – revealing aggregate statistics

about a population while preserving the privacy of individuals. A statistical database can

be viewed as a table containing personal records, where the rows correspond to individuals

and the columns correspond to different attributes. For example, a medical database may

contain attributes such as name, social security number, address, age, gender, ethnicity,

and medical history for each patient. It is desirable to provide aggregate knowledge about

such databases. For example, if medical researchers have some form of access to this

database, they can learn correlations between age (or ethnicity) and the risk of different

diseases. Similarly by discovering the occurrence of communicable diseases in a certain

area, they can detect the outbreak of an epidemic and thereby prevent it from spreading to

other areas. However the use of data containing personal information has to be restricted

1

2 CHAPTER 1. INTRODUCTION

in order to protect individual privacy. For instance, a health insurance company can use the

above data to increase the insurance premiums of individuals falling under certain profile.

Thus there are two fundamentally conflicting goals: privacy for individuals and utility for

data mining purposes. The tension between these goals is evident: we can achieve perfect

privacy (but no utility) by refusing to publish any form of the data or answer any queries

about the data; we can achieve perfect utility (but no privacy) by publishing the exact data

or answering all queries about the data exactly.

1.1 Frameworks for Protecting Privacy

There are broadly two frameworks for protecting privacy in statistical databases. In the

interactive framework, the user (researcher) queries the database through a privacy mecha-

nism, which may deny the query or alter the answer to the query in order to ensure privacy.

In the non-interactive framework, the original database is first sanitized so as to preserve

privacy and then the modified version is released. Interactive framework mainly comprises

of two methods: query auditing and output perturbation. In query auditing [KPR03, DN03,

KMN05], a query is denied if the response could reveal sensitive information and answered

exactly otherwise. In output perturbation [DN03, DN04, BDMN05, DMNS06, DKM+06],

the privacy mechanism computes the exact answer to the query and then outputs a per-

turbed version (say, by adding noise) as the response to the query. The methods under non-

interactive framework generally involve perturbation of the data (input perturbation [AS00,

AA01, EGS03, AST05]), anonymization (k-Anonymity [Sam01, SS98, Swe02, MW04,

AFK+05b]), computing summaries (such as histograms [CDM+05], sketches [MS06], or

clusters), or a combination of these [AFK+06]. In input perturbation, the original database

is perturbed (say, by adding noise) into a transformed database, which is then released to

the users. In k-Anonymity, the identifying fields are removed first and then some of the

remaining entries are suppressed or generalized (see Chapter 4) so that for each tuple in

the modified table, there are at least k − 1 other tuples identical to it. Yet another ap-

proach, that is somewhat orthogonal to the above classification, is to use techniques from

secure multi-party computation [Yao86, GMW87, LP02, AMP04, FNP04]. Using these

techniques, several parties with private inputs can compute a function of their inputs such

1.1. FRAMEWORKS FOR PROTECTING PRIVACY 3

that an adversarial party (or a coalition of parties) cannot learn any information that cannot

be deduced from the output of the function and the input of the adversary. For example,

two hospitals may want to learn the correlation between age and heart disease across their

patient databases without revealing any other information. An overview of some of the

privacy methods can be found in [AW89].

1.1.1 Relative Merits of Different Privacy Techniques

We next emphasize that both the frameworks are relevant in different contexts. The results

obtained in the interactive framework are expected to be of better quality since only queries

of interest to the user are answered, whereas in the non-interactive framework, the user has

access to the entire sanitized database and hence can compute answer to any query. For

example, under many circumstances, the results obtained using output perturbation are of

provably better quality than is possible for non-interactive solutions [DMNS06]. On the

other hand, non-interactive methods are preferable whenever the underlying data mining

task is inherently ad hoc and the researchers have to examine the data in order to discover

data aggregation queries of interest. Moreover the sanitization can be done offline as no

interaction with the user is needed. We can also avoid the risk of accidental or intentional

disclosure of the sensitive data by deleting the original data or locking it in a secure vault.

Further, for all interactive methods, collusion and denial of service are problems of concern.

There is an implicit assumption that all users can collude with each other and hence queries

from all users are treated as coming from a single user. Consequently any one user has

reduced utility. In particular, a malicious user may pose queries in such a way that many

innocuous queries are either denied or answered with excessive noise (as the case may be)

in the future.

Similarly each of the above methods has its own advantages and disadvantages and

depending on the application some method may be better than others. While query auditing

and non-interactive methods maintain consistency (i.e., if the same query is posed again,

we get the same answer), output perturbation does not. The query auditing method is useful

in settings where exact answers to queries are necessary. For example, doctors often require

exact answers to queries when designing new drugs. Similarly, among the non-interactive

4 CHAPTER 1. INTRODUCTION

methods, k-Anonymity method is desirable when we want to draw inferences with 100%

confidence. Secure function evaluation is useful when the aggregate function (such as set

intersection) is known a priori and there are efficient protocols for computing this function.

However, privacy is preserved only to the extent that the output of the function itself does

not reveal any private information. The difficult part is to determine the functions that are

privacy-preserving in the context of statistical databases.

The first part of the thesis focuses on the interactive framework and provides models

and algorithms for query auditing and output perturbation methods. The second part fo-

cuses on the non-interactive framework and considers anonymization methods based on

k-Anonymity and clustering.

1.2 Privacy Protection in the Interactive Framework

1.2.1 Query Auditing

Consider a data set consisting of private information about individuals. The online query

auditing problem is: given a sequence of queries that have already been posed about the

data, their corresponding answers and given a new query, deny the answer if privacy can

be breached or give the true answer otherwise. We uncover the fundamental problem that

query denials leak information. This problem was overlooked in previous work. Because

of this oversight, some of the previously suggested auditors [Chi86, KPR03] can be used by

an attacker to compromise the privacy of a large fraction of the individuals in the data. To

overcome this problem, we introduce a new model called simulatable auditing where query

denials provably do not leak information. We present a simulatable auditing algorithm for

max queries under the classical definition of privacy where a breach occurs if a sensitive

value is fully compromised. Because of the known limitations of the classical definition

of compromise, we describe a probabilistic notion of (partial) compromise, closely related

to the notion of semantic security. We demonstrate that sum queries can be audited in a

simulatable fashion under probabilistic compromise, making some distributional assump-

tions. We describe the above model and algorithmic results (joint work with Nina Mishra

and Kobbi Nissim and an earlier version published in [KMN05]) in Chapter 2.

1.2. PRIVACY PROTECTION IN THE INTERACTIVE FRAMEWORK 5

1.2.2 Output Perturbation

Another dimension along which the privacy techniques can be classified is the amount of

trust required on the database administrator. The positive results in the privacy literature

fall into three broad categories: non-interactive with trusted server, non-interactive with

untrusted server – specifically, via randomized response, in which a data holder alters her

data with some probability before sending it to the server – and interactive with trusted

server. In particular, the privacy methods for the interactive framework assume that the

database administrator is trusted by the individuals whose private information is contained

in the database. Inspired by the desire to enable individuals to retain control over their

information (as we contend in [ABG+04]), we provide a distributed implementation of the

output perturbation schemes described in [DN04, BDMN05, DMNS06], thereby removing

the assumption of a trusted collector of data. Such an approach is desirable even from

the perspective of an organization such as census bureau: the organization does not have

to protect against insider attacks or worry about the high liability costs associated with a

privacy breach.

Our implementation replaces the trusted server with the assumption that strictly fewer

than one third of the participants are faulty (we handle Byzantine faults). In the above out-

put perturbation schemes, privacy is obtained by perturbing the true answer to a database

query by the addition of a small amount of Gaussian or exponentially distributed ran-

dom noise. Under many circumstances the results obtained are of provably better qual-

ity (accuracy and conciseness, i.e., the number of samples needed for correct statistics

to be computed) than is possible for randomized response or other non-interactive solu-

tions [DMNS06]. Our principal technical contribution is in the cooperative generation of

shares of noise sampled from in one case the Binomial distribution (as an approximation

for the Gaussian) and in the second case the Poisson distribution (as an approximation for

the exponential). Our model and results (joint work with Cynthia Dwork, Frank McSherry,

Ilya Mironov, and Moni Naor) were originally published in [DKM+06] and are described

in Chapter 3.

6 CHAPTER 1. INTRODUCTION

1.3 Privacy Protection in the Non-interactive Framework

1.3.1 K-Anonymity

Next we consider the problem of releasing a table containing personal records, while en-

suring individual privacy and maintaining data integrity to the extent possible. As dis-

cussed earlier, when the aggregate queries of interest are not known a priori, techniques

such as query auditing, output perturbation, and secure function evaluation do not pro-

vide an adequate solution, and we need to release an anonymized view of the database

that enables the computation of non-sensitive query aggregates, perhaps with some error or

uncertainty. Moreover, techniques under non-interactive framework such as input perturba-

tion, sketches, or clustering may not be suitable if one wants to draw inferences with 100%

confidence. Another approach is to suppress some of the data values, while releasing the

remaining data values exactly. We note that suppressing just the identifying attributes, such

as name and social security number, is not sufficient to protect privacy. This is because

we can still join the table with public databases (such as voter list) and identify individuals

using non-identifying attributes, such as age, race, gender, and zip code (also called quasi-

identifying attributes). In order to protect privacy, we adopt the k-Anonymity model which

was proposed by Samarati and Sweeney [Sam01, SS98, Swe02]. Suppose we have a table

with each tuple having only quasi-identifying attributes. In the k-Anonymity model, we

suppress or generalize some of the entries in the table so as to ensure that for each tuple

in the modified table, there are at least k − 1 other tuples in the modified table that are

identical to it. Consequently, even with the knowledge of an individual’s quasi-identifying

attributes, an adversary cannot track down an individual’s record further than a set of at

least k records. In other words, releasing a table after k-anonymization keeps each indi-

vidual hidden in a crowd of k − 1 other people. We study the problem of k-Anonymizing

a table, with minimum amount of suppression/generalization and provide approximation

algorithms for it. We present the algorithms and hardness results (joint work with Gagan

Aggarwal, Tomas Feder, Rajeev Motwani, Rina Panigrahy, Dilys Thomas, and An Zhu and

originally published in [AFK+05a, AFK+05b]) in Chapter 4.

1.3. PRIVACY PROTECTION IN THE NON-INTERACTIVE FRAMEWORK 7

1.3.2 Anonymity via Clustering

We again consider the problem of publishing data for analysis from a table containing

personal records, while maintaining individual privacy. We propose a new method for

anonymizing data records, where quasi-identifiers of data records are first clustered and

then cluster centers are published. To ensure privacy of the data records, we impose the

constraint that each cluster must contain no fewer than a pre-specified number of data

records. This technique is more general since we have a much larger choice for cluster

centers than k-Anonymity. In many cases, it lets us release a lot more information without

compromising privacy. We also provide constant-factor approximation algorithms to come

up with such a clustering. We further observe that a few outlier points can significantly

increase the cost of anonymization. Hence, we extend our algorithms to allow an ε fraction

of points to remain unclustered, i.e., deleted from the anonymized publication. Thus, by

not releasing a small fraction of the database records, we can ensure that the data published

for analysis has less distortion and hence is more useful. Our approximation algorithms

for new clustering objectives are of independent interest and could be applicable in other

clustering scenarios as well. Our model and approximation algorithms (joint work with

Gagan Aggarwal, Tomas Feder, Samir Khuller, Rina Panigrahy, Dilys Thomas, and An

Zhu) were originally published in [AFK+06] and are described in Chapter 5.

Part I

Privacy Protection in the Interactive

Framework

9

Chapter 2

Privacy-preserving Auditing Algorithms

Consider a data set consisting of private information about individuals. We consider the

online query auditing problem: given a sequence of queries that have already been posed

about the data, their corresponding answers and given a new query, deny the answer if

privacy can be breached or give the true answer otherwise. Formally, let X = {x1, . . . , xn}
be a set of n private values from n individuals, where each xi is some real value. Suppose

that the queries q1, . . . , qt−1 have already been posed about X and the answers a1, . . . , at−1

have already been given, where each aj is either the true answer to the query or “denied”.

Given a new query qt, deny the answer if privacy may be breached, and provide the true

answer otherwise. The classical definition of compromise is that there exists an index

i such that xi is uniquely determined. In other words, in all data sets consistent with the

queries and answers, there is only one possible value of xi. The kinds of queries considered

in this chapter are sum and max queries. Given a collection of indices S ⊆ [n], sum(S) =
∑

i∈S xi and max(S) = maxi∈S xi.

One of the the first auditing results dates back almost 30 years ago to the work of

Dobkin, Jones, and Lipton [DJL79]. That work restricts the class of acceptable queries

by their size and overlap, and then demonstrates that a data set cannot be compromised

provided that the number of queries is appropriately upper bounded. Following that work,

many others considered the auditing problem including [Rei79, CO81a, CO81b, Chi86,

KPR03] (see also [AW89] for a survey).

11

12 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

In the work of Chin [Chi86], the online max auditing problem is considered. Given

an online sequence of max queries, that paper gives a method of determining whether a

value has been uniquely determined using only the queries that were exactly answered.

Another example of an online auditing algorithm is due to Kleinberg, Papadimitriou, and

Raghavan [KPR03]. In the case that the underlying data set is Boolean valued, a method

is given for determining whether a value has been uniquely determined – again using only

the queries that were exactly answered.

These online auditing algorithms ignore the queries that were denied and this turns out

to be quite problematic since denials can leak information. A simple example illustrates

the phenomena. Suppose that the underlying data set is real-valued and that a query is

denied only if some value is fully compromised. Suppose that the attacker poses the first

query sum(x1, x2, x3) and the auditor answers 15. Suppose also that the attacker then poses

the second query max(x1, x2, x3) and the auditor denies the answer. The denial tells the

attacker that if the true answer to the second query were given then some value could be

uniquely determined. Note that max(x1, x2, x3) 6< 5 since then the sum could not be 15.

Further, if max(x1, x2, x3) > 5 then the query would not have been denied since no value

could be uniquely determined. Consequently, max(x1, x2, x3) = 5 and the attacker learns

that x1 = x2 = x3 = 5 — a privacy breach of all three entries. The issue here is that query

denials reduce the space of possible consistent solutions, and this reduction is not explicitly

accounted for in existing online auditing algorithms.

This oversight of previous work is critical: privacy-preserving auditing algorithms that

ignore denials [Chi86, KPR03] can be used to launch massive privacy attacks.

2.1 Contributions

Our first contribution is to illustrate how such major privacy violations can ensue from

ignoring query denials. In the case of max queries, we illustrate how 1/8 of the data set can

be compromised in expectation by allowing the denials of [Chi86] to guide us towards a

breach. In the case where the underlying data set is Boolean valued and each query requests

the sum of a subset of private values, we demonstrate how the “conservative” approximate

online auditing algorithm of [KPR03] (that denies more often than it should) can be used

2.1. CONTRIBUTIONS 13

to compromise about 1/2 of the data set in expectation – again using the denials to guide us

towards a breach.

How can we overcome the problem of denials leaking information? The simulation

paradigm from cryptography offers an elegant solution that we apply to auditing. We say

that an auditor is simulatable if an attacker, knowing the query-answer history, could make

the same decision as to whether or not a newly posed query will be answered. Since the

auditor only uses information already known to the attacker when deciding whether to

deny, the attacker can mimic or simulate that decision. Hence, the decision to deny a query

provably does not leak any information.

We next give a general method for designing simulatable auditors. The idea is that if an

auditor has received queries q1, . . . , qt and given answers a1, . . . , at−1, it simply considers

many possible answers to the query qt (obliviously of the actual data) and determines how

often privacy would be compromised. If privacy is breached one or many times in these

answers, then the query is denied, otherwise the query is answered.

We then give an algorithm for simulatable auditing of max queries under classical com-

promise, where a compromise occurs if a value is uniquely determined. The algorithm runs

in time logarithmic in the number of previous queries and linear in the sum of the sizes of

the previous queries. Simulatable auditing of sum queries follows from previous work.

Next we revisit the definition of compromise. The classical definition of compromise

has been extensively studied in prior work. This definition is conceptually simple, has

an appealing combinatorial structure, and serves as a starting point for evaluating solu-

tions for privacy. However, as has been noted by many others, e.g., [Bec80, KU77, Dal77,

LWWJ02], this definition is inadequate in many real contexts. For example, if an attacker

can deduce that a private data element xi falls in a tiny interval, then the classical defi-

nition of privacy is not violated unless xi can be uniquely determined. While some have

proposed a privacy definition where each xi can only be deduced to lie in a sufficiently

large interval [LWWJ02], note that the distribution of the values in the interval matters. For

example, ensuring that age lies in an interval of length 50 when the user can deduce that

age is between [−50, 0] does not preserve privacy.

In order to extend the discussion on auditors to more realistic partial compromise no-

tions of privacy, we describe an auditing privacy definition that is similar to the notion of

14 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

semantic security. Our privacy definition assumes that there exists an underlying probabil-

ity distribution from which the data is drawn. This is a fairly natural assumption since most

attributes such as age, salary, etc. have a known probability distribution. The essence of

the definition is that for each data element xi and every interval J with not too small apriori

probability mass, the auditor ensures that the prior probability that xi falls in the interval

J is about the same as the posterior probability that xi falls in J given the queries and

answers. This definition overcomes some of the aforementioned problems with classical

compromise.

With this notion of privacy, we describe a simulatable auditor for sum queries. The

new auditing algorithm computes posterior probabilities by utilizing existing randomized

algorithms for sampling from a logconcave distribution, e.g., [LV03]. To guarantee sim-

ulatability, we make sure that the auditing algorithm does not access the data set while

deciding whether to allow the newly posed query qt (in particular, it does not compute the

true answer to qt). Instead, the auditor draws many data sets according to the underlying

distribution, conditioned on the previous queries and answers. For each of the randomly

generated data sets, the auditor computes the answer a′
t to the current query and checks

whether revealing this answer would breach privacy. If for most answers the data set is not

compromised then the query is answered, and otherwise the query is denied.

The rest of this chapter is organized as follows. In Section 2.2 we discuss related work

on auditing. In Section 2.3 we illustrate how denials leak information and give counterex-

amples to theorems proved in previous auditing work [Chi86, KPR03]. We then introduce

simulatable auditing in Section 2.4 and prove that max queries can be audited under this

definition of auditing and the classical definition of privacy in Section 2.5. Then in Sec-

tion 2.6 we describe a probabilistic definition of privacy. Finally in Section 2.7 we prove

that sum queries can be audited under this definition of privacy in a simulatable fashion.

2.2 Related Work

We partition related work into online and offline auditing. In the offline auditing problem,

one is given a sequence of queries and exact answers and the goal is to determine if a

privacy breach has occurred ex post facto. As the initial motivation for work on auditing

involves the online auditing problem, we begin with known online auditing results.

2.2. RELATED WORK 15

2.2.1 Online Auditing

The earliest work is due to Dobkin, Jones, and Lipton [DJL79] and Reiss [Rei79] for the

online sum auditing problem, where the answer to a query q is
∑

i∈q xi. With queries of

size at least k elements, each pair overlapping in at most r elements, they showed that any

data set can be compromised in (2k− (`+1))/r queries by an attacker that knows ` values

a priori. For fixed k, r and `, if the auditor denies answers to query (2k− (`+1))/r and on,

then the data set is definitely not compromised. Here the monitor logs all the queries and

disallows qi if |qi| < k, or for some query t < i, |qi ∩ qt| > r, or if i ≥ (2k − (` + 1))/r.1

These results completely ignore the answers to the queries. On the one hand, we will see

later that this is desirable in that the auditor is simulatable – the decision itself cannot leak

any information about the data set. On the other hand, we will see that because answers

are ignored, sometimes only short query sequences are permitted (that could be longer if

previous answers were used).

The online max auditing problem was first considered in [Chi86]. Both the online and

offline Boolean sum auditing were considered in [KPR03]. We describe these online results

in more detail in Section 2.3 and the offline Boolean sum auditing work in Section 2.2.2.

Following the publication of [KMN05], the paper [NMK+06] solves the online max

and min simulatable auditing problem under both classical and probabilistic compromise

(where both max and min queries are allowed). An initial study of the utility of auditing

is also undertaken.

2.2.2 Offline Auditing

In the offline auditing problem, the auditor is given an offline set of queries q1, . . . , qt and

true answers a1, . . . , at and must determine if a breach of privacy has occurred. In most

related work, a privacy breach is defined to occur whenever some element in the data set can

be uniquely determined. If only sum or only max queries are posed, then polynomial-time

auditing algorithms are known to exist [CO81a]. However, when sum and max queries

1Note that this is a fairly negative result. For example, if k = n/c for some constant c and r = 1, then the
auditor would have to shut off access to the data after only a constant number of queries, since there are only
about c queries where no two overlap in more than one element.

16 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

are intermingled, then determining whether a specific value can be uniquely determined is

known to be NP-hard [Chi86].

Kam and Ullman [KU77] consider auditing subcube queries which take the form of a

sequence of 0s, 1s, and *s where the *s represent “don’t cares”. For example, the query

10**1* matches all entries with a 1 in the first position, 0 in the second, 1 in the fifth and

anything else in the remaining positions. Assuming sum queries over the subcubes, they

demonstrate when compromise can occur depending on the number of *s in the queries and

also depending on the range of input data values.

Kleinberg, Papadimitriou, and Raghavan [KPR03] investigate the offline sum auditing

problem of Boolean data. They begin by proving that the offline sum auditing problem

is coNP-hard. Then they give an efficient offline sum auditing algorithm in the case that

the queries are “one-dimensional”, i.e., for some ordering of the elements say x1, . . . , xn,

each query involves a consecutive sequence of values xi, xi+1, xi+2, . . . , xj. An offline max

auditing algorithm is also given. Note that an offline algorithm cannot be used to solve the

online problem as illustrated in [KMN05].

In the offline maximum auditing problem, the auditor is given a set of queries q1, . . . , qt,

and must identify a maximum-sized subset of queries such that all can be answered simul-

taneously without breaching privacy. Chin [Chi86] proved that the offline maximum sum

query auditing problem is NP-hard, as is the offline maximum max query auditing problem.

2.3 Examples where Denials Leak Information

We first demonstrate how the max auditor of [Chi86] can be used by an attacker to breach

the privacy of 1/8 of the data set. The same attack works also for sum/max auditors.

Then we demonstrate how an attacker can use the approximate online auditing problem

of [KPR03] to breach the privacy of 1/2 of the data set. Finally, while all the examples

assume that the attacker has the ability to pose queries involving arbitrary subsets of the

data, we demonstrate that an attacker who only poses SQL queries can still compromise

the data.

Neither [Chi86] nor [KPR03] explicitly state what their algorithms do in the event a

query is denied. One interpretation is that once a query is denied, every query thereafter

2.3. EXAMPLES WHERE DENIALS LEAK INFORMATION 17

will also be denied. Under this interpretation, auditors have almost no utility since a denial

of service attack can be mounted with a first singleton query, e.g., q1 = max(x3) or q1 =

sum(x3) – such a query will be denied, and so will every other one henceforward. Another

interpretation is that once a query is denied, it is treated as if it was never posed. We use

this latter interpretation, although some other interpretation may have been intended.

Finally, we assume that the attacker knows the auditor’s algorithm for deciding de-

nials. This is a standard assumption employed in the cryptography community known as

Kerkhoff’s Principle – despite the fact that the actual privacy-preserving auditing algorithm

is public, an attacker should still not be able to breach privacy.

2.3.1 max Auditing Breach

Prior to describing the breach, we describe at a high level the max auditing algorithm

of [Chi86]. Given a sequence of max queries and corresponding answers, a method is given

for compressing the sequence into a short representation that has O(n) size, assuming the

private data set consists of distinct values. Each element of the synopsis is a predicate of the

form max(Si) < M or max(Si) = M where each Si is a subset of indices. Since there are

no duplicates in the data set, the method ensures that query sets of predicates in the synopsis

are pairwise disjoint, so that the size of the synopsis is O(n). It suffices to consider just

these predicates while checking for privacy breach instead of the entire sequence of past

queries. When a new query St is posed to the auditor, the real answer to the query Mt is

computed and then the synopsis is efficiently updated so that the sets are pairwise disjoint.

A breach is shown to occur if and only if there is an Si such that |Si| = 1 and the synopsis

contains a predicate of the form max(Si) = M . In such a case, the query is denied and we

assume that the synopsis goes back to its previous state. Otherwise the query is answered

and the synopsis remains the same.

In order to breach privacy, the attacker partitions the data set X = {x1, . . . , xn} into

n/4 disjoint 4-tuples and considers each 4-tuple independently. In each of these 4-tuples,

the attacker will use the exact answers and the denials to learn one of the four entries,

with success probability 1/2. Hence, on average the attacker will learn 1/8 of the en-

tries. Let x1, x2, x3, x4 be the entries in one 4-tuple. The attacker will first issue the query

18 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

max(x1, x2, x3, x4). This query is never denied since it is disjoint from all previous queries

and knowing the answer will not help to uniquely determine one of these 4 values. Let a

be the answer to the query. For the second query, the attacker drops at random one of the

four entries, and queries the maximum of the other three. If this query is denied, then the

dropped entry equals a. Otherwise, let a′ (= a) be the answer and drop another random

element and query the maximum of the remaining two. If this query is denied, then the

second dropped entry equals a′. If the query is allowed, we continue with the next 4-tuple.

Note that whenever the second or third queries are denied, the above procedure succeeds

in revealing one of the four entries. If all the elements are distinct, then the probability we

succeed in choosing the maximum value in the two random drops is 2/4. Consequently, on

average, the procedure reveals 1/8 of the data.

2.3.2 Boolean Auditing Breach

Prior to describing the Boolean auditing attack, we describe the “conservative” approximate

auditor of [KPR03] that denies more often than it should. For each element xi of the data

set, the trace of xi is defined to be the set of queries in which xi participates. The claim

in this paper is that if for each variable xi there is a corresponding variable xj such that

xi 6= xj and xi and xj share the same trace, then no value is uniquely determined. The

trace only seems to be updated when a query is exactly answered, and not when a query is

denied.

Next we demonstrate how an attacker can compromise 1/2 of the data in expectation

with the conservative approximate auditor of [KPR03]. In this example, we assume that

the data is 1/2 0s and 1/2 1s2. The attacker randomly permutes the entries and then parti-

tions the data set X = {x1, . . . , xn} into n/2 disjoint 2-tuples. The attacker then poses the

queries sum(xi, xi+1) for odd i. If the query is answered then xi 6= xi+1, but the pair is

forever ignored. And, if the query is denied, then the attacker can deduce that xi = xj and

furthermore since the trace is not updated on a denied query, future queries can be posed

2The attack can be modified to work for 0 < p < 1 when there is a p fraction of 0s and 1− p fraction of
1s – and p is not known to the attacker. In such a case, with high probability, the attacker can breach even
more data: a 1− 2p(1− p) (≥ 1/2) fraction, in expectation.

2.3. EXAMPLES WHERE DENIALS LEAK INFORMATION 19

about these values. At the end of this process, the attacker has pairs that are equal, but does

not know if they are both 0s or both 1s.

Assume without loss of generality that the queries that were denied involved the values

x1, . . . , xm where m = n/2 in expectation. The attacker now asks queries sum(xi, xi+1)

for even i. If such a query is denied, then xi−1 = xi = xi+1 = xi+2. Otherwise, if the query

is answered, then xi−1 = xi are different from xi+1 = xi+2. At the end of this process, the

private values can be partitioned into two sets, one set having all 0s and the other all 1s, but

the attacker will not know which side has which value.

To determine this final bit of information, note that in expectation about 1/2 of the

previous queries were denied. Let xj be a value that is different from x1 that was in a

denied query. We ask the final query x1 + xj + xm. Note that this query will be answered

since x1 6= xj and they have the same trace, and similarly for xm. Suppose the answer to

the query is a. If xm = x1 then we can determine x1 by solving for x1 in the equation

x1 + (1 − x1) + x1 = a. Otherwise, if xm 6= x1, then we can solve for x1 in the equation

x1 + (1− x1) + (1− x1) = a. Once the attacker knows the value of x1, all the other values

(1/2 of the data set in expectation) can now also be uniquely determined.

2.3.3 SQL Queries

Whereas the previous examples assume that the attacker could pose queries about arbitrary

subsets of the data, we next show that even if we weakened the attacker by only allowing

queries over attributes of the data, data can still be compromised. For example, consider the

three queries, sum, count and max (in that order) on the ‘salary’ attribute, all conditioned

on the same predicate involving other attributes. Since the selection condition is the same,

all the three queries act on the same subset of tuples. Suppose that the first two queries are

answered. Then the max query is denied whenever its value is exactly equal to the ratio of

the sum and the count values (which happens when all the selected tuples have the same

salary value). Hence the attacker learns the salary values of all the selected tuples whenever

the third query is denied. Even though the attacker may not know the identities of these

selected tuples, learning the private values of many individuals can still be considered a

significant breach.

20 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

2.4 Simulatable Auditing

Intuitively, denials leak because users can ask why a query was denied, and the reason is in

the data. If the decision to allow or deny a query depends on the actual data, it reduces the

set of possible consistent solutions for the underlying data.

A naive solution to the leakage problem is to deny whenever the offline algorithm

would, and to also randomly deny queries that would normally be answered. While this so-

lution seems appealing, it has its own problems. Most importantly, although it may be that

denials leak less information, leakage is not generally prevented. Furthermore, the auditing

algorithm would need to remember which queries were randomly denied, since otherwise

an attacker could repeatedly pose the same query until it was answered. A difficulty then

arises in determining whether two queries are equivalent. The computational hardness of

this problem depends on the query language, and may be intractable, or even undecidable.

To work around the leakage problem, we make use of the simulation paradigm which

is used vastly in cryptography (starting with the definition of semantic security [GM82]).

The idea is the following: The reason that denials leak information is because the auditor

uses information that is not available to the attacker (the answer to the newly posed query).

In particular, this results in a computation the attacker could not perform by himself. A

successful attacker capitalizes on this leakage to gain information. We introduce a notion

of auditing where the attacker provably cannot gain any new information from the auditor’s

decision. This is formalized by requiring that the attacker is able to simulate or mimic the

auditor’s decisions. In such a case, because the attacker can equivalently decide if a query

would be denied, denials do not leak information.

2.4.1 A Formal Definition of Simulatable Auditing

We begin by formally defining an auditor. We will give two definitions: one for an auditor

and another for a randomized auditor that knows the underlying distributionD from which

the data is drawn.

Definition 2.1 1. An auditor is a function of q1, . . . , qt and the data set X that either

gives an exact answer to the query qt or denies the answer.

2.4. SIMULATABLE AUDITING 21

2. A randomized auditor is a randomized function of q1, . . . , qt, the data set X , and the

probability distributionD that either gives an exact answer to the query qt or denies

the answer.

Next we define a simulatable auditor. Again, we give two variants depending on

whether the auditor is deterministic or randomized.

Definition 2.2 Let Qt = 〈q1, . . . , qt〉 be any sequence of queries and let At = 〈a1, . . . , at〉
be the corresponding answers according to data set X .

1. An auditor B is simulatable if there exists another auditor B∗ that is a function ofQt

andAt−1, and the outcome of B onQt,At and X is equal to that of B∗ onQt,At−1.

2. A randomized auditor B is simulatable if there exists another auditor B∗ that is a

probabilistic function of Qt,At−1,D, and the outcome of B on Qt,At,D and X is

computationally indistinguishable from that of B∗ onQt,At−1,D.

All the auditors we design are trivially simulatable since the only information they use

isQt and At−1 (and possibly the underlying distributionD).

A nice property of simulatable auditors is that the auditor’s response to denied queries

does not convey any new information to the attacker (beyond what is already known given

the answers to the previous queries). Hence denied queries need not be taken into account

in the auditor’s decision. We thus assume without loss of generality that q1, . . . , qt−1 were

all answered.

Simulatable auditors improve upon methods that completely ignore all previous query

answers [DJL79] in that longer query sequences can now be answered (an example is given

in Section 2.5.4) and improve upon the use of offline algorithms to solve the online problem

since denials do not leak information as shown in [KMN05].

2.4.2 A Perspective on Auditing

We cast related work on auditing based on two important dimensions: utility and privacy

(see Figure 2.1). It is interesting to note the relationship between the information an auditor

uses and its utility – the more information used, the longer query sequences the auditor can

22 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

answer. That is because an informed auditor need not deny queries that do not actually

put privacy at risk. On the other hand, as we saw in Section 2.3, if the auditor uses too

much information, some of this information may be leaked, and privacy may be adversely

affected.

q1, . . . , qt−1, qt

a1, . . . , at−1

q1, . . . , qt−1, qt

a1, . . . , at−1, D

q1, . . . , qt−1, qt

a1, . . . , at−1, at

{x1, . . . , xn}
[KPR03, Chi86]

|qi| ≥ k

[DJL79, Rei79]

|qi ∩ qj| ≤ rM
or

e
pr

iv
ac

y

q1, . . . , qt−1, qt

[Chi86, CO81a]

Denials leak information

More utility

Figure 2.1: Online query auditing approaches

The oldest work on auditing includes methods that simply consider the size of queries

and the size of the intersection between pairs of queries [DJL79, Rei79] (upper left hand

corner of Figure 2.1). Subsequently, the contents of queries were considered (such as the

elementary row and column matrix operations suggested in [Chi86, CO81a]). We call these

monitoring methods. Query monitoring only makes requirements about the queries, and is

oblivious of the actual data entries. In other words, to decide whether a query qt is allowed,

the monitoring algorithm takes as input the query qt and the previously allowed queries

q1, . . . , qt−1, but ignores the answers to all these queries. This obliviousness of the query

answers immediately implies the safety of the auditing algorithm in the sense that query

denials cannot leak information. In fact, a user need not even communicate with the data

set to check which queries would be allowed, and hence these auditors are simulatable.

Other work on online auditing uses the queries q1, . . . , qt and all of their answers

2.4. SIMULATABLE AUDITING 23

a1, . . . , at [Chi86, KPR03] (bottom right corner of Figure 2.1). While this approach yields

more utility, we saw in Section 2.3 that denials leak private information.

Our work on simulatable auditing can be viewed as a ‘middle point’ (denoted in rect-

angular boxes in Figure 2.1). Simulatable auditors use all the queries q1, . . . , qt and the

answers to only the previous queries a1, . . . , at−1 to decide whether to answer or deny the

newly posed query qt. We will construct simulatable auditors that guarantee ‘classical’

privacy. We will also consider a variant of this ‘middle point’, where the auditing algo-

rithm (as well as the attacker) has access to the underlying probability distribution3. With

respect to this variant, we construct simulatable auditors that preserve privacy with high

probability.

2.4.3 A General Approach for Constructing Simulatable Auditors

We next propose a general approach for constructing simulatable auditors that is useful for

understanding our results and may also prove valuable for studying other types of queries.

q1, . . . , qt

a1, . . . , at−1, a
′
ta1, . . . , at−1

q1, . . . , qt

answer a′t for qt

Generate consistent Offline algorithm:
Has a breach
already occurred?

Repeat many times

Answer

Deny

No mostly

Yes often

Figure 2.2: General approach for designing simulatable auditors

The general approach (shown in Figure 2.2) works as follows: Choose a set of consis-

tent answers to the last query qt. For each of these answers, check if privacy is compro-

mised. If compromise occurs for too many of the consistent answers, the query is denied.

Otherwise, it is allowed. In the case of classical compromise for max simulatable auditing,

we deterministically construct a small set of answers to the last query qt so that if any one

leads to compromise, then we deny the answer and otherwise we give the true answer. In

3This model was hinted at informally in [DN03] and the following work [DN04].

24 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

the case of probabilistic compromise for sum queries, we randomly generate many con-

sistent answers and if sufficiently many lead to compromise, then we deny the query and

otherwise we answer the query.

Following the publication of [KMN05], this general approach was also successfully

used in [NMK+06].

2.5 Simulatable Auditing Algorithms, Classical Compro-

mise

We next construct (tractable) simulatable auditors. We first describe how sum queries can

be audited under the classical definition of privacy and then we describe how max queries

can be audited under the same definition.

2.5.1 Simulatable Auditing of sum Queries

Observe that existing sum auditing algorithms are already simulatable [Chi86]. In these

algorithms each query is expressed as a row in a matrix with a 1 wherever there is an index

in the query and a 0 otherwise. If the matrix can be reduced to a form where there is a row

with one 1 and the rest 0s then some value has been compromised. Such a transformation

of the original matrix can be performed via elementary row and column operations. The

reason this auditor is simulatable is that the answers to the queries are ignored when the

matrix is transformed.

2.5.2 Simulatable Auditing of max Queries

We provide a simulatable auditor for the problem of auditing max queries over real-valued

data. The data consists of a set of n values, X = {x1, x2, . . . , xn} and the queries q1, q2, . . .

are subsets of {1, 2, . . . , n}. The answer corresponding to the query qi is ai = max{xj|j ∈
qi}. Given a set of queries q1, . . . , qt−1 and the corresponding answers a1, . . . , at−1 and

the current query qt, the simulatable auditor denies qt if and only if there exists an answer

at, consistent with a1, . . . , at−1, such that the answer helps to uniquely determine some

2.5. SIMULATABLE AUDITING ALGORITHMS, CLASSICAL COMPROMISE 25

element xj . Since the decision to deny or answer the current query is independent of

the real answer at, we should decide to answer qt only if compromise is not possible for

all consistent answers to qt (as the real answer could be any of these). Conversely, if

compromise is not possible for all consistent answers to qt, it is safe to answer qt.

Revisiting the max Auditing Breach of Section 2.3.1

We now return to the max auditing breach example of Section 2.3.1 and describe how a

simulatable auditor would work. The first query max(x1, x2, x3, x4) is always answered

since there is no answer, a1 for which a value is uniquely determined. Suppose the second

query is max(x1, x2, x4). This query will always be denied since x3 = a1 whenever a2 < a1.

In general, under the classical privacy definition, the simulatable auditor has to deny the

current query even if only one consistent answer to qt compromises privacy. Thus, many

queries may be denied. This issue is addressed by our probabilistic definition of privacy in

Section 2.6.

max Simulatable Algorithm

We now discuss how we obtain an algorithm for max simulatable auditing. A naive solution

is to determine if for all possible answers at in (−∞, +∞) whether (a) at is consistent and

(b) whether some private element would be uniquely determined if at were the answer.

Of course, such a naive algorithm is computationally expensive. Instead, we show that it

is sufficient to test only a finite number of points. Let q ′1, . . . , q
′
l be the previous queries

that intersect with the current query qt, ordered according to the corresponding answers,

a′
1 ≤ . . . ≤ a′

l. Let a′
lb = a′

1 − 1 and a′
ub = a′

l + 1 be the bounding values. Our algorithm

checks only 2l + 1 values: the bounding values, the above l answers, and the mid-points of

the intervals determined by them.

We now prove that the algorithm works as desired.

Theorem 2.5.1 Algorithm 1 is a max simulatable auditor that runs in time O(t
∑t

i=1 |qi|)
where t is the number of queries.

We begin by describing how to determine if a private element is uniquely determined

(from [KPR03]). Given a set of queries and answers, the upper bound, µj for an element

26 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

Algorithm 1 max SIMULATABLE AUDITOR

1: Input: (allowed) queries and answers qi and ai for i = 1, . . . , t− 1, a new query qt.
2: Let q′1, . . . , q

′
l be the previous queries that intersect with qt, ordered according to the

corresponding answers, a′
1 ≤ . . . ≤ a′

l. Let a′
lb = a′

1 − 1 and a′
ub = a′

l + 1.

3: for at ∈ {a′
lb, a

′
1,

a′

1+a′

2

2
, a′

2,
a′

2+a′

3

2
, a′

3, . . . , a′
l−1,

a′

l−1+a′

l

2
, a′

l, a
′
ub} do

4: if (at is consistent with the previous answers a1, . . . , at−1) AND (∃1 ≤ j ≤ n such
that xj is uniquely determined {using [KPR03]}) then

5: Output “Deny” and return
6: end if
7: end for
8: Output “Answer” and return

xj is defined to be the minimum over the answers to the queries containing xj, i.e., µj =

min{ak|j ∈ qk}. In other words, µj is the best possible upper bound for xj that can be

obtained from the answers to the queries. We say that j is an extreme element for the query

set qk if j ∈ qk and µj = ak. This means that the upper bound for xj is realized by the

query set qk, i.e., the answer to every other query containing xj is greater than or equal

to ak. The upper bounds of all elements as well as the extreme elements of all the query

sets can be computed in O(
∑t

i=1 |qi|) time. Since the input includes both the data set and

the queries, the time for the above computation is linear in the input size. In [KPR03], it

is shown that a value xj is uniquely determined if and only if there exists a query set qk

for which j is the only extreme element. Hence, for a given value of at, we can check if

∃1 ≤ j ≤ n such that xj is uniquely determined.

Next we explain how to determine if an answer to the current query is consistent with

the previous queries and answers.

Lemma 2.5.2 An answer at to query qt is consistent if and only if every query set has at

least one extreme element.

Proof: Suppose that some query set qk has no extreme element. This means that the upper

bound of every element in qk is less than ak. This cannot happen since some element has

to equal ak. Formally, ∀j ∈ qk, xj ≤ µj < ak which is a contradiction.

Conversely, if every query set has at least one extreme element, setting xj = µj for

1 ≤ j ≤ n is consistent with all the answers. This is because, for any set qk with s as an

extreme element, xs = ak and ∀j ∈ qk, xj ≤ ak. 2

2.5. SIMULATABLE AUDITING ALGORITHMS, CLASSICAL COMPROMISE 27

In fact, it is enough to check the condition in the lemma for qt and the query sets

intersecting it (instead of all the query sets).

Lemma 2.5.3 For 1 ≤ j ≤ n, xj is uniquely determined for some value of at in (a′
s, a

′
s+1)

if and only if xj is uniquely determined when at =
a′

s+a′

s+1

2
.

Proof: Observe that revealing at can only affect elements in qt and the queries intersecting

it. This is because revealing at can possibly lower the upper bounds of elements in qt,

thereby possibly making some element in qt or the queries intersecting it the only extreme

element of that query set. Revealing at does not change the upper bound of any element in

a query that is disjoint from qt and hence does not affect elements in such sets.

Hence it is enough to consider j ∈ qt ∪ q′1 ∪ · · · ∪ q′l. We consider the following cases:

• qt = {j}: xj is breached irrespective of the value of at.

• j is the only extreme element of qt and |qt| > 1: Suppose that xj is uniquely deter-

mined for some value of at in (a′
s, a

′
s+1). This means that each element indexed in

qt \ {j} had an upper bound < at and hence ≤ a′
s (since an upper bound can only

be one of the answers given so far). Since this holds even for at =
a′

s+a′

s+1

2
, j is still

the only extreme element of qt and hence xj is still uniquely determined. A similar

argument applies for the converse.

• j is the only extreme element of q′k for some k ∈ [1, l]: Suppose that xj is uniquely

determined for some value of at in (a′
s, a

′
s+1). This means that at < a′

k (and hence

a′
s+1 ≤ a′

k) and revealing at reduced the upper bound of some element indexed in

q′k\{j}. This would be the case even when at =
a′

s+a′

s+1

2
. The converse can be argued

similarly.

To complete the proof, we will show that values of at in (a′
s, a

′
s+1) are either all consis-

tent or all inconsistent (so that our algorithm preserves consistency when considering only

the mid-point value). Suppose that some value of at in (a′
s, a

′
s+1) is inconsistent. Then, by

Lemma 2.5.2, some query set qα has no extreme element. We consider two cases:

• qα = qt: This means that the upper bound of every element in qt was < at and hence

≤ a′
s. This would be the case even for any value of at in (a′

s, a
′
s+1).

28 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

• qα intersects with qt: This means that at < aα and the extreme element(s) of qα

became no longer extreme for qα by obtaining a reduced upper bound due to at. This

would be the case even for any value of at in (a′
s, a

′
s+1).

2

Thus it suffices to check for at =
a′

s+a′

s+1

2
∀1 ≤ s < l together with at = a′

s ∀1 ≤ s ≤ l

and also representative points, (a′
1 − 1) in (−∞, a′

1) and (a′
l + 1) in (a′

l,∞). Note that a

representative point is inconsistent if and only if its corresponding interval is inconsistent.

As noted earlier, the upper bounds of all elements as well as the extreme elements of all

the query sets and hence each iteration of the for loop in Algorithm 2.5.2 can be computed

in O(
∑t

i=1 |qi|) time (which is linear in the input size). As the number of iterations is

2l + 1 ≤ 2t, the running time of the algorithm is O(t
∑t

i=1 |qi|), proving Theorem 2.5.1.

2.5.3 Improving the Running Time of the max Simulatable Auditor

We have shown that it is sufficient to test a boundable number of answers to the query qt. A

next natural question is can we speed up the algorithm by doing binary search through this

set of answers. In particular, does an inconsistent answer to a query imply that all values

smaller (or larger) are also inconsistent? It turns out that we can do a form of binary search,

although not as simply as the previous question implies. In this section, we show how to

improve the running time to O((log t)
∑t

i=1 |qi|) where t is the number of queries4.

We give four conditions each of which exhibits a monotonicity property. Two of the

conditions pin down an interval of consistent answers. The other two conditions pin down

an interval of answers where no value can be uniquely determined. If for every consistent

answer, no value can be uniquely determined then the query is safe to answer. Consequently

we can answer a query if the interval of consistent answers is contained in the interval of

answers where no value is uniquely determined.

The four conditions are:

• A ≡ “at = θ is inconsistent because some query set qk (different from the current

query qt) has no extreme element”

4We thank Robert Tarjan for suggesting this improvement.

2.5. SIMULATABLE AUDITING ALGORITHMS, CLASSICAL COMPROMISE 29

• B ≡ “at = θ is inconsistent because the current query set qt has no extreme element”

• C ≡ “For at = θ, xj is uniquely determined for some j 6∈ qt”

• D ≡ “For at = θ, xj is uniquely determined for some j ∈ qt”

Suppose that the 2l + 1 values to be checked for at in step 3 of Algorithm 2.5.2 are

arranged in increasing order in an array. As we go from left to right in this array, we will

show that condition A holds for all array elements below some index and does not hold

for elements thereafter. Consequently, we can determine the above index by performing

a binary search in the array and checking for condition A at each fork. Condition C also

exhibits monotonicity in the same direction as A. Thus, for a condition P ∈ {A, C},
let binarySearch(Left, P) denote the index of the leftmost array element for which the

condition P does not hold. Conditions B and D also exhibit monotonicity, but in the

opposite direction. Again, for a condition P ∈ {B,D}, we use binary search to obtain

binarySearch(Right, P) which is the index of the rightmost array element for which the

condition P does not hold.

Algorithm 2 FASTER max SIMULATABLE AUDITOR

1: α← binarySearch(Left,A)
2: β ← binarySearch(Right,B)
3: γ ← binarySearch(Left, C)
4: δ ← binarySearch(Right,D)
5: if [α, β] ⊆ [γ, δ] then
6: Output “Answer” and return
7: else
8: Output “Deny” and return
9: end if

Step 5 of Algorithm 2 checks whether for every consistent answer at no value xj is

uniquely determined. The array elements with indices in the range [α, β] correspond to

consistent answers for the current query whereas those outside this range are inconsistent.

Further, there is at least one value of at that is consistent, i.e., α ≤ β. Similarly, the array

elements with indices in the range [γ, δ] correspond to answers for which no data value is

uniquely determined whereas some xj is uniquely determined for those outside this range.

30 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

Hence it is safe to answer the current query if for every consistent answer, no data value

is uniquely determined, i.e., the interval [α, β] is fully contained in the interval [γ, δ]. The

running time of the algorithm is O((log t)
∑t

i=1 |qi|), since this is the time taken by each

binary search step.

We now prove the main lemma.

Lemma 2.5.4 1. If A then any value of at < θ is also inconsistent.

2. If B then any value of at > θ is also inconsistent.

3. If C then xj is uniquely determined for any value of at < θ.

4. If D then xj is uniquely determined for any value of at > θ.

Proof:

Part 1: Since the sequence of the first t − 1 queries and answers was consistent and at =

θ is inconsistent, it follows from Lemma 2.5.2 that some query set qk, which had some

extreme element(s) earlier, no longer has any extreme element. This means that the extreme

element(s) of qk is no longer extreme for qk because at = θ reduces the upper bound. In

such a case, any value at < θ is also inconsistent.

Part 2: If at = θ is inconsistent because of the current query qt then the upper bound of

every element in qt is less than at = θ. Thus if at > θ, qt still has no extreme element and

the answer would still be inconsistent.

Part 3: From [KPR03], because xj is uniquely determined, we know that there exists

a query set qk (different from qt) for which j is the only extreme element. This means

that θ = at < ak and revealing at reduced the upper bound of some element indexed in

qk \ {j}. This would be the case even for any value of at < θ, so that j is still the only

extreme element for qk and hence xj is still uniquely determined.

Part 4: As in the proof of Lemma 2.5.3, qt = {j} is a trivial case. Hence assume that

|qt| > 1 and j is the only extreme element of qt. This means that each element indexed in

qt \ {j} has an upper bound less than at = θ. This would be the case even for any value

of at > θ, so that j is still the only extreme element for qt and hence xj is still uniquely

determined. 2

Consequently, we have the following theorem.

2.5. SIMULATABLE AUDITING ALGORITHMS, CLASSICAL COMPROMISE 31

Theorem 2.5.5 Algorithm 2 is a max simulatable auditor that runs in time

O((log t)
∑t

i=1 |qi|) where t is the number of queries.

2.5.4 Utility of max Simulatable Auditor vs. Monitoring

While both simulatable auditors and monitoring methods are safe, simulatable auditors

potentially have greater utility, as shown by the following example (see Figure 2.3).

Consider the problem of auditing max queries on a data set containing 5 elements.

We will consider three queries and two possible sets of answers to the queries. We will

demonstrate that the simulatable auditor answers the third query in the first case and denies

it in the second case while a query monitor (which makes the decisions based only on

the query sets) has to deny the third query in both cases. Let the query sets be q1 =

{1, 2, 3, 4, 5}, q2 = {1, 2, 3}, q3 = {3, 4} in that order. Suppose that the first query is

answered as a1 = 10. We consider two scenarios based on a2. (1) If a2 = 10, then every

query set has at least two extreme elements, irrespective of the value of a3. Hence the

simulatable auditor will answer the third query. (2) Suppose a2 = 8. Whenever a3 < 10,

5 is the only extreme element for S1 so that x5 = 10 is determined. Hence it is not safe to

answer the third query.

While the simulatable auditor provides an answer q3 in the first scenario, a monitor

would have to deny q3 in both, as its decision is oblivious of the answers to the first two

queries.

a1 = 10
a2 = 8

x1 x2 x3 x4

a2 = 10

x5

a3 < 10

a3
a1 = 10

Figure 2.3: max simulatable auditor is more useful than max query restriction auditor. The
values within the boxes correspond to the second scenario.

32 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

2.6 Probabilistic Compromise

We next describe a definition of privacy that arises from some of the previously noted

limitations of classical compromise. On the one hand, classical compromise is a weak

definition since if a private value can be deduced to lie in a tiny interval – or even a large

interval where the distribution is heavily skewed towards a particular value – it is not con-

sidered a privacy breach. On the other hand, classical compromise is a strong definition

since there are situations where no query would ever be answered. This problem has been

previously noted [KPR03]. For example, if the data set contains items known to fall in a

bounded range, e.g., Age, then no sum query would ever be answered. For instance, the

query sum(x1, . . . , xn), would not be answered since there exists a data set, e.g., xi = 0

for all i where a value, in fact all values, can be uniquely determined.

To work around these issues, we propose a definition of privacy that bounds the change

in the ratio of the posterior probability that a value xi lies in an interval I given the queries

and answers to the prior probability that xi ∈ I . This definition is related to the notion of

semantic security [GM82] and to definitions suggested in the perturbation literature includ-

ing [EGS03, DN03, DN04].

2.6.1 Privacy Definition

Consider an arbitrary data set X = {x1, . . . , xn}, in which each xi is chosen independently

according to the same distribution H on (−∞,∞). Let D = Hn denote the joint distri-

bution. Let the queries be denoted as qj = (Qj, fj), for j = 1, . . . , t where Qj ⊆ [n]

specifies a subset of the data set entries and fj specifies a function (such as sum or max).

The answer aj = fj(Qj) is fj applied to the subset of entries {xi|i ∈ Qj}.
We next define the notion of λ-safe. We say that a sequence of queries and answers is

λ-safe for an entry xi and an interval I if the attacker’s confidence that xi ∈ I does not

change significantly upon seeing the queries and answers.

Definition 2.3 The sequence of queries and answers, q1, . . . , qt, a1, . . . , at is said to be λ-

safe with respect to a data entry xi and an interval I ⊆ (−∞,∞) if the following Boolean

2.6. PROBABILISTIC COMPROMISE 33

predicate evaluates to 1:

Safeλ,i,I(q1, . . . , qt, a1, . . . , at) =
{

1 if 1/(1 + λ) ≤ PrD(xi∈I|∧t
j=1(fj(Qj)=aj))

PrD(xi∈I)
≤ (1 + λ)

0 otherwise

We say that an interval J is β-significant if for every i ∈ [n] the (a-priori) probability

that xi ∈ J is at least 1/β. We will only care about probability changes with respect

to significant intervals. The definition below defines privacy in terms of a predicate that

evaluates to 1 if and only if q1, . . . , qt, a1, . . . , at is λ-safe for all entries and all β-significant

intervals:

AllSafeλ,β(q1, . . . , qt, a1, . . . , at) = (2.1)














1 if Safeλ,i,J(q1, . . . , qt, a1, . . . , at) = 1, for every i ∈ [n] and

every β-significant interval J

0 otherwise

We now turn to our privacy definition. Let X = {x1, . . . , xn} be the data set, in which

each xi is chosen independently according to the same distribution5 H on (−∞,∞). Let

D = Hn denote the joint distribution. Consider the following (λ, β, T)-privacy game

between an attacker and an auditor, where in each round t (for up to T rounds):

1. The attacker (adaptively) poses a query qt = (Qt, ft).

2. The auditor decides whether to allow qt or not. The auditor replies with at = ft(Qt)

if qt is allowed and with at = “denied” otherwise.

3. The attacker wins if AllSafeλ,β(q1, . . . , qt, a1, . . . , at) = 0.6

5Our analysis works even if each xi is chosen independently from a different distribution. However, to
simply the notation, we assume that each value is drawn from the same distribution.

6Hereafter, we will refer to the predicates without mentioning the queries and answers for the sake of
clarity.

34 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

Definition 2.4 We say that an auditor is (λ, δ, β, T)-private if for any attacker A

Pr[A wins the (λ, β, T)-privacy game] ≤ δ .

The probability is taken over the randomness in the distribution D and the coin tosses of

the auditor and the attacker.

Combining Definitions 2.2 and 2.4, we have our new model of simulatable auditing. In

other words, we seek auditors that are simulatable and (λ, δ, β, T)-private.

Note that, on the one hand, the definition of simulatable auditing prevents the auditor

from using at in deciding whether to answer or deny the query. On the other hand, the

privacy definition requires that regardless of what at was, with high probability, each data

value xi is still safe (as defined by AllSafeλ,β). Consequently, it is important that the current

query qt be used in deciding whether to deny or answer. Because we cannot use the answer

at, but want to use the query qt, our auditor ignores the real answer at and instead makes

guesses about the value of at obtained by randomly sampling data sets according to the

distributionD conditioned on previous queries and answers.

2.6.2 Evaluating the Predicate AllSafeλ,β

Equation 2.1 requires checking whether the sequence of queries and answers is λ-safe for

infinitely many intervals (i.e., for all β-significant intervals). We next show that all such

intervals J can be guaranteed to be λ-safe, by making sure that a finite number of intervals

are safe.

We assume that the distributionH is specified such that we can obtain the partition I of

(−∞,∞) into ` intervals each with equal probability mass of 1
`
, i.e., PrD(xi ∈ I) = 1

`
for

every interval I ∈ I. For example, if H is specified as a cumulative distribution function,

then we can perform binary search to obtain the points in (−∞,∞) that define the above

partition to the desired level of precision.

We show that if privacy is preserved in each regularly-weighted interval of probability

mass 1
`
, then the privacy of any β-significant interval is also preserved. In other words,

to guarantee that any β-significant interval J is λ-safe, we will ensure that every interval

2.7. SIMULATABLE SUM AUDITING, PROBABILISTIC COMPROMISE 35

I ∈ I is λ̃-safe where λ̃ is smaller than λ. We provide a smooth trade-off: the finer-grained

the partition (i.e., larger `), the weaker the privacy requirements (i.e., larger λ̃) for each of

the ` intervals and vice versa. The intuition is the following. The privacy guarantees of the

intervals fully contained in J can be used to imply the privacy of J whereas the guarantees

of the two bounding intervals (which are partially contained in J) cannot be used. Hence,

if the partition is very fine-grained, J contains more intervals from the partition and hence

weaker privacy requirements suffice.

Given λ and β, we can choose the trade-off parameter, c to be any integer greater than

1 + 2/λ. Choosing c determines the parameters, ` = dcβe and λ̃ = λ(c−1)−2
c+1

. We formally

state the lemma below and provide the proof (based on the above intuition) in Section 2.9.1.

Lemma 2.6.1 Suppose Safeλ̃,i,I = 1 for every i ∈ [n] and each of the ` intervals I in the

partition I. Then, Safeλ,i,J = 1 for every i ∈ [n] and every β-significant interval J (i.e.,

AllSafeλ,β = 1).

2.7 Simulatable sum Auditing, Probabilistic Compromise

In this section we consider the problem of auditing sum queries (where each query is of the

form sum(Qj) for a subset of the dimensions, Qj) under the newly defined probabilistic

definition of compromise.

Prior to describing the solution, we give some intuition. Assume for simplicity that

each individual can take a value uniformly between [0, 1]. Then over n individuals, the

data set {x1, . . . , xn} can be any point in the unit cube [0, 1]n with equal probability. A

sum query and its corresponding answer induces a hyperplane. The data sets consistent

with one sum query/answer are then those points in [0, 1]n that fall on this hyperplane.

Each successive query/answer reduces the space of possible consistent data sets to those

in the intersection of the induced hyperplanes that also fall in [0, 1]n, i.e., the consistent

data sets lie in a convex polytope. Because the prior distribution is uniform, the posterior

distribution (given the queries and answers) inside the convex polytope is also uniform.

How can we audit sum queries? Following the general paradigm suggested in Fig-

ure 2.2, given a sequence of queries and answers and given a new query qt, we generate a

36 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

consistent answer to qt (without using the underlying data set). We do this by drawing a

point uniformly at random from the convex polytope induced by the previous queries and

answers. This point is a sample data set and we then compute a candidate answer to qt

based on this sample data set. Once we have an answer we can then determine whether a

privacy breach has occurred: Suppose that P is the current convex polytope. To determine

if a breach has occurred for a particular individual xi and a particular interval I , consider

the definition of privacy breach: Pr(xi∈I|~x∈P)
Pr(xi∈I)

= Pr(xi∈I|~x∈P)
|I|

. We can estimate the probabil-

ity in the numerator by sampling from the convex polytope P and estimating what fraction

of the sample points lie inside I . If the fraction above is greater than (1+λ) or less than 1
1+λ

then the query is unsafe for this sampled data set. To increase our certainty, we repeat the

above process with many consistent datasets, i.e., many consistent answers to the query qt.

If many consistent answers lead to a privacy breach, we deny the answer and otherwise we

give the exact answer. In fact, our algorithm in [KMN05] for auditing sum queries under

probabilistic compromise uses the above technique.

While this intuition was given in the context of the uniform distribution, there is noth-

ing specific about the uniform distribution that this argument utilizes. Indeed, in the rest of

this section, we will assume that the underlying data set is generated from a more general

logconcave distribution. We use this distribution because there exist algorithms for approx-

imately sampling from it. However, there is nothing about our general approach that limits

its applicability to logconcave distributions.

2.7.1 Properties of Logconcave Distributions

The class of logconcave distributions forms a common generalization of uniform distribu-

tions on convex sets and Gaussian distributions. A distribution over a domain D is said

to be logconcave if it has a density function f such that the logarithm of f is concave

on its support. That is, the density function f : D → R+ is logconcave if it satisfies

f(αx + (1 − α)y) ≥ f(x)αf(y)1−α for every x, y ∈ D and 0 ≤ α ≤ 1. These distri-

butions constitute a broad class and play an important role in stochastic optimization and

economics of uncertainty and information [LV03, Pre95, An96].

2.7. SIMULATABLE SUM AUDITING, PROBABILISTIC COMPROMISE 37

We assume that each element xi is independently drawn according to the same logcon-

cave distribution H over R. Let D = Hn denote the joint distribution. Since the product

of two logconcave functions is logconcave, the joint distribution D is also logconcave.

Moreover, as the queries and answers impose convex constraints and indicator functions

of convex sets are logconcave, the posteriori distribution DQ,t (which is D conditioned on

∧t
j=1(sum(Qj) = aj)) is also logconcave. This is because the density function for the pos-

teriori distribution can be expressed as the product of the density function for the apriori

distribution and the indicator function corresponding to the convex constraints (scaled by a

constant)7.

Our algorithms make use of randomized, polynomial-time algorithms for sampling

(with a small error) from a logconcave distribution (see for example [LV03]). We will

use the following theorem.

Theorem 2.7.1 There exists an algorithm Sample(G, ε) for sampling from an arbitrary

logconcave distribution G with running time of O∗(nk) (for some constant k) such that the

sampled output follows a distribution G ′ where the total variation distance between G and

G ′ is at most ε.

The asterisk in the O∗() notation indicates that (polynomial) dependence on log n, and

the error parameter, ε are not shown (similar to the notation used in [LV03]). The total vari-

ation distance between two probability distributions G and G ′ is the largest possible differ-

ence between the probabilities assigned to the same event, i.e., supE|PrG(E) − PrG′(E)|.
The current best known algorithm [LV03] for sampling from a logconcave distribution runs

in time O∗(n5).

2.7.2 Estimating the Predicate AllSafeλ,β using Sampling

We begin by considering the situation when we have the answer to the last query at. Our

auditors cannot use at, and we will show how to get around this assumption. Given at and

all previous queries and answers, Algorithm 3 checks whether privacy has been breached.

7The density function for the posteriori distribution, fDQ,t
is proportional to the apriori density, fD inside

the convex region C and is zero outside the region. Denoting the indicator function for the region by δC , we
get: fDQ,t

(·) = fD(·) × δC (·)
R

C
fD(~x)d~x

38 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

As described in Section 2.6.2, it is enough to make sure that each of the ` intervals in I is

safe (for a suitable choice of c and hence ` in Lemma 2.6.1). For each xi and each interval

I in I, the apriori probability that xi lies in I is equal to 1
`
, from the definition of I. To

estimate the posteriori probability that xi lies in I , we sample many data sets according to

the posteriori distribution DQ,t (which is logconcave) and compute the fraction of the data

sets satisfying xi ∈ I . This is done using Algorithm Sample from Theorem 2.7.1.

Algorithm 3 takes as input, the sequence of queries and answers and the parameters, λ

(from Definition 2.3), η (probability of error), c (trade-off parameter from Lemma 2.6.1),

β (from the notion of β-significant interval), and n (the size of the data set). λ̃ is defined in

terms of λ as for Lemma 2.6.1. However, we check the privacy requirement with respect

to a smaller parameter, λ′ = λ̃/3. N denotes the number of data sets sampled and Ne

denotes the number of data sets satisfying xi ∈ I . The ratio, Ne

N
is an estimate of the

posteriori probability that xi ∈ I . As the apriori probability is equal to 1/`, we require that

the ratio, `·Ne

N
be very close to 1. In Algorithm 3, let ` = dcβe, λ̃ = λ(c−1)−2

c+1
, λ′ = λ̃

3
,

N = 9`2 ln(2/η)

λ̃2 · (1+ λ̃/3)2 ·max((1+ λ̃)2, (3+ λ̃/3)2) and ε = η
2N

. The proof will illustrate

why this choice of parameters works.

Algorithm 3 SAFE

1: Input: Queries and answers qj and aj for j = 1, . . . , t, the apriori distribution D, and
parameters λ, η, c, β, n.

2: Let safe=true
3: for each xi and for each interval I in I do
4: Sample N data sets according to DQ,t, using Algorithm Sample(DQ,t, ε)
5: Let Ne be the number of data sets satisfying xi ∈ I
6: if

(

`·Ne

N
6∈

[

1
1+λ′ , 1 + λ′

])

then
7: Let safe=false
8: end if
9: end for

10: Return safe

We now prove that Algorithm 3 behaves as desired. Ideally, we would like to prove that

if the query is not safe then we deny the query and if the query is safe then we answer the

query. However our claims will not be that strong for a few reasons: (a) we do not check

all (in fact, infinitely many) β-significant intervals for privacy and instead check only `

intervals in the partition (b) we estimate the posteriori probability using sampling and then

2.7. SIMULATABLE SUM AUDITING, PROBABILISTIC COMPROMISE 39

use Chernoff bounds and (c) we cannot sample exactly from the underlying logconcave

distribution. Consequently, with probability close to 1, whenever AllSafeλ,β = 0 we deny

the query and for a smaller privacy parameter, λ̃/9 and larger significance parameter, `,

whenever AllSafeλ̃/9,` = 1 we answer the query. For the region in between, we make no

guarantees.

Lemma 2.7.2 1. If AllSafeλ,β = 0 then Algorithm SAFE returns false with probability

at least 1− η.

2. If AllSafeλ̃/9,` = 1 then Algorithm SAFE returns true with probability at least 1 −
2n`η.

Proof: To simplify the analysis, we will assume that Algorithm Sample always returns

a sample from the true distribution. We will first take into account the error due to this

assumption. For 1 ≤ j ≤ N , let Gj be the distribution followed by the output of Algorithm

Sample(DQ,t, ε) in jth iteration of the algorithm. Then, the variation distance between the

distributions, dist(Gj,DQ,t) ≤ ε. Using a standard argument (simple hybrid argument), it

follows that, the variation distance between the two product distributions, dist(G1 ×G2 ×
. . .×GN ,DN

Q,t) ≤ Nε = η/2.

We will use the subscript ‘real’ to refer to probabilities under the distribution sampled

by Sample and ‘ideal’ to denote the probabilities under the assumption that Sample re-

turns a sample from the true distribution. Then, for any event E, Prreal(E) ≤ Prideal(E) +

η/2.

We now prove the two parts of the lemma.

Part 1: Using Lemma 2.6.1, it follows that Safeλ̃,i,I = 0 for some i ∈ [n] and I ∈ I. Let

pe = PrDQ,t
(xi ∈ I) denote the posteriori probability. From the definition of I, the apriori

probability PrD(xi ∈ I) = 1/`.

Suppose 1 + λ̃ <
PrD(xi∈I|∧t

j=1(sum(Qj)=aj))

PrD(xi∈I)
= pe`.

We use Chernoff bounds to show that `·Ne

N
> 1 + λ′ with probability at least 1− η. Let

θ1 = pe`−(1+λ′)
pe`

≥ λ̃−λ′

pe`
= 2λ̃

3pe`
> 0. Then,

40 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

Pr
ideal

(

` ·Ne

N
≤ 1 + λ′

)

= Pr
ideal

(Ne ≤ Npe(1− θ1))

≤ e−
Npeθ2

1
4

≤ η/2

where the last step is obtained using N ≥ 9`2 ln(2/η)

λ̃2 , so that Npeθ2
1

4
≥ 9`2 ln(2/η)

λ̃2 · pe

4
·

(

2λ̃
3pe`

)2

≥ ln(2/η). Hence,

Pr
real

(

` ·Ne

N
≤ 1 + λ′

)

≤ Pr
ideal

(

` ·Ne

N
≤ 1 + λ′

)

+ η/2

≤ η

Thus the Algorithm SAFE returns false with probability at least 1− η.

Now suppose pe` < 1
1+λ̃

. Let θ2 = 1−pe`(1+λ′)
pe`(1+λ′)

> 0. Using a similar argument as above,

we get:

Pr
real

(

` ·Ne

N
≥ 1

1 + λ′

)

≤ Pr
ideal

(

` ·Ne

N
≥ 1

1 + λ′

)

+ η/2

= Pr
ideal

(Ne ≥ Npe(1 + θ2)) + η/2

≤ e−
Npeθ2

2
4 + η/2

≤ η

where the last step is obtained using N ≥ 9`2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(1 + λ̃)2 and

θ2 = 1−pe`(1+λ′)
pe`(1+λ′)

≥ 1− 1+λ′

1+λ̃

pe`(1+λ′)
= λ̃−λ′

pe`(1+λ′)(1+λ̃)
= 2λ̃

3pe`(1+λ̃/3)(1+λ̃)
, so that

Npeθ2
2

4
≥ 9`2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(1 + λ̃)2 · pe

4
·
(

2λ̃
3pe`(1+λ̃/3)(1+λ̃)

)2

≥ ln(2/η).

Part 2: We actually prove a stronger claim than what is given in the statement of the lemma,

by assuming a weaker condition. The stronger claim was not given as part of the lemma

2.7. SIMULATABLE SUM AUDITING, PROBABILISTIC COMPROMISE 41

so that the two parts of the lemma are symmetric and easier to understand. By definition,

AllSafeλ̃/9,` = 1 means that the sequence of queries and answers is λ̃/9-safe for all entries

and all `-significant intervals. In particular, this holds for the ` intervals in the partition

I. Our stronger claim, which requires only this weaker assumption, is stated below and

proved in Section 2.9.2.

Claim 2.7.3 Whenever Safeλ̃/9,i,I = 1 for every i ∈ [n] and each of the ` intervals I in

the partition I, the following statements hold: (i) AllSafe(λ
9
+ 16

9(c−1)),β = 1. (ii) Algorithm

SAFE returns true with probability at least 1− 2n`η.

2

The constants used above have not been optimized. By picking c to be sufficiently large,

we can choose λ̃ to be arbitrarily close to λ. Further, by choosing a large N so that θ1, θ2, θ3

and θ4 could be sufficiently small, we can choose any value λ′ < λ̃ and thereby prove the

second part of the lemma with any value λ′′ < λ̃ (instead of λ̃/9). Furthermore, taking

η < 1/6n`, and using standard methods (repetition and majority vote), one can lower the

error guarantees of Lemma 2.7.2 to be exponentially small. Neglecting this small error,

we assume that Algorithm SAFE always returns false when AllSafeλ,β = 0 and always

returns true when AllSafeλ′′,dcβe = 1, for some λ′′ < λ. The choice of c provides a trade-

off in the utility guarantee of Algorithm SAFE (i.e., part 2 of Lemma 2.7.2): for a large c,

the privacy parameter λ′′ can be made very close to λ, but the significance parameter dcβe
deviates more from β. From now on we also assume that Algorithm SAFE has an additional

parameter λ′′.

2.7.3 Constructing the Simulatable Auditor

Without loss of generality, we assume that the input q1, . . . , qt−1, a1, . . . , at−1 contains only

queries allowed by the auditor. As the auditor is simulatable, denials do not leak any infor-

mation (and hence do not change the conditional probability on data sets) beyond what the

previously allowed queries already leak. Each data set sampled follows a distribution which

is within a total variation distance, ε from the desired conditional distribution, DQ,t−1. For

a data set X and query Q, let sumX(Q) =
∑

i∈Q X(i).

42 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

Algorithm 4 sum SIMULATABLE AUDITOR

1: Input: (allowed) queries and answers qj and aj for j = 1, . . . , t − 1, a new query qt,
the apriori distributionD, and parameters λ, λ′′, η, c, β, n, δ, T .

2: Let ε = δ
10T

3: for O(T
δ

log T
δ
) times do

4: Sample a data set X ′ according to DQ,t−1, using Algorithm Sample(DQ,t−1, ε)
5: Let a′

t = sumX′(Qt)
6: Evaluate Algorithm SAFE on input q1, . . . , qt, a1, . . . , at−1, a

′
t,D and parameters

λ, λ′′, η, c, β, n
7: end for
8: if the fraction of sampled data sets for which Algorithm SAFE returned false is more

than δ
2T

then
9: Output “Deny” and return

10: else
11: Output “Answer” and return
12: end if

Theorem 2.7.4 Algorithm 4 is a (λ, δ, β, T)-private simulatable auditor.

Proof: By Definition 2.4, the attacker wins the game in round t if he poses a query qt for

which AllSafeλ,β(q1, . . . , qt, a1, . . . , at) = 0 and the auditor does not deny qt.

Consider first an auditor that allows every query. Given answers to the first t−1 queries,

the true data set is distributed according to the distributionD, conditioned on these answers.

Given qt (but not at), the probability the attacker wins hence equals

pt = Pr
D









AllSafeλ,β









q1, . . . , qt,

a1, . . . , at−1,

sumX′′(qt)









= 0

∣

∣

∣

∣

q1, . . . , qt−1, a1, . . . , at−1









where X ′′ is a data set drawn truly according toDQ,t−1 (i.e.,D conditioned on q1, . . . , qt−1,

a1, . . . , at−1). Let p̃t,j denote the corresponding probability under the distribution sampled

by Algorithm Sample in the jth iteration. From Theorem 2.7.1, p̃t,j ≥ pt − ε. Let p̃t =

minjp̃t,j so that p̃t ≥ pt−ε. Note that, since a′
t = sumX′(Qt) is precisely what the algorithm

computes, the algorithm essentially estimates p̃t via multiple draws of random data sets X ′

from DQ,t−1.

2.8. SUMMARY AND FUTURE WORK 43

Our auditor, however, may deny answering qt. First consider the case when pt > δ
T

so

that p̃t > 9δ
10T

. Then, by the Chernoff bound, the fraction computed in step 8 is expected

to be higher than δ
2T

, with probability at least 1 − δ
T

. Hence, if pt > δ
T

, the attacker wins

with probability at most δ
T

. When pt ≤ δ, the attacker wins only if the query is allowed,

and even then only with probability pt. We get that in both cases the attacker wins with

probability at most δ
T

. By the union bound, the probability that the attacker wins any one

of the T rounds is at most δ, as desired. 2

2.7.4 Running Time

Denoting the running time of Algorithm Sample by TIME(Sample, ε), the running time

of Algorithm SAFE is O(ncβN · TIME(Sample, ε)) and hence the running time of Algo-

rithm 4 is O(ncβN T
δ

log T
δ
· TIME(Sample, ε)).

We observe that the above algorithm can be modified to handle the case when the num-

ber of rounds T is not known apriori or could be potentially unbounded. Suppose the

number of rounds is estimated to be within a constant factor of T0. We allot an error budget

of δ/2 for the first T0 queries, δ/4 for the next T0 queries, and so on. In other words, we set

δ/2 as the error parameter for the first T0 rounds, δ/4 as the error parameter for the next T0

rounds, and so on. Then, we get that the attacker wins the first T0 rounds with probability

at most δ
2
, the next T0 rounds with probability at most δ

4
, and so on. By the union bound,

the probability that the attacker wins any one of the T rounds is at most δ
2

+ δ
4

+ . . . < δ.

Remark: We further remark that our simulatable auditing algorithm for sum queries can be

extended to any linear combination queries. This is because, as in the case of sum auditing,

(∩t
j=1(

∑n
i=1 qjixi = aj)) defines a convex constraint where qj1, . . . , qjn are the coefficients

of the linear combination query qj .

2.8 Summary and Future Work

We uncovered the fundamental issue that query denials leak information. While existing

online auditing algorithms do not explicitly account for query denials, we believe that future

44 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

research must account for such leakage if privacy is to be ensured. We suggest one natural

way to get around the leakage that is inspired by the simulation paradigm in cryptography –

where the decision to deny can be equivalently decided by either the attacker or the auditor.

Next we introduced a new definition of privacy. While we believe that this definition

overcomes some of the limitations discussed, there is certainly room for future work. The

current definition does not ensure that the privacy of a group of individuals or any function

of a group of individuals is kept private.

Our sum simulatable auditing algorithm demonstrates that a polynomial-time solution

exists. But the sampling algorithms that we invoke are still not practical – although they

have been steadily improving over the years. Simulatable sum queries over Boolean data

is an interesting avenue for further work, as is the study of other classes of queries such as

the kth ranked element, variance, clusters and combinations of these.

Another direction for future work is to fully understand the notion of utility for auditing

algorithms. A particular dimension of utility has been studied in [NMK+06], based on

the intuition that an auditor that denies more often has lesser utility. A related question

is to analyze the price of simulatability — how many queries get denied when they could

have been safely answered if we had looked at the true answers while making the decision.

Collusion and denial of service are closely related issues that need to be investigated. As

discussed in Section 1.1.1, for all interactive methods, there is an implicit assumption that

all users can collude with each other and hence queries from all users are treated as coming

from a single user. As a result, each user has reduced utility. Moreover, a malicious user

may pose queries in such a way that innocuous queries in the future get denied. One

solution could be to include certain important (aggregate) queries to the pool of answered

queries so that these queries will always be answered in the future. Yet another issue is the

privacy of the queries themselves – by treating all users as one entity, we assume that any

user has access to the queries already posed by other users. While this access is needed to

run the simulatable algorithm, providing it would violate the privacy of the queries.

2.9. MISCELLANEOUS TECHNICAL DETAILS 45

2.9 Miscellaneous Technical Details

2.9.1 Proof of Lemma 2.6.1

Recall that λ and β were given and the trade-off parameter, c was chosen to be any integer

greater than 1 + 2/λ. The number of intervals in the partition, ` was set to dcβe. Further,

the privacy parameter, λ̃ is chosen to satisfy (c+1
c−1

)(1 + λ̃) = (1 + λ) and is positive (due to

the choice of c).

Let J be any β-significant interval. Denote PrD(xi ∈ J) by pJ and let d = b`pJc. Note

that d ≥ c since d = b`pJc ≥ bcβpJc ≥ bcβ · 1
β
c = c. Hence, d+1

d−1
≤ c+1

c−1
. To prove the

lemma, we need to show that the sequence of queries and answers is λ-safe for J , for all i.

Instead, we will prove that the sequence is ((d+1
d−1

)(1+ λ̃)− 1)-safe for J . This is a stronger

claim since (d+1
d−1

)(1 + λ̃) ≤ (c+1
c−1

)(1 + λ̃) = (1 + λ).

Claim 2.9.1 Let J be any β-significant interval and d = b`pJc. Then,

(

1

1 + λ̃

) (

d− 1

d + 1

)

≤
PrD(xi ∈ J | ∧t

j=1 (fj(Qj) = aj))

PrD(xi ∈ J)
≤ (1 + λ̃)

(

d + 1

d− 1

)

.

Proof: Since d
`
≤ PrD(xi ∈ J) < d+1

`
and since xi is equally likely to occur in any of the

` intervals in I, one of the following is true:

• Case 1: J is contained in the union of d+1 consecutive intervals in I, say, I1, I2, . . . ,

Id+1, of which J contains the intervals, I2, I3, . . . , Id. Denote PrD(xi ∈ Ik) by pk

and PrD(xi ∈ Ik| ∧t
j=1 fj(Qj) = aj) by qk. Note that pk = 1

`
∀k.

d− 1

`(1 + λ̃)
=

∑d
k=2 pk

1 + λ̃
≤

d
∑

k=2

qk

≤ Pr
D

(xi ∈ J | ∧t
j=1 fj(Qj) = aj)

≤
d+1
∑

k=1

qk ≤ (1 + λ̃)
d+1
∑

k=1

pk = (1 + λ̃)
d + 1

`

46 CHAPTER 2. PRIVACY-PRESERVING AUDITING ALGORITHMS

d + 1

`
=

d+1
∑

k=1

pk ≥ Pr
D

(xi ∈ J) ≥
d

∑

k=2

pk =
d− 1

`

Taking the ratio gives the result.

• Case 2: J is contained in the union of d+2 consecutive intervals in I, say, I1, I2, . . . ,

Id+2, of which J contains the intervals, I2, I3, . . . , Id+1. By a similar argument as

above, we get:

(

1

1 + λ̃

)(

d

d + 2

)

≤
PrD(xi ∈ J | ∧t

j=1 fj(Qj) = aj)

PrD(xi ∈ J)
≤ (1 + λ̃)

(

d + 2

d

)

The result follows from the fact that d+2
d

< d+1
d−1

.

2

2.9.2 Proof of Claim 2.7.3

The part (i) of the claim follows directly from the proof of Lemma 2.6.1, by replacing λ̃

with λ̃/9. This is because the sequence of queries and answers is ((d+1
d−1

)(1+ λ̃/9)−1)-safe

for the interval J (as defined in that proof). In order to see why AllSafe(λ
9
+ 16

9(c−1)),β = 1,

note that:

(

d + 1

d− 1

)

(1 + λ̃/9) ≤
(

c + 1

c− 1

)

(1 + λ̃/9) = 1 +

(

λ

9
+

16

9(c− 1)

)

We next prove part (ii) of the claim. By assumption, for any i and I ∈ I,

1

1 + λ̃/9
≤ pe` ≤ 1 + λ̃/9

We will show that for each i and I ∈ I, Algorithm SAFE returns false with probability

at most 2η. Using the union bound on all i ∈ [n] and I ∈ I yields the proof.

Let θ3 = (1+λ′)−pe`
pe`

> 0 and θ4 = pe`(1+λ′)−1
pe`(1+λ′)

> 0.

2.9. MISCELLANEOUS TECHNICAL DETAILS 47

Pr
real

(

` ·Ne

N
> 1 + λ′

)

≤ Pr
ideal

(

` ·Ne

N
> 1 + λ′

)

+ η/2

= Pr
ideal

(Ne > Npe(1 + θ3)) + η/2

≤ e−
Npeθ2

3
4 + η/2

≤ η

The last step is obtained using N ≥ 9`2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(3 + λ̃/3)2 ≥ 81`2 ln(2/η)

λ̃2 and

θ3 = (1+λ′)−pe`
pe`

≥ (1+λ′)−(1+λ̃/9)
pe`

= 2λ̃
9pe`

, so that Npeθ2
3

4
≥ 81`2 ln(2/η)

λ̃2 · pe

4
·
(

2λ̃
9pe`

)2

≥ ln(2/η).

Similarly,

Pr
real

(

` ·Ne

N
<

1

1 + λ′

)

≤ Pr
ideal

(

` ·Ne

N
<

1

1 + λ′

)

+ η/2

= Pr
ideal

(Ne < Npe(1− θ4)) + η/2

≤ e−
Npeθ2

4
4 + η/2

≤ η

The last step is obtained using N ≥ 9`2 ln(2/η)

λ̃2
· (1 + λ̃/3)2(3 + λ̃/3)2 and

θ4 = pe`(1+λ′)−1
pe`(1+λ′)

≥
1+λ′

1+λ̃/9
−1

pe`(1+λ′)
= λ′−λ̃/9

pe`(1+λ′)(1+λ̃/9)
= 2λ̃

3pe`(1+λ̃/3)(3+λ̃/3)
, so that

Npeθ2
4

4
≥ 9`2 ln(2/η)

λ̃2 · (1 + λ̃/3)2(3 + λ̃/3)2 · pe

4
·
(

2λ̃
3pe`(1+λ̃/3)(3+λ̃/3)

)2

≥ ln(2/η).

Chapter 3

Our Data, Ourselves: Privacy via

Distributed Noise Generation

In this chapter, we consider another method for protecting privacy in the interactive frame-

work, namely output perturbation [DN03, DN04, BDMN05, DMNS06]. In output pertur-

bation, the database administrator computes exact answer to the query and then outputs

a perturbed answer (say, by adding noise) as the response to the query. We focus on the

amount of trust required on the database administrator and ask the following question: Is

there a way to implement an output perturbation scheme without requiring a trusted collec-

tor of data?

We can classify the privacy techniques based on the amount of trust required on the

database administrator. The positive results in the privacy literature fall into three broad cat-

egories: non-interactive with trusted server, non-interactive with untrusted server – specifi-

cally, via randomized response, in which a data holder alters her data with some probability

before sending it to the server – and interactive with trusted server. In particular, previous

privacy methods for the interactive framework assume that the database administrator is

trusted by the individuals whose private information is contained in the database. Inspired

by the desire to enable individuals to retain control over their information (as we contend

in [ABG+04]), we provide a distributed implementation of the output perturbation schemes

described in [DN04, BDMN05, DMNS06], thereby removing the assumption of a trusted

48

49

collector of data. Such an approach is desirable even from the perspective of an organiza-

tion such as census bureau: the organization does not have to protect against insider attacks

or worry about the high liability costs associated with a privacy breach.

Our implementation replaces the trusted server with the assumption that strictly fewer

than one third of the participants are faulty (we handle Byzantine faults). In the above

output perturbation schemes, privacy is obtained by perturbing the true answer to a database

query by the addition of a small amount of Gaussian or exponentially distributed random

noise. For many cases the results obtained are of provably better quality (accuracy and

conciseness, i.e., the number of samples needed for correct statistics to be computed) than

is possible for randomized response or other non-interactive solutions [DMNS06]. Our

main technical contribution is in the cooperative generation of shares of noise sampled

from in one case the Binomial distribution (as an approximation for the Gaussian) and in

the second case the Poisson distribution (as an approximation for the exponential).

Consider a database that is a collection of rows; for example, a row might be a hospital

record for an individual. A query is a function f mapping rows to the interval [0, 1]. The

true answer to the query is the value obtained by applying f to each row and summing

the results. By responding with an appropriately perturbed version of the true answer, pri-

vacy can be guaranteed. The computational power of this provably private “noisy sums”

primitive is demonstrated in [BDMN05], where it was shown how to carry out accurate

and privacy-preserving variants of many standard data mining algorithms, such as k-means

clustering, principal component analysis, singular value decomposition, the perceptron al-

gorithm, and anything learnable in the statistical queries (STAT) learning model1.

Although the powerful techniques of secure function evaluation [Yao82, GMW87] may

be used to emulate any privacy mechanism, generic computations can be expensive. The

current work is inspired by the combination of the simplicity of securely computing sums

and the power of the noisy sums. We provide efficient methods allowing the parties holding

their own data to act autonomously and without a central trusted center, while simultane-

ously preventing malicious parties from interfering with the utility of the data.

The approach to decentralization is conceptually very simple. For ease of exposition we

1This was extended in [DMNS06] to handle functions f that operate on the database as a whole, rather
than on individual rows of the database.

50 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

describe the protocol assuming that every data holder participates in every query and that

the functions f are predicates. We discuss relaxations of these assumptions in Section 3.4.

Structure of ODO (Our Data, Ourselves) Protocol

1. Share Summands: On query f , the holder of di, the data in row i of the database,

computes f(di) and shares out this value using a non-malleable verifiable secret

sharing scheme (see Section 3.1), i = 1, . . . , n. The bits are represented as 0/1

values in GF(q), for a large prime q. We denote this set {0, 1}GF(q) to make the

choice of field clear.

2. Verify Values: Cooperatively verify that the shared values are legitimate (that is, in

{0, 1}GF(q), when f is a predicate).

3. Generate Noise Shares: Cooperatively generate shares of appropriately distributed

random noise.

4. Sum All Shares: Each participant adds together all the shares that it holds, obtaining

a share of the noisy sum
∑

i f(di) + noise. All arithmetic is in GF(q).

5. Reconstruct: Cooperatively reconstruct the noisy sum using the reconstruction tech-

nique of the verifiable secret sharing scheme.

Our main technical work is in Step 3. We consider two types of noise, Gaussian and scaled

symmetric exponential. In the latter distribution the probability of being at distance |x| from

the mean is proportional to exp(−|x|/R), the scale R determining how “flat” the distribu-

tion will be. In our case the mean will always be 0. Naturally, we must approximate these

distributions using finite-precision arithmetic. The Gaussian and exponential distributions

will be approximated, respectively, by the Binomial and Poisson distributions.

The rest of this chapter is organized as follows. In Section 3.1 we review those elements

from the literature necessary for our work, including definitions of randomness extractors

and of privacy. In Sections 3.2 and 3.3 we discuss implementations of Step 3 for Gaus-

sian and Exponential noise, respectively. Finally, various generalizations of our results are

mentioned in Section 3.4.

3.1. CRYPTOGRAPHIC AND OTHER TOOLS 51

3.1 Cryptographic and Other Tools

Model of Computation

We assume the standard synchronous model of computation in which n processors commu-

nicate by sending messages via point-to-point channels and up to t ≤ b n−1
3
c may fail in an

arbitrary, Byzantine, adaptive fashion. If the channels are secure, then the adversary may

be computationally unbounded. However, if the secure channels are obtained by encryption

then we assume the adversary is restricted to probabilistic polynomial time computations.

Next we give a brief description of several well-known primitive building blocks for

constructing distributed protocols: Byzantine Agreement [LSP82], Distributed Coin Flip-

ping [Rab83], Verifiable Secret Sharing (VSS) [CGMA85], Non-Malleable VSS, and Se-

cure Function Evaluation (SFE) [Gol04].

Byzantine Agreement [LSP82] is a fundamental problem in distributed computing. In

one of several equivalent statements of the problem, a single distinguished processor, called

the source, is to broadcast one bit v to n processors. We allow at most t Byzantine fail-

ures, i.e., processors that can fail in an unpredictable, coordinated, and malicious way. A

Byzantine agreement protocol achieves three properties:

1. Eventually all honest processors irreversibly decide on a some value (termination);

2. All honest processors decide on the same value v∗ (agreement);

3. If the source is honest, v = v∗ (validity).

The maximum number of faulty processors for which the problem is solvable is t < n/3.

For round-optimal Byzantine agreement in synchronous networks see [FM97, GM98]; for

a survey of earlier literature see [CD89].

Distributed coin flipping is a powerful tool often used as a subroutine in randomized

Byzantine agreement protocols. The primitive is also interesting in its own right, especially

in the context of distributed noise generation. Formally, a protocol for distributed coin

flipping guarantees the following:

1. Eventually all honest processors decide on the same value b ∈ {0, 1};

52 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

2. The value of b is unbiased, i.e., Pr[b = 0] = Pr[b = 1] = 1/2, where the probability

space is the coin tosses of all honest processors.

The problem of achieving distributed coin flipping with small bias was motivated by the

pioneering work of Rabin [Rab83], who showed that if a global coin were available to the

participants then Byzantine agreement could be achieved in an expected constant number

of rounds, the constant depending inversely on the bias, in contrast to the t + 1-round

lower bound for deterministic solutions [FL82]2. Cryptographic solutions to distributed

coin flipping include [FM88, CKS05].

One technique used to solve the distributed coin flipping problem is verifiable secret

sharing (VSS)3. A VSS scheme allows any processor to distribute shares of a secret, which

can be verified for consistency. If the shares verify, the honest processors can always recon-

struct the secret regardless of the adversary’s behavior. Moreover, the faulty processors by

themselves cannot learn any information about the secret. Introduced in [CGMA85], VSS,

in particular, verifiable secret sharing of a polynomial, has become the staple of multi-party

computation protocols, since it allows sharing and reconstruction of the secret despite ef-

forts of corrupted parties that may even include the secret’s owner, and since the shares

of values represented by the polynomials can be efficiently manipulated with the effect of

adding and multiplying the represented values [BOGW88, CCD88]. For a formal definition

and survey of the topic we refer the reader to Gennaro’s PhD thesis [Gen96].

For many cryptographic applications, including ours, where we do not assume private

point-to-point channels between each pair of parties, the secrecy guarantee of the standard

VSS definition is not sufficient. Indeed, one may naı̈vely assume that the XOR of two

random bits secretly shared and later reconstructed is an unbiased random coin if at least

one of the two bits was contributed by an honest processor. This scheme is insecure if

the adversary is able to copy the shared secret (i.e., the value of the XOR of two equal

bits will always be 0). The notion of a non-malleable VSS, which is resistant to this and

similar attacks, can be defined similarly to a non-malleable commitment scheme [DDN91].

A non-malleable VSS scheme ensures that the values shared by a non-faulty processor are

2The problem is also studied in other models, such as the full information model with non-adaptive ad-
versaries. See [Fei99] for a summary of results in this model.

3See [CKS05] for an intriguing alternative.

3.1. CRYPTOGRAPHIC AND OTHER TOOLS 53

completely independent of the values shared by the other processors; even exact copying is

prevented.

Informally, a non-malleable public-key cryptosystem [DDN91, CS98] is a probabilistic

public-key cryptosystem [GM84] with the property that seeing an encryption α ∈ E(m)

does not help an adversary to construct an encryption of a related message β ∈ E(m′),

where R(m, m′) for a nontrivial polynomial time relation R. In the public key setting,

non-malleable VSS can be constructed from VSS: all messages from i to j are prefixed

with the label “Ei to Ej” (these are the public encryption keys, respectively, of i and

j), and encrypted under Ej . Without public keys one can use non-malleable commit-

ments [DDN91, Bar02, PR05] provided the parties have unique names (a realistic assump-

tion if they have IP or e-mail addresses).

Finally, we mention that any problem in multi-party computation, including those dis-

cussed in this chapter, can be studied in full generality in the secure function evaluation

(SFE) framework. SFE, defined in [Yao82, GMW87, BOGW88, CCD88] (see also [Gol04,

Chapter 7] for comprehensive treatment) is a method of computing any function on multiple

inputs in a way that leaks no information about the inputs other than the function’s output.

Existing methods are often based on Yao’s method of garbled circuits and are prohibitively

expensive for most applications.

Throughout this chapter we will use the following terminology. Values that have been

shared and verified, but not yet reconstructed, are said to be in shares. Values that are

publicly known are said to be public.

A randomness extractor [NZ96] is a method of converting a non-uniform input dis-

tribution into a near-uniform distribution on a smaller set. In general, an extractor is a

randomized algorithm, which additionally requires a perfect source of randomness, called

the seed. Provided that the input distribution has sufficiently high min-entropy, a good ex-

tractor takes a short seed and outputs a distribution that is statistically close to the uniform.

Formally,

Definition 3.1 Letting the min-entropy of a distribution D on X be denoted H∞(D) =

− log maxx∈X D(x), a function F : X × Y 7→ {0, 1}n is a (δ, ε, n)-extractor, if for any

54 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

distributionD on X such that H∞(D) > δ,

|{F (x, y) : x ∈D X, y ∈U Y } − Un| < ε,

where |·| is the statistical distance between two distributions, Un is the uniform distribution

on {0, 1}n, and x ∈D X stands for choosing x ∈ X according to D.

Optimal extractors can extract n = δ − 2 log(1/ε) + O(1) nearly-random bits with the

seed length O(log |X|) (see [Sha02] for many constructions matching the bound).

While in general the presence of a truly random seed cannot be avoided, there exist

deterministic extractors (i.e., without Y) for sources with a special structure [CGH+85,

CW89, TV00, KZ03, GRS04] where the randomness is concentrated on k bits and the rest

are fixed. Namely,

Definition 3.2 A distribution D over {0, 1}N is an (N, k) oblivious bit-fixing source if

there exists S = {i1, . . . , ik} ⊂ [N], such that Xi1 , . . . , Xik are uniformly distributed in

{0, 1}k, and the bits outside S are constant.

For any (N, k) bit-fixing source and any constant 0 < γ < 1/2 Gabizon et al. [GRS04]

give an explicit deterministic (k, ε)-extractor that extracts m = k −N 1/2+γ bits of entropy

with ε = 2−Ω(nγ) provided that k �
√

N . In our case N = 2n (n is the number of

participants), and strictly more than 2/3 of the input bits will be good. Thus, k > 2N/3,

and so we extract more than N/2 = n high quality bits by taking γ < 1/2.

A privacy mechanism is an interface between a user and data. It can be interactive or

non-interactive.

Assume the database consists of a number n of rows, d1, . . . , dn. In its simplest form, a

query is a predicate f : Rows → {0, 1}. In this case, the true answer is simply
∑

i f(di).

Slightly more generally, f may map [n]×Rows→ [0, 1], and the true answer is
∑

i f(i, di).

Note that we are completely agnostic about the domain Rows; rows can be Boolean, inte-

gers, reals, tuples thereof, or even strings or pictures.

A mechanism gives ε-indistinguishability [DMNS06] if for any two data sets that differ

on only one row, the respective output random variables (query responses) τ and τ ′ satisfy

3.1. CRYPTOGRAPHIC AND OTHER TOOLS 55

for all sets S of responses:

Pr[τ ∈ S] ≤ exp(ε)× Pr[τ ′ ∈ S] . (3.1)

This definition ensures that seeing τ instead of τ ′ can only increase the probability of any

event by at most a small factor. As a consequence, there is little incentive for any one

participant to conceal or misrepresent her value, as so doing could not substantially change

the probability of any event.

Similarly, we say a mechanism gives δ-approximate ε-indistinguishability if for outputs

τ and τ ′ based, respectively, on data sets differing in at most one row,

Pr[τ ∈ S] ≤ exp(ε)× Pr[τ ′ ∈ S] + δ .

The presence of a non-zero δ permits us to relax the strict relative shift in the case of events

that are not especially likely. We note that it is inappropriate to add non-zero δ to the

statement of ε-indistinguishability in [DMNS06], where the sets S are constrained to be

singleton sets.

Historically, the first strong positive results for output perturbation added noise drawn

from a Gaussian distribution, with density function Pr[x] ∝ exp(−x2/2R). A slightly

different definition of privacy was used in [DN04, BDMN05]. In order to recast those

results in terms of indistinguishability, we show in Section 3.1.1 that the addition of Gaus-

sian noise gives δ-approximate ε-indistinguishability for the noisy sums primitive when

ε > [log(1/δ)/R]1/2. In a similar vein, Binomial noise, where n tosses of an unbiased ±1

coin are tallied and divided by 2, also gives δ-approximate ε-indistinguishability so long as

the number of tosses n is at least 64 log(2/δ)/ε2.

Adding, instead, exponential noise results in a mechanism that can ensure

ε-indistinguishability (that is, δ = 0) [BDMN05, DMNS06]. If the noise is distributed

as Pr[x] ∝ exp(−|x|/R), then the mechanism gives 1/R-indistinguishability (cf. ε >

[log(1/δ)/R]1/2 for Gaussian noise). Note that although the Gaussian noise is more tightly

concentrated around zero, giving somewhat better accuracy for any given choice of ε, the

exponential noise allows δ = 0, giving a more robust solution.

56 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

3.1.1 Math for Gaussians and Binomials

We extend the results in [DMNS06] by determining the values of ε and δ for the Gaus-

sian and Binomial distributions for which the noisy sums primitive yields δ-approximate

ε-indistinguishability. Consider an output τ on a database D and query f . Let τ =
∑

i f(i, di) + noise, so replacing D with D′ differing only in one row changes the sum-

mation by at most 1. Bounding the ratio of probabilities that τ occurs with inputs D and

D′ amounts to bounding the ratio of probabilities that noise = x and noise = x + 1, for

the different possible ranges of values for x. Thus, we first determine the largest value of x

such that a relative bound of exp(ε) holds, and then integrate the probability mass outside

of this interval.

Recall the Gaussian density function: p(x) ∝ exp(−x2/2R). The ratio of densities at

two adjacent integral points is

exp(−x2/2R)

exp(−(x + 1)2)/2R
= exp(x/R + 1/2R).

This value remains at most exp(ε) until x = εR − 1/2. Provided that R ≥ 2 log(2/δ)/ε2

and that ε ≤ 1, the integrated probability beyond this point will be at most

Pr[x > εR − 1/2] ≤ exp(−(εR)2/2R)

(εR)
√

π
≤ δ .

As a consequence, we get δ-approximate ε-indistinguishability when R is at least 2 log(2/δ)/ε2.

For the Binomial noise with bias 1/2, whose density at n/2 + x is

Pr[n/2 + x] =

(

n

n/2 + x

)

1/2n ,

we see that the relative probabilities are

Pr[n/2 + x]

Pr[n/2 + x + 1]
=

n/2 + x + 1

n/2− x
.

So long as x is no more than εn/8, this should be no more than (1+ε) < exp(ε). Of course,

3.1. CRYPTOGRAPHIC AND OTHER TOOLS 57

a Chernoff bound tells us that for such x the probability that a sample exceeds it is

Pr[y > n/2 + εn/8] = Pr[y > (1 + ε/4)n/2]

≤ exp(−(ε2n/64)).

We get δ-approximate ε-indistinguishability so long as n is chosen to be at least 64 log(2/δ)/ε2.

This exceeds the estimate of the Gaussian due to approximation error, and general slop in

the analysis, though it is clear that the form of the bound is the same.

3.1.2 Adaptive Query Sequences

One concern might be that after multiple queries, the values of ε and δ degrade in an inele-

gant manner. We now argue that this is not the case.

Theorem 3.1.1 A mechanism that permits T adaptive interactions with a δ-approximate

ε-indistinguishable mechanism ensures δT -approximate εT -indistinguishability.

Proof: We start by examining the probability that the transcript, written as an ordered

T -tuple, lands in a set S.

Pr[x ∈ S] =
∏

i≤T

Pr[xi ∈ Si|x1, . . . , xi−1].

As the noise is independent at each step, the conditioning on x1, . . . , xi−1 only affects the

predicate that is asked. As a consequence, we can substitute

∏

i≤T

Pr[xi ∈ Si|x1, . . . , xi−1] ≤
∏

i≤T

(exp(ε)× Pr[x′
i ∈ Si|x1, . . . , xi−1] + δ) .

If we look at the additive contribution of each of the δ terms, of which there are T , we

notice that they are only ever multiplied by probabilities, which are at most one. Therefore,

58 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

each contributes at most an additive δ.

∏

i≤T

Pr[xi ∈ Si|x1, . . . , xi−1] ≤
∏

i≤T

(exp(ε)× Pr[x′
i ∈ Si|x1, . . . , xi−1]) + δT

= exp(εT)×
∏

i≤T

(Pr[x′
i ∈ Si|x1, . . . , xi−1]) + δT

= exp(εT)× Pr[x′ ∈ S] + δT .

The proof is complete. 2

3.2 Generating Gaussian Noise

Were we not concerned with malicious failures, a simple approach would be to have each

participant i perturb f(di) by sampling from a Gaussian with mean zero and variance
3
2
var/n, where var is a lower bound on the variance needed for preserving privacy (see

Section 3.1). The perturbed values would be shared out and the shares summed, yielding
∑

i f(di) + noise in shares. Since, as usual in the Byzantine literature, we assume that at

least 2/3 of the participants will survive, the total variance for the noise would be sufficient

(but not excessive). However, a Byzantine processor might add an outrageous amount of

noise to its share, completely destroying the integrity of the results. We now sketch the

main ideas in our solution for the Byzantine case.

Recall that the goal is for the participants to obtain the noise in shares. As mentioned

earlier, we will approximate the Gaussian with the Binomial distribution, so if the par-

ticipants hold shares of sufficiently many unbiased coins they can sum these to obtain a

share of (approximately) correctly generated noise. Coin flipping in shares (and otherwise)

is well studied, and can be achieved by having each participant non-malleably verifiably

share out a value in GF(2), and then locally summing (in GF(2)) the shares from all n

secret sharings.

This suggests a conceptually straightforward solution: Generate many coins in shares,

convert the shares from GF(2) to shares of values in a large field GF(q) (or to shares of

integers), and then sum the shares. In addition to the conversion costs, the coins themselves

are expensive to generate, since they require Ω(n) executions of verifiable secret sharing

3.2. GENERATING GAUSSIAN NOISE 59

per coin, which translates into Ω(nc) secret sharings for c coins4. To our knowledge, the

most efficient scheme for generating random bits is due to Damgård et al. [DFK+06], which

requires n sharings and two multiplications per coin.

We next outline a related but less expensive solution which at no intermediate or final

point uses the full power of coin-flipping. The solution is cost effective when c is suffi-

ciently large, i.e., c ∈ Ω(n). As a result, we will require only Ω(c) sharings of values in

GF(2) when c ∈ Ω(n). Let n denote both the number of players and the desired number of

coins5.

1. Each player i shares a random bit by sharing out a value bi ∈ {0, 1}GF(q), using

a non-malleable verifiable secret sharing scheme, where q is sufficiently large, and

engages in a simple protocol to prove that the shared value is indeed in the specified

set. (The verification is accomplished by distributively checking that x2 = x for each

value x that was shared, in parallel. This is a single secure function evaluation of a

product, addition of two shares, and a reconstruction, for each of the n bits bi.) This

gives a sequence of low-quality bits in shares, as some of the shared values may have

been chosen adversarially. (Of course, the faulty processors know the values of the

bits they themselves have produced.)

2. Now, suppose for a moment that we have a public source of unbiased bits, c1, c2,. . . ,

cn. By XORing together the corresponding b’s and c’s, we can transform the low

quality bits bi (in shares) into high-quality bits bi ⊕ ci, in shares. (Again, the faulty

processors know the values of the (now randomized) bits they themselves have pro-

duced.) The XORing is simple: if ci = 0 then the shares of bi remain unchanged. If

ci = 1 then each share of bi is replaced by one minus the original share.

3. Replace each share s by 2s − 1, all arithmetic in GF(q). This maps shares of 0 to

shares of −1, and shares of 1 to (different) shares of 1.

4When a single player shares out many values (not the case for us), the techniques of Bellare, Garay, and
Rabin [BGR96] can be used to reduce the cost of verifying the shared out values. The techniques in [BGR96]
complement ours; see Section 3.4.

5If the desired number of coins is o(n), we can generate Θ(n) coins and keep the unused ones in reserve
for future executions of the protocol. If m � n coins are needed, each processor can run the protocol m/n
times.

60 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

4. Finally, each participant sums her shares to get a share of the Binomial noise.

We now turn to the generation of the ci. Each participant randomly chooses and non-

malleably verifiably shares out two bits, for a total of 2n low-quality bits in shares. This

is done in GF(2), so there is no need to check legitimacy. Let the low-quality source be

b′1, b
′
2, . . . , b

′
2n. The b′i are then reconstructed, so that they become public. The sequence

b′1b
′
2 . . . b′2n is a bit-fixing source: some of the bits are biased, but they are independent of

the other bits (generated by the good participants) due to the non-malleability of the secret

sharing. The main advantage of such a source is that it is possible to apply a determin-

istic extractor on those bits and have the output be very close to uniform. Since the bits

b′1, . . . , b
′
2n are public, this extraction operation can be done by each party individually with

no additional communication. In particular we may use, say, the currently best known de-

terministic extractor of [GRS04], which produces a number m > n of nearly unbiased bits.

The outputs of the extractor are our public coins c1, . . . , cm.

The principal costs are the multiplications for verifying membership in {0, 1}GF(q) and

the executions of verifiable secret sharing. Note that all the verifications of membership are

performed simultaneously, so the messages from the different executions can be bundled

together. The same is true for the verifications in the VSS. The total cost of the scheme is

Θ(n) multiplications and additions in shares, which can be all done in a constant number

of rounds.

3.3 Generating Exponential Noise

Recall that in the exponential distribution the probability of obtaining a value at distance

|x| from the mean is proportional to exp(−|x|/R), where R is a scaling factor. For the

present discussion we take R = 1/(ln 2), so that exp(−|x|/R) = 2−|x|. We approximate

the exponential distribution with the Poisson distribution. An intuitively simple approach

is to generate a large number of unbiased6 random bits in shares, and then find (in shares)

the position ` of the first 1. The value returned by this noise generation procedure is ±`

(we flip one additional bit to get the sign). If there is no 1, then the algorithm fails, so the

6For values of R 6= 1/(ln 2) we would need to use biased bits.

3.3. GENERATING EXPONENTIAL NOISE 61

number of bits must be sufficiently large that this occurs with negligible probability. All

the computation must be done in shares, and we cannot “quit” once a 1 has been found (this

would be disclosive). This “unary” approach works well when R = 1/(ln 2) and the coins

are unbiased. For much larger values of R, the case in high-privacy settings, the coins need

to be heavily biased toward 0, flattening the curve. This would mean more expected flips

before seeing a 1, potentially requiring an excessive number of random bits.

Instead, we take advantage of the special structure of the exponential distribution, and

see that we can generate the binary representation of an exponential variable using a num-

ber of coins that is independent of the bias. Let us return to the question of the location `

of the first 1 in a sequence of randomly generated bits. We can describe ` one bit at a time

by answering the following series of questions:

1. What is the parity of `? That is, ` = 2i for some i ≥ 0? (We begin counting the

positions at 0, so that ` will be the number of 0’s preceding the first 1.)

2. Is ` in the left half or the right half of a block of 4 positions, i.e., is it the case that

22i ≤ ` < 22i + 2 for some i ≥ 0?

3. Is ` in the left half or the right half of a block 8 positions, i.e., is it the case that

23i ≤ ` < 23i + 22 for some i ≥ 0?

4. And so on.

We generate the distribution of ` “in binary” by generating the answers to the above ques-

tions. (For some fixed d we simply assume that ` < 2d, so only a finite number of questions

need be answered.)

To answer the questions, we need to be able to generate biased coins. The probability

that ` is even (recall that we begin counting positions with 0) is (1/2)
∑∞

i=0(2
−2i). Simi-

larly, the probability that ` is odd is (1/2)
∑∞

i=0(2
−(2i+1)). Thus,

Pr[` odd] = (1/2) Pr[` even].

Since the two probabilities sum to 1, the probability that ` is even is 2/3. Similar analyses

yield the necessary biases for the remaining questions.

62 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

The heart of the technical argument is thus to compute coins of arbitrary bias in shares in

a manner that consumes on average a constant number of unbiased, completely unknown,

random bits held in shares. We will construct and analyze a shallow circuit for this. In

addition, we will present two incomparable probabilistic constructions. In any distributed

implementation these schemes would need to be implemented by general secure function

evaluation techniques. The circuits, which only use Boolean and finite field arithmetic,

allow efficient SFE implementation.

3.3.1 Poisson Noise: The Details

In this section we describe several circuits for generating Poisson noise. The circuits will

take as input random bits (the exact number depends on the circuit in question). In the dis-

tributed setting, the input would be the result of a protocol that generates (many) unbiased

bits in shares. The circuit computation would be carried out in a distributed fashion using

secure function evaluation, and would result in many samples, in shares, of noise gener-

ated according to the Poisson distribution. This fits into the high-level ODO protocol in

the natural way: shares of the noise are added to the shares of
∑

i f(i, di) and the resulting

noisy sum is reconstructed.

For the remainder of this section, we let n denote the number of coins to be generated.

It is unrelated to the number of participants in the protocol.

Recall the discussion in the Introduction of the exponential distribution, where Pr[x] ∝
exp(−|x|/R). Recall that one interpretation is to flip a (possibly biased) coin until the

first 1 is seen, and then to output the number ` of 0’s seen before the 1 occurs. Recall also

that instead of generating ` in unary, we will generate it in binary.

We argue that the bits in the binary representation of the random variable ` are indepen-

dent, and moreover we can determine their biases analytically. To see the independence,

consider the distribution of the ith bit of `:

`i =

{

0 w.p. Pr[0× 2i ≤ ` < 1× 2i] + Pr[2× 2i ≤ ` < 3× 2i] + . . .

1 w.p. Pr[1× 2i ≤ ` < 2× 2i] + Pr[3× 2i ≤ ` < 4× 2i] + . . .

Notice that corresponding terms in the two summations, eg Pr[0 × 2i ≤ ` < 1 × 2i] and

3.3. GENERATING EXPONENTIAL NOISE 63

Pr[1 × 2i ≤ ` < 2 × 2i], are directly comparable; the first is exactly exp(2i/R) times the

second. This holds for every corresponding pair in the sums, and as such the two sums

share the same ratio. As the two sum must total to one, we have additionally that

1− Pr[`i] = exp(2i/R)× Pr[`i] .

Solving, we find that

Pr[`i] = 1/(1 + exp(2i/R)) .

Recall as well that the observed ratio applied equally well to each pair of intervals, indicat-

ing that the bias is independent of the more significant bits. The problem of producing an

exponentially distributed ` is therefore simply a matter of flipping a biased coin for each

bit of `. The circuit we will construct will generate many `’s according to the desired dis-

tribution, at an expected low amortized cost (number of input bits) per bit position in the

binary expansion of `. The circuit is a collection of circuits, each for one bit position, with

the associated bias hard-wired in. It suffices therefore to describe the circuitry for one of

these smaller circuits (Section 3.3.3). We let p denote the hard-wired bias.

A well-known technique for flipping a single coin of arbitrary bias p is to write p in

binary, examine random bits until one differs from the corresponding bit in p, and then

emit the complement of the random bit. To achieve a high fidelity to the original bias p, a

large number d of random bits must be available. However, independent of p, the expected

number of random bits consumed is at most 2. This fact will be central to our constructions.

In the sequel we distinguish between unbiased bits, which are inputs to the algorithm,

and the generated, biased, coins, which are the outputs of the algorithm.

3.3.2 Implementation Details: Finite Resources

With finite randomness we cannot perfectly emulate the bias of the coins. Moreover, the

expectation of higher order bits in the binary representation of ` diminishes at a doubly

exponential rate (because the probability that ` ≥ 2i is exponentially small in 2i), quickly

giving probabilities that simply can not be achieved with any fixed amount of randomness.

64 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

To address these concerns, we will focus on the statistical difference between our pro-

duced distribution and the intended one. The method described above for obtaining coins

with arbitrary bias, truncated after d bits have been consumed, can emulate any biased coin

within statistical difference at most 2−d. Accordingly, we set all bits of sufficiently high

order to zero, which will simplify our circuit. The remaining output bits – let us imagine

there are k of them – will result in a distribution whose statistical difference is at most k2−d

from the target distribution. We note that by trimming the distribution to values at most 2d

in magnitude, we are introducing an additional error, but one whose statistical difference is

quite small. There is an exp(−2d/R) probability mass outside the [−2d, 2d] interval that is

removed and redistributed inside the interval. This results in an additional 2 exp(−2d/R)

statistical difference that should be incorporated into δ. For clarity, we absorb this term into

the value k.

Using our set of coins with statistical difference at most k2−d from the target distribu-

tion, we arrive at a result akin to (3.1), though with an important difference. For response

variables τ and τ ′ as before (based on databases differing it at most one row),

∀S ⊆ U : Pr[τ ∈ S] ≤ Pr[τ ′ ∈ S]× exp(1/R) + k2−d .

As before, the probability of any event increases by at most a factor of exp(1/R), but now

with an additional additive k2−d term. This term is controlled by the parameter d, and can

easily be made sufficiently small to allay most concerns.

We might like to remove the additive k2−d term, which changes the nature of the privacy

guarantee. While this seems complicated at first, notice that it is possible to decrease the

relative probability associated with each output coin arbitrarily, by adding more bits (that

is, increasing d). What additional bits can not fix is our assignment of zero probability to

noise values outside the permitted range (i.e., involving bits that we do not have circuitry

for).

One pleasant resolution to this problem, due to Adam Smith, is to constrain the output

range of the sum of noise plus signal. If the answer plus noise is constrained to be a k-

bit number, and conditioned on it lying in that range the distribution looks exponential,

the same privacy guarantees apply. Guaranteeing that the output will have only k bits can

3.3. GENERATING EXPONENTIAL NOISE 65

be done by computing the sum of noise and signal using k + 1 bits, and then if there is

overflow, outputting the noise-free answer. This increases the probability that noise = 0

by a relatively trivial amount, and ensures that the output space is exactly that of k-bit

numbers.

3.3.3 A Circuit for Flipping Many Biased Coins

We are now ready to construct a circuit for flipping a large number of independent coins

with common bias. By producing many (Ω(n)) coins at once, we could hope to leverage

the law of large numbers and consume, with near certainty, a number of input bits that is

little more than 2n and depends very weakly on d. For example, we could produce the

coins sequentially, consuming what randomness we need and passing unused random bits

on to the next coin. The circuit we now describe emulates this process, but does so in a

substantially more parallel manner.

The circuit we construct takes 2i unbiased input bits and produces 2i output coins, as

well as a number indicating how many of the coins are actually the result of the appropriate

biased flips. That is, it is unlikely that we will be able to produce fully 2i coins, and we

should indicate how many of the coins are in fact valid. The construction is hierarchical, in

that the circuit that takes 2i inputs will be based on two level i− 1 circuits, attached to the

first and second halves of its inputs.

To facilitate the hierarchical construction, we augment the outputs of each circuit with

the number of bits at the end of the 2i that were consumed by the coin production process,

but did not diverge from the binary representation of p. Any process that wishes to pick up

where this circuit has left off should start under the assumption that the first coin is in fact

this many bits into its production. For example, if this number is r then the process should

begin by comparing the next random bit to the (r + 1)st bit in the expansion of p. Bearing

this in mind, we “bundle” d copies of this circuit together, each with a different assumption

about the initial progress of the production of their first coin.

For each value 1 ≤ j ≤ d we need to produce a vector of 2i coins cj , a number of coins

nj, and dj, a measure of progress towards the last coin. We imagine that we have access to

two circuits of one level lower, responsible for the left and right half of our 2i input bits,

66 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

and whose corresponding outputs are superscripted by L and R. Intuitively, for each value

of j we ask the left circuit for dL
j , which we use to select from the right circuit. Using index

j for the left circuit and dL
j for the right circuit, we combine the output coins using a shift

of nL
j to align them, and add the output counts nL

j and nR
dL

j
. We simply pass dR

dL
j

out as the

appropriate value for dj.

cj = cL
j | (cR

dL
j

>> nL
j)

nj = nL
j + nR

dL
j

dj = dR
dL

j

The operation of subscripting is carried out using a multiplexer, and shifts, bitwise ors, and

addition are similarly easily carried out in logarithmic depth.

The depth of each block is bounded by Θ(log(nd)), with the size bounded by

Θ(2id(log(n) + d), as each of d outputs must multiplex d possible inputs (taking Θ(d)

circuitry) and then operate on them (limited by Θ(log(n)2i) for the barrel shifter). All told,

the entire circuit has depth Θ(log(nd)2), with size Θ(nd(log(n) + d) log(n)).

3.3.4 Probabilistic Constructions with Better Bounds

We describe two probabilistic constructions of circuits that take as input unbiased bits and

produce as output coins of arbitrary, not necessarily identical, bias. Our first solution is

optimal in terms of depth (Θ(log d)) but expensive in the gate count. Our second solution

dramatically decreases the number of gates, paying a modest price in depth (O(log(n+d)))

and a logarithmic increase in the number of input bits.

A module common to both constructions is the comparator – a circuit that takes two bit

strings b1, . . . , bd and p(1) . . . p(d) and outputs 0 if and only if the first string precedes the

second string in the lexicographic order. Equivalently, the comparator outputs b̄i, where i

is the index of the earliest occurrence 1 in the sequence b1 ⊕ p(1), . . . , bd ⊕ p(d), or 1 if the

two strings are equal. Based on this observation, a circuit of depth Θ(log d) and size Θ(d)

can be designed easily. Notice that the result of comparison is independent of the values of

the strings beyond the point of divergence.

3.3. GENERATING EXPONENTIAL NOISE 67

Brute Force Approach

Assume that we have nd independent unbiased bits b
(j)
i , for 1 ≤ i ≤ n and 1 ≤ j ≤ d.

To flip n independent coins, each with its own bias pi, whose binary representation is

0.p
(1)
i . . . p

(d)
i , we run n comparators in parallel on inputs (b

(1)
1 , . . . , b

(d)
1 , p

(1)
1 , . . . , p

(d)
1), . . . ,

(b
(1)
n , . . . , b

(d)
n , p

(1)
n , . . . , p

(d)
n).

Our goal is to get by with many fewer than nd unbiased input bits of the brute force

approach, since each of these requires an unbiased bit in shares. Intuitively, we may hope to

get away with this because, as mentioned previously, the average number of bits consumed

per output coin is 2, independent of the bias of the coin. Let ci for 1 ≤ i ≤ n be the smallest

index where b
(ci)
i 6= p

(ci)
i , and d + 1 if the two strings are equal. The number ci corresponds

to the number of bits “consumed” during computation of the ith coin. Let C =
∑n

i=1 ci.

On expectation E[C] = 2n, and except with a negligible probability C < 4n.

Rather than having the set {b(j)
i }i,j be given as input (too many bits), we will compute

the set {b(j)
i }i,j from a much smaller set of input bits. The construction will ensure that the

consumed bits are independent except with negligible probability. Let the number of input

bits be D, to be chosen later.

We will construct the circuit probabilistically. Specifically, we begin by choosing nd

binary vectors {r(j)
i }i,j, 1 ≤ i ≤ n and 1 ≤ j ≤ d, uniformly from {0, 1}D to be hard-wired

into the circuit. Let b ∈R {0, 1}D be the uniformly chosen random input to the circuit.

The circuit computes the inner products of each of the hard-wired vectors r
(j)
i with the

input b. Let b
(j)
i = 〈r(j)

i , b〉 denote the resulting bits. These are the {b(j)
i }i,j we will plug

into the brute force approach described above. Note that although much randomness was

used in defining the circuit, the input to the circuit requires only D random bits.

Although the nd vectors are not linearly independent, very few of them – O(n) – are

actually used in the computation of our coins, since with overwhelming probability only

this many of the b
(j)
i are actually consumed. A straightforward counting argument therefore

shows that the set of vectors actually used in generating consumed bits will be linearly

independent, and so the coins will be mutually independent.

We claim that if D > 4C, then the consumed bits are going to be independent with

high probability. Conditional on the sequence c1, . . . , cn, the vectors r
(j)
i for 1 ≤ i ≤ n and

68 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

1 ≤ j ≤ ci are independent with probability at least 1 − C2C−D < 1 − 2−2C , where the

probability space is the choice of the r’s. For fixed C the number of possible c1, . . . , cn is at

most
(

C
n

)

< 2C . Hence the probability that for some C < 4n and some c1, . . . , cn, such that

c1 + · · ·+cn = C the vectors r
(j)
i are linearly independent is at least 1−4n2−C . Finally, we

observe that if the vectors are linearly independent, the bits b
(j)
i are independent as random

variables. The depth of this circuit is Θ(log D), which is the time it takes to compute the

inner product of two D-bit vectors. Its gate count is Θ(ndD), which is clearly suboptimal.

Using Low Weight Independent Vectors

Our second solution dramatically decreases the number of gates by reducing the weight (the

number of non-zero elements) of the vectors r from the expected value D/2 to s2dlog(n +

1)e, where s is a small constant. To this end we adopt the construction from [DLN96] that

converts an expander-like graph into a set of linearly independent vectors.

The construction below requires a field with at least nd non-zero elements. Let ν =

dlog(nd + 1)e. We use GF(2ν), representing its elements as ν-bit strings.

Consider a bipartite graph G of constant degree s connecting sets L = {u1, . . . , un},
where the u’s are distinct field elements, and R = {1, . . . , ∆}. The degree s can be as

small as 3. Define matrix M of size n × s∆ as follows: if (ui, τ) ∈ G, the elements

M [i][s(τ−1), s(τ−1)+1, . . . , sτ−1] = ui, u
2
i , . . . , u

s
i , and (0, . . . , 0) (s zeros) otherwise.

Thus, each row of the matrix has exactly s2 non-zero elements.

For any set S ⊆ L, let Γ(S) ⊆ R be the set of neighbors of S in G. The following

claim is easily obtained from the proof of Lemma 5.1 in [DLN96]. It says that if for a

set of vertices T ⊆ L all of T ’s subsets are sufficiently expanding, then the rows of M

corresponding to vertices in T are linearly independent.

Theorem 3.3.1 Let T ⊆ L be any set for which ∀S ⊆ T , |Γ(S)| > (1− 1
s+1

)|S|. Then the

set of vectors {M [u] : u ∈ T} is linearly independent.

Consider a random bipartite graph with nd/ν elements in one class and 2C elements in

the other. Associate the elements from the first class with bits b
(j)
i ’s, grouped in ν-tuples.

Define the bits as the results of the inner product of the corresponding rows of the matrix

M from above with the input vector of length 2s2C that consists of random elements from

3.4. GENERALIZATIONS 69

GF(2ν). Observe that the random graph G satisfies the condition of Theorem 3.3.1 for all

sets of size less than C with high probability if C > (nd/ν)1/(s−1).

The depth of the resulting circuit is Θ(log(n+d)), the gate count is Θ(nds2 log(n+d)),

and the size of the input is 2n log(n + d).

3.4 Generalizations

In this section we briefly discuss several generalizations of the basic scheme.

3.4.1 Alternatives to Full Participation

The main idea is to use a set of facilitators, possibly a very small set, but one for which

we are sufficiently confident that fewer than one third of the members are faulty. Let F
denote the set of facilitators. To respond to a query f , participant i shares f(i, di) among

the facilitators, and takes no further part in the computation.

To generate the noise, each member ofF essentially takes on the work of n/|F| partici-

pants. When |F| is small, the batch verification technique of [BGR96] may be employed to

verify the secrets shared out by each of the players (that is, one batch verification per mem-

ber of F), although this technique requires that the faulty players form a smaller fraction

of the total than we have been assuming up to this point.

3.4.2 When f is Not a Predicate

Suppose we are evaluating f to k bits of precision, that is, k bits beyond the binary point.

Let q be sufficiently large, say, at least q > n2k. We will work in GF(q). Participant i

will share out 2kf(i, di), one bit at a time. Each of these is checked for membership in

{0, 1}GF(q). Then the shares of the most significant bit are multiplied by 2k−1, shares of

the next most significant are multiplied by 2k−2 and so on, and the shares of the binary

representation of f(i, di) are then summed. The noise generation procedure is amplified as

well.

70 CHAPTER 3. DISTRIBUTED OUTPUT PERTURBATION

3.4.3 Beyond Sums

We have avoided the case in which f is an arbitrary function mapping the entire database

to a (tuple of) value(s), although the theory for this case has been developed in [DMNS06].

This is because without information about the structure of f we can only rely on general

techniques for secure function evaluation of f , which may be prohibitively expensive.

One case in which we can do better is in the generation of privacy-preserving his-

tograms. A histogram is specified by a partition of the domain Rows; the true response to

the histogram query is the exact number of elements in the database residing in each of the

cells of the histogram. Histograms are low sensitivity queries, in that changing a single row

of the database changes the counts of at most two cells in the histogram, and each of these

two counts changes by at most 1. Thus, as discussed in [DMNS06], ε-indistinguishable

histograms may be obtained by adding exponential noise with R = 1/2ε to each cell of the

histogram. A separate execution of ODO for each cell solves the problem. The executions

can be run concurrently. All participants in the histogram query must participate in each of

the concurrent executions.

3.4.4 Individualized Privacy Policies

Suppose Citizen C has decided she is comfortable with a lifetime privacy loss of, say ε = 1.

Privacy erosion is cumulative: any time C participates in the ODO protocol she incurs a

privacy loss determined by R, the parameter used in noise generation. C has two options:

if R is fixed, she can limit the number of queries in which she participates, provided the

decision whether or not to participate is independent of her data. If R is not fixed in

advance, but is chosen by consensus (in the social sense), she can propose large values

of R, or to use large values of R for certain types of queries. Similarly, queries could be

submitted with a stated value of R, and dataholders could choose to participate only if this

value of R is acceptable to them for this type of query. However, the techniques will all fail

if the set of participants is more than one-third faulty; so the assumption must be that this

bound will always be satisfied. This implicitly restricts the adversary.

3.5. SUMMARY 71

3.5 Summary

This work ties together two areas of research: the study of privacy-preserving statistical

databases and that of cryptographic protocols. It was inspired by the combination of the

computational power of the noisy sums primitive in the first area and the simplicity of

secure evaluation of sums in the second area. The effect is to remove the assumption of

a trusted collector of data, allowing individuals control over the handling of their own

information.

In the course of this work we have developed distributed algorithms for generation

of Binomial and Poisson noise in shares. The former makes novel use of extractors for

bit-fixing sources in order to reduce the number of secret sharings needed in generating

massive numbers of coins. The latter examined for the first time distributed coin-flipping

of coins with arbitrary bias.

Part II

Privacy Protection in the

Non-interactive Framework

73

Chapter 4

Approximation Algorithms for

k-Anonymity

In the second part of the thesis, we consider two methods for protecting privacy in the

non-interactive framework. Our goal is to publish data for analysis from a table contain-

ing personal records, while ensuring individual privacy and maintaining data integrity to

the extent possible. As discussed in Chapter 1, when the aggregate queries of interest are

not known ahead of time, techniques such as query auditing, output perturbation, and se-

cure function evaluation do not provide an adequate solution, and we need to release an

anonymized view of the database that enables the computation of non-sensitive query ag-

gregates, perhaps with some error or uncertainty. The first method, which we discuss in this

chapter, is combinatorial in nature and involves suppression of certain information in such

a way that we can draw inferences with 100% confidence. The second method (discussed

in Chapter 5) is based on clustering. Compared to the first method, the second method

allows us to release more information about a table. However, with the second method, the

inferences drawn may not have full confidence.

More generally, techniques under non-interactive framework such as input perturbation,

sketches, or clustering may not be suitable if one wants to draw inferences with 100%

confidence. Another approach to protect privacy is to suppress some of the data values,

while releasing the remaining data values exactly. For example, consider the following

table which is part of a medical database, with the identifying attributes such as name and

75

76 CHAPTER 4. K-ANONYMITY

social security number removed.

Age Race Gender Zip Code Diseases

47 White Male 21004 Common Cold

35 White Female 21004 Flu

27 Hispanic Female 92010 Flu

27 White Female 92010 Hypertension

By joining this table with public databases (such as a voter list), non-identifying at-

tributes, such as Age, Race, Gender, and Zip Code in the above table, can together be used

to identify individuals. In fact, Sweeney [Swe00] observed that for 87% of the population

in the United States, the combination of non-key fields like Date of Birth, Gender, and Zip

Code corresponded to a unique person. Such non-key fields are called quasi-identifiers.

In order to ensure the protection of privacy, we adopt the k-Anonymity model which

was proposed by Samarati and Sweeney [Sam01, SS98, Swe02]. Suppose we have a table

consisting of n tuples each having m quasi-identifying attributes (Age, Race, Gender, and

Zip Code in the above table), and let k > 1 be an integer. The k-Anonymity framework

provides for generalization of entries (generalization entails replacing an entry value with

a less specific but semantically consistent value; a more formal description can be found

in Section 4.1) in addition to suppression. The idea is to suppress/generalize some of the

entries in the table so as to ensure that for each tuple in the modified table, there are at least

k − 1 other tuples in the modified table that are identical to it along the quasi-identifying

attributes. The objective is to minimize the extent of suppression and generalization. Note

that entries in the column corresponding to the sensitive attribute (“Diseases” in the above

example) are not altered. The following is an example of a k-anonymized table for k = 2.

Age Race Gender Zip Code Diseases

* White * 21004 Common Cold

* White * 21004 Flu

27 * Female 92010 Flu

27 * Female 92010 Hypertension

A k-anonymized table protects individual privacy in the sense that, even with the knowl-

edge of an individual’s quasi-identifying attributes, an adversary would not be able to track

4.1. MODEL AND RESULTS 77

down an individual’s record further than a set of at least k records. Thus, releasing a table

after k-anonymization prevents definitive record linkages with publicly available databases,

and keeps each individual hidden in a crowd of k−1 other people. The privacy parameter k

must be chosen according to the application in order to ensure the required level of privacy.

4.1 Model and Results

We now formally define the problem of k-Anonymity and state our results. The input

is a table having n rows each with m quasi-identifying attributes. We view the table as

consisting of n m-dimensional vectors: x1, . . . , xn ∈ Σm.

We first define a special case of the problem called k-Anonymity with Suppression,

where suppression is the only permitted operation. A k-Anonymous suppression function t

maps each xi to x̃i by replacing some components of xi by ∗ (which corresponds to hiding

those components of xi), so that every x̃i is identical to at least k−1 other x̃js. This results

in a partition of the n row vectors into clusters of size at least k each. The cost of the

suppression, c(t) is the total number of hidden entries, or equivalently, the total number of

∗s in all the x̃is.

k-Anonymity with Suppression: Given x1,x2, . . . ,xn ∈ Σm, and an Anonymity

parameter k, obtain a k-Anonymous suppression function t so that c(t) is mini-

mized.

Next, we define the problem of k-Anonymity with Generalization, where in addition

to suppressing entry values, we are also allowed to replace them with less specific but

semantically consistent values. For example, we can make a date less specific by omit-

ting the day and revealing just the month and year. We assume that for each attribute, a

generalization hierarchy is specified as part of the input [SS98, Sam01]. For an attribute,

each level of generalization corresponds to a partition of the attribute domain. A parti-

tion corresponding to any given level of the generalization hierarchy is a refinement of the

partition corresponding to the next higher level. Singleton sets correspond to absence of

generalization, while the partition consisting of a single set containing the whole domain

corresponds to the highest level of generalization. Consider the example shown in Fig-

ure 4.1. The attribute “Quality” has a domain consisting of values A+, A, A−, B+, B and

78 CHAPTER 4. K-ANONYMITY

B− and has two levels of generalization. In the absence of generalization, the value of this

attribute is reported exactly. The first level of generalization corresponds to the partition

{{A+, A, A−}, {B+, B, B−}}. In order to generalize an entry with value “A” to the first

level of generalization, it is replaced with the set {A+, A, A−}. The next higher level of

generalization (also the highest level in this case) corresponds to replacing the entry with

the set containing the whole domain, which is equivalent to suppressing the entry.

A+ A−A B+ B−B

{A+, A, A−, B+, B, B−}

{A+, A, A−} {B+, B, B−}

Level 2

Level 1

Figure 4.1: A possible generalization hierarchy for the attribute “Quality”.

Let the jth attribute have domain Dj and lj levels of generalization. Let the parti-

tion corresponding to the hth level of generalization be Dj
h for 1 ≤ h ≤ lj, with Dj

0 =

Dj. Let a value y ∈ Dj when generalized to the hth level be denoted by gh(y), e.g.,

g1(A) = {A+, A, A−}. A generalization function h is a function that maps a pair (i, j),

i ≤ n, j ≤ m to a level of generalization h(i, j) ≤ lj. Semantically, h(i, j) denotes

the level to which jth component of the ith vector (or the (i, j)th entry in the table) is

generalized. Let h(xi) denote the generalized vector corresponding to xi, i.e., h(xi) =

(gh(i,1)(xi[1]), gh(i,2)(xi[2]) . . . , gh(i,m)(xi[m])). A generalization function is said to be k-

Anonymous if for every i, h(xi) is identical to h(xj) for at least k − 1 values of j 6= i.

Consider a k-Anonymous generalization function h. It incurs a cost of r/lj whenever

it generalizes a value for the jth attribute to the rth level. The total cost incurred by the

generalization function h is defined as the sum of the costs incurred over all the entries of

the table, i.e., cost(h) =
∑

i

∑

j h(i, j)/lj. Now we are ready to give a formal definition of

the problem.

4.2. NP-HARDNESS OF K-ANONYMITY 79

k-Anonymity with Generalization: Given x1,x2, . . . ,xn ∈ Σm, and an Anonymity

parameter k, obtain a k-Anonymous generalization function h such that cost(h)

is minimized.

Note that the problem of k-Anonymity with Suppression is a special case of the problem

of k-Anonymity with Generalization, with only one level of generalization (corresponding

to hiding the entry completely) for every attribute.

Clearly the decision version of both of these problems is in NP, since we can verify in

polynomial time if the solution is k-Anonymous and the suppression cost less than a given

value. We show that k-Anonymity with Suppression is NP-hard even when the alpha-

bet size |Σ| = 3. Note that this automatically implies NP-hardness of k-Anonymity with

Generalization. This improves upon the NP-hardness result of [MW04] which required an

alphabet size of n. On the positive side, we provide an O(k)-approximation algorithm for

k-Anonymity with Generalization for arbitrary k and arbitrary alphabet size, using a graph

representation. This improves upon the previous best-known approximation guarantee of

O(k log k) for k-Anonymity with Suppression [MW04]. We also show that it is not pos-

sible to achieve an approximation factor better than Θ(k) using the graph representation

approach. For a binary alphabet, we provide improved approximation algorithms for k = 2

(an approximation factor of 1.5) and k = 3 (an approximation factor of 2).

The rest of this chapter is organized as follows. We establish the NP-hardness of k-

Anonymity with Suppression in Section 4.2. We then present an O(k)-approximation al-

gorithm for k-Anonymity with Generalization in Section 4.3. Next, in Sections 4.4 and 4.5,

we provide a 1.5 approximation algorithm for the 2-Anonymity problem with binary alpha-

bet, and a 2-approximation algorithm for 3-Anonymity with binary alphabet. Finally, we

conclude with some future research directions in Section 4.6.

4.2 NP-hardness of k-Anonymity with Suppression

Theorem 4.2.1 k-Anonymity with Suppression is NP-hard even for a ternary alphabet, i.e.,

(Σ = {0, 1, 2}).

80 CHAPTER 4. K-ANONYMITY

Proof: In this proof, k-Anonymity refers to the problem of k-Anonymity with Suppres-

sion. We give a reduction from the NP-hard problem of EDGE PARTITION INTO TRIAN-

GLES [Kan94] which is defined as follows: Given a graph G = (V, E) with |E| = 3m for

some integer m, can the edges of G be partitioned into m edge-disjoint triangles?

Given an instance of the above problem, G = (V, E) with 3m edges (since the above

problem is NP-hard even for simple graphs, we will assume that the graph G is simple),

we create a preliminary table T with 3m rows — one row for each edge. For each of the

n vertices of G, we create an attribute (column). The row corresponding to edge (a, b),

referred to as rab, has ones in the positions corresponding to a and b and zeros everywhere

else. Let a star with four vertices (having one vertex of degree 3) be referred to as a 4-star.

Equivalence to edge partition into triangles and 4-stars. We first show that the cost

of the optimal 3-Anonymity solution for the table T is at most 9m if and only if E can be

partitioned into a collection of m disjoint triangles and 4-stars. First suppose that such a

partition of edges is given. Consider any triangle (with a, b, c as its vertices). By suppress-

ing the positions a, b and c in the rows rab, rbc and rca, we get a cluster containing three

rows, with three ∗s in each modified row. Now consider a 4-star with vertices a, b, c, d,

where d is the center vertex. By suppressing the positions a, b and c in the rows rad, rbd

and rcd, we get a cluster containing three rows with three ∗s in each modified row. Thus we

obtain a solution to 3-Anonymity of cost 9m.

On the other hand, suppose that there is a 3-Anonymity solution of cost at most 9m.

Since G is simple, any three rows are distinct and differ in at least 3 positions. Hence

there should be at least three ∗s in each modified row, so that the cost of the solution is

at least 9m. This implies that the solution cost is exactly 9m and each modified row has

exactly three ∗s. Since any cluster of size more than three will have at least four ∗s in each

modified row, it follows that each cluster has exactly three rows. There are exactly two

possibilities: the corresponding edges form either a triangle or a 4-star, and each modified

row in a triangle has three ∗s and zeros elsewhere while each modified row in a 4-star has

three ∗s, single 1 and zeros elsewhere. Thus, the solution corresponds to a partition of the

edges of the graph into triangles and 4-stars.

4.2. NP-HARDNESS OF K-ANONYMITY 81

Equivalence to edge partition into triangles. Since we want a reduction from EDGE

PARTITION INTO TRIANGLES, we create a table T ′ by “replicating” the columns of T so

as to force the 4-stars to pay more ∗s. Let t = dlog2(3m + 1)e. In the new table T ′, every

row has t blocks, each of which has n columns. Consider an arbitrary ordering of the edges

in E and express the rank of an edge e = (a, b), in this ordering, in binary notation as

e1e2 . . . et. In the row corresponding to edge e, each block has zeros in all positions except

a and b. A block can be in one of two configurations: conf0 has a 1 in position a and

a 2 in position b while conf1 has a 2 in position a and a 1 in position b. The ith block

in the row corresponding to e has configuration confei
. For example, consider the graph

shown in Figure 4.2. Suppose the edges (3, 4), (1, 4), (1, 2), (1, 3), (2, 3) are ranked 1 (i.e.,

(001)2) through 5 (i.e., (101)2) respectively. Then, the table in Figure 4.2 represents the

3-Anonymity instance corresponding to the graph, with the ith row in the table representing

the vector corresponding to the edge ranked i.

4 3

1 2

1

(1,2)

(3,4)

(1,4)

(1,3)

0 1 2

00 02 1 201 02 01

0 2 0 0 21 00 1

12 20 0 010 20 10

1221 0 0 0 0 00 2 1

00 00 0 012 21 2
(2,3)

Figure 4.2: The table shows the 3-anonymity instance corresponding to the graph on the
left when the edges (3, 4), (1, 4), (1, 2), (1, 3), (2, 3) are ranked 1 through 5 respectively.

We will now show that the cost of the optimal 3-Anonymity solution on T ′ is at most

9mt if and only if E can be partitioned into m disjoint triangles.

Suppose that E can be partitioned into m disjoint triangles. As earlier, every triangle

in such a partition corresponds to a cluster with 3t ∗s in each modified row. Thus we get a

3-Anonymity solution of cost 9mt.

For the converse, suppose that we are given a 3-Anonymity solution of cost at most

9mt. Again, any three rows differ in at least 3t positions so that the cost of any solution is

at least 9mt. Hence the solution cost is exactly 9mt and each modified row has exactly 3t

∗s. Thus, each cluster has exactly three rows. We claim that the corresponding edges should

82 CHAPTER 4. K-ANONYMITY

form a triangle. We can see this as follows: suppose to the contrary the three rows form a

4-star. Let the common vertex be v. Consider the ternary digit ∈ {1, 2} assigned by each

of the three edges to v in conf0 — two of the three edges must have assigned the same digit

to v. Since these two edges differ in rank, they must have a different configuration (and

therefore, a different digit in the column corresponding to v) in at least one of the blocks.

Thus, the rows corresponding to the three edges contain an additional ∗ corresponding to

vertex v in addition to the 3t ∗s corresponding to the remaining three vertices, contradicting

the fact that each row has exactly 3t ∗s. 2

The above proof shows that k-Anonymity is NP-hard even with a ternary alphabet for

k = 3. By reduction from EDGE PARTITION INTO r-CLIQUES [Kan94], we can extend

the above proof for k =
(

r
2

)

, for r ≥ 3. By replicating the graph in the above reduction, we

can further extend the proof for k = α
(

r
2

)

for any integer α and r ≥ 3.

4.3 Algorithm for General k-Anonymity

In this section, we study the problem of k-Anonymity with Generalization for general k

and arbitrary alphabet size, and give an O(k)-approximation algorithm for the problem. In

this section, k-Anonymity refers to the problem of k-Anonymity with Generalization.

Construction of Graph. Given an instance of the k-Anonymity problem, we create an

edge-weighted complete graph G = (V, E). The vertex set V contains a vertex correspond-

ing to each vector in the k-Anonymity problem. For two rows a and b, let the unscaled

generalization cost for the jth component, ha,b(j), refer to the lowest level of generaliza-

tion for attribute j for which the jth components of both a and b are in the same partition,

i.e., the lowest level for which both have the same generalized value. The weight, w(e),

of an edge e = (a, b) is the sum over all components j of the scaled generalization cost,

i.e., w(e) =
∑

j ha,b(j)/lj (recall that the scaling factor lj corresponds to the total number

of levels of generalizations for the j th attribute). The jth attribute is said to contribute a

weight of ha,b(j)/lj to the edge e.

4.3. ALGORITHM FOR GENERAL K-ANONYMITY 83

Limitations of the Graph Representation. As mentioned in Section 4.1, with this repre-

sentation, we lose some information about the structure of the problem, and cannot achieve

a better than Θ(k) approximation factor for the k-Anonymity problem. We show this by

giving two instances (on binary alphabet) whose k-Anonymity cost differs by a factor of

Θ(k), but the corresponding graphs for both the instances are identical. Let l = 2k−2. For

the first instance, take k vectors with kl-dimensions each. The bit positions (i−1)l+1 to il

are referred to as the ith block of a vector. The ith vector has ones in the ith block and zeros

everywhere else. The k-Anonymity cost for this instance is k2l. For the second instance,

take k vectors with 4l = 2k dimensions each. The ith vector breaks up its 2k dimensions

into 2i equal-sized blocks and has ones in the odd blocks and zeros in the even blocks. This

instance incurs a k-Anonymity cost of 4kl. Note that the graph corresponding to both the

instances is a k-clique with all the pairwise distances being 2l = 2k−1.

Definition 4.1 (Charge of a vertex) For any given k-Anonymity solution, define the charge

of a vertex to be the total generalization cost of the vector it represents.

Idea Behind the Algorithm. Let OPT denote the cost of an optimal k-Anonymity so-

lution, i.e., OPT is the sum of the charges of all the vertices in an optimal k-Anonymity

solution. Let F = {T1, T2, . . . , Ts}, a spanning forest (i.e., a forest containing all the ver-

tices) in which each tree Ti has at least k vertices, be a subgraph of G. This forest describes

a feasible partition for the k-Anonymity problem. In the k-Anonymity solution as per this

partition, the charge of each vertex is no more than the weight of the tree containing the

vertex; recall that the weight of a tree Ti is given by W (Ti) = Σe∈E(Ti)w(e), where E(Ti)

denotes the set of edges in tree Ti. We can see this as follows: if attribute j has to be

generalized to level r for the vertices in tree Ti (note that an attribute is generalized to the

same level for all rows in a cluster), there must exist a pair of vertices (a, b) in the cluster

which have an unscaled generalization cost ha,b(j) equal to r. Thus, attribute j contributes

a weight of at least r/lj to the length of all paths (in G) between a and b. In particular,

attribute j contributes a weight of at least r/lj to the weight of tree Ti. Next, we sum the

charges of all the vertices to get that the k-Anonymity cost of the partition corresponding

to the forest F is at most Σi|V (Ti)|W (Ti). We will refer to this as the k-Anonymity cost

84 CHAPTER 4. K-ANONYMITY

of the forest. Note that the weight of a forest is simply the sum of the weights of its trees.

Hence, the ratio of the k-Anonymity cost to the weight of a forest is at most the number

of vertices in the largest tree in the forest. This implies that if we can find a forest with

the size of the largest component at most L and weight at most OPT , then we have an

L-approximation algorithm. Next, we present an algorithm that finds such a forest with

L ≤ max{2k − 1, 3k − 5}.
The algorithm has the following overall structure, which is explained in more detail in

the next two subsections.

Outline of the Algorithm:

1. Create a forest G with cost at most OPT . The number of vertices in each tree is at

least k.

2. Compute a decomposition of this forest (deleting edges is allowed) such that each

component has between k and max{2k − 1, 3k − 5} vertices. The decomposition is

done in a way that does not increase the sum of the costs of the edges.

4.3.1 Algorithm for Producing a Forest with Trees of Size at least k

The key observation is that since each partition in a k-Anonymity solution groups a vertex

with at least k− 1 other vertices, the charge of a vertex is at least equal to its distance to its

(k − 1)st nearest neighbor. The idea is to construct a directed forest such that each vertex

has at most one outgoing edge and (−→u, v) is an edge only if v is one of the k − 1 nearest

neighbors of u.

Algorithm FOREST

Invariant:

• The chosen edges do not create any cycle.

• The out-degree of each vertex is at most one.

1. Start with an empty edge set so that each vertex is in its own connected component.

2. Repeat until all components are of size at least k:

4.3. ALGORITHM FOR GENERAL K-ANONYMITY 85

Pick any component T having size smaller than k. Let u be a vertex in T without

any outgoing edges. Since there are at most k−2 other vertices in T , one of the

k − 1 nearest neighbors of u, say v, must lie outside T . We add the edge (−→u, v)

to the forest. Observe that this step does not violate any of the invariants.

Lemma 4.3.1 The forest produced by algorithm FOREST has minimum tree size at least k

and has cost at most OPT .

Proof: It is evident from the algorithm description that each component of the forest it

produces has at least k vertices.

Let the cost of an edge (−→u, v) be paid by vertex u. Note that each vertex u pays for at

most one edge to one of its k − 1 nearest neighbors. As noted earlier, this is less than the

charge of this vertex in any k-Anonymity solution. Thus, the sum of costs of all edges in

the forest is less than OPT , the total charge of all vertices in an optimal solution. 2

In what follows we consider the underlying undirected graph on the edges.

4.3.2 Algorithm to Decompose Large Components into Smaller Ones

We next show how to break any component with size greater than max{2k − 1, 3k − 5}
into two components each of size at least k. Let the size of the component we are breaking

be s > max{2k − 1, 3k − 5}.

Algorithm DECOMPOSE-COMPONENT

1. Pick any vertex u as the candidate vertex.

2. Root the tree at the candidate vertex u. Let U be the set of subtrees rooted at the

children of u. Let the size of the largest subtree of u be φ, rooted at vertex v. If

s−φ ≥ k−1, then we do one of the following partition and terminate (see Figure 4.3).

A. If φ ≥ k and s − φ ≥ k, then partition the tree into the largest subtree and the

rest.

B. If s − φ = k − 1, partition the tree into a component containing the subtrees

rooted at the children of v and the rest. To connect the children of v create a

86 CHAPTER 4. K-ANONYMITY

...

...

u

D

A

B

C

v

Figure 4.3: The decompositions corresponding to the sub-cases of the algorithm
DECOMPOSE-COMPONENT.

dummy vertex v′ to replace v. Note that v′ is only a Steiner vertex (see Fig-

ure 4.4) and does not contribute to the size of the first component. Clearly, the

sizes of both the components are at least k.

C. If φ = k− 1, then partition into a component containing the subtree rooted at v

along with the vertex u and the rest. In order to connect the children of u in the

second component, we create a Steiner vertex u′.

D. Otherwise, all subtrees have size at most k − 2. In this case, we create an

empty partition and keep adding subtrees of u to it until the first time its size

becomes at least k − 1. Clearly, at this point, its size is at most 2k − 4. Put the

remaining subtrees (containing at least k − 1 vertices, since there are at least

3k − 4 vertices in all) into the other partition. Observe that since s ≥ 2k, at

most one of the partitions has size equal to k− 1. If such a partition exists, add

4.3. ALGORITHM FOR GENERAL K-ANONYMITY 87

Steiner vertex

......

v’ u

v

Figure 4.4: The decomposition corresponding to case B; the left partition contains a Steiner
vertex v′ that does not contribute to its size.

u to that partition, else add u to the first partition. In order to keep the partition

not containing u connected, a Steiner vertex u′ corresponding to u is placed in

it.

3. Otherwise, pick the root of the largest subtree v as the new candidate vertex and go

to Step 2.

Lemma 4.3.2 The above algorithm terminates.

Proof: We will prove this by showing that the size of the largest component φ (in Step 2)

decreases in each iteration. Consider moving from candidate vertex u in one iteration to

candidate vertex v in the next iteration. Since the algorithm did not terminate with u, if

we root the tree at v, then the size of the subtree rooted at u is less than k − 1. When we

consider the largest subtree under v, either it is rooted at u, in which case, it is smaller than

k − 1 < s − (k − 1) and the algorithm terminates in this step; otherwise, the new largest

subtree is a subtree of the previous largest subtree. 2

Theorem 4.3.3 There is a polynomial-time algorithm for the k-Anonymity problem, that

achieves an approximation ratio of max{2k − 1, 3k − 5}.

Proof: First, use Algorithm FOREST to create a forest with cost at most OPT and min-

imum tree size at least k. Then repeatedly apply Algorithm DECOMPOSE-COMPONENT

to any component that has size larger than max{2k − 1, 3k − 5}. Note that both these

algorithms terminate in O(kn2) time. 2

88 CHAPTER 4. K-ANONYMITY

The above algorithm can also be used when the attributes are assigned weights and

the goal is to minimize the weighted generalization cost. In this case, the cost contributed

by an attribute to an edge in the graph G is multiplied by its weight. The rest of the

algorithm proceeds as before. It is also easy to extend the above analysis to the version

of the problem where we allow an entire row to be deleted from the published database,

instead of forcing it to pair with at least k − 1 other rows. The deletion of an entire row is

modeled as suppressing all the entries of that row (or generalizing all the entries of that row

to the highest level). The objective function is the same as before: minimize the overall

generalization cost. We first note that the distance between any two vertices is no more than

the cost of deleting a vertex. Thus, if we run the same algorithm as above, the total cost

of the forest F produced by Algorithm FOREST is no more than the optimal k-Anonymity

cost (this is because the charge of any vertex in the optimal k-Anonymity solution is still

no less than its distance to its (k − 1)st nearest neighbor). The analysis for the rest of the

algorithm remains the same.

4.4 Improved Algorithm for 2-Anonymity

In this section, we study the special case of k = 2. The algorithm of the previous section

gives a 3-approximation algorithm for this case. We improve upon this result for binary

alphabet, and provide a polynomial-time 1.5-approximation algorithm for 2-Anonymity

(note that for binary alphabet, generalization is equivalent to suppression). This algorithm

uses a technique that is completely different from the previous algorithm, and could po-

tentially be extended to get an improved approximation factor for the general case. For

this algorithm, we use the minimum-weight [1, 2]-factor of a graph constructed from the

2-Anonymity instance. A [1, 2]-factor of an edge-weighted graph G is defined to be a span-

ning (i.e., containing all the vertices) subgraph F of G such that each vertex in F has degree

1 or 2. The weight of F is the sum of the weights of the edges in F . Cornuejols [Cor88]

showed that a minimum-weight [1, 2]-factor of a graph can be computed in polynomial

time.

Given an instance of the 2-Anonymity problem on binary alphabet, we create an edge-

weighted complete graph G = (V, E) as follows. The vertex set V contains a vertex

4.4. ALGORITHM FOR 2-ANONYMITY 89

corresponding to each vector in the 2-Anonymity problem. The weight of an edge (a, b)

is the Hamming distance between the vectors represented by a and b (i.e., the number of

positions at which they differ). First we obtain a minimum-weight [1, 2]-factor F of G.

By optimality, F is a vertex-disjoint collection of edges and pairs of adjacent edges (if a

[1, 2]-factor has a component which is either a cycle or a path of length ≥ 3, we can obtain

a [1, 2]-factor of smaller weight by removing edge(s)). We treat each component of F as a

cluster, i.e., retain the bits on which all the vectors in the cluster agree and replace all other

bits by ∗s. Clearly, this results in a 2-anonymized table.

Theorem 4.4.1 The number of ∗s introduced by the above algorithm is at most 1.5 times

the number of ∗s in an optimal 2-Anonymity solution.

Before we prove this theorem, consider three m-bit vectors x1, x2 and x3 with pairwise

Hamming distances α, β and γ as shown in Figure 4.5. Without loss of generality, let

γ ≥ α, β. Let xmed denote the median vector whose ith bit is the majority of the ith bits

of x1, x2 and x3 and let p, q and r be the Hamming distances to xmed from x1, x2 and x3

respectively. Let xs be the star vector obtained by minimal suppression of x1, x2 and x3,

i.e., it has the common bits where the three vectors agree and ∗s elsewhere. Observe that

α = q + r, β = r + p and γ = p + q. The other relevant distances are shown in the figure.

p

med

x x

2

3

x1

s

p+q+r

p+q+r

q

x

p+q+rβ

γ

α
r

x

Figure 4.5: Three vectors and their corresponding “median” and “star” vectors

90 CHAPTER 4. K-ANONYMITY

Observation 4.4.2 If vertices x1, x2 and x3 (as shown in Figure 4.5) form a cluster in a k-

Anonymity solution, the number of ∗s in each modified vector is exactly equal to p+q+r =
1
2
(α + β + γ). If the cluster contains additional vertices, then the number of ∗s is at least

1
2
(α + β + γ).

To see this, first note that since xmed is the median vertex, the attributes that contribute

to p, q and r are distinct. Therefore, the number of ∗s in each modified vector is at least

p + q + r. Moreover, when x1, x2 and x3 are the only three vertices in the cluster, each

attribute corresponding to a ∗ in the modified vector contributes to exactly one of p, q and

r.

Let cOFAC denote the weight of an optimal [1, 2]-factor, let cALG be the cost of the

2-Anonymity solution obtained from it and let OPT denote the cost of the optimal 2-

Anonymity solution respectively. The optimal 2-Anonymity solution can be assumed to

consist only of disjoint clusters of size 2 or 3 (as bigger clusters can be broken into such

clusters without increasing the cost). We can derive a [1, 2]-factor from this solution as

follows: for each cluster of size 2, include the edge between the two vertices; for a cluster

of size 3, include the two lighter edges of the triangle formed by the three vertices. Denote

the weight of this [1, 2]-factor by cFAC .

Lemma 4.4.3 cALG ≤ 3 · cOFAC

Proof: Consider the optimal [1, 2]-factor and the k-Anonymity solution corresponding to

it. For a cluster of size 2, we have to suppress all the bits at which the two vectors differ so

that the total number of ∗s in the two rows is twice the Hamming distance (which is equal

to the edge weight). For a cluster of size 3, say the one in the figure, by Observation 4.4.2,

the number of ∗s in each row is exactly (α + β + γ)/2. So, the total number of stars is
3
2
(α + β + γ) ≤ 3(α + β) (using triangle inequality). The optimal [1, 2]-factor would

have contained the two lighter edges of the triangle, incurring a cost of (α + β) for this

cluster. Summing over all the clusters formed by the optimal [1, 2]-factor algorithm, we get

cALG ≤ 3 · cOFAC. 2

Lemma 4.4.4 cFAC ≤ 1
2
OPT

4.5. ALGORITHM FOR 3-ANONYMITY 91

Proof: Consider the optimal k-Anonymity solution and the [1, 2]-factor corresponding to

it. For a cluster of size 2, cost incurred by the [1, 2]-factor FAC is equal to half the cost

incurred in OPT . For a cluster of size 3, say the one in Figure 4.5, cost incurred in FAC

is equal to α + β ≤ 2
3
(α + β + γ) = 4

3
(p + q + r), where the inequality is obtained by

using the fact γ ≥ α, β. Since the cost incurred in OPT is 3(p + q + r), cost incurred in

FAC is at most half the cost incurred in OPT . By summing over all the clusters, we get

cFAC ≤ OPT/2. 2

Since cOFAC ≤ cFAC , it follows from the above lemmas that cALG ≤ 3
2
OPT , which

proves Theorem 4.4.1. For an arbitrary alphabet size, xmed is no longer defined. However,

it can be shown that OPT ≥ (α + β + γ) ≥ 3
2
(α + β), proving cFAC ≤ 2

3
OPT . Since

cALG ≤ 3 · cOFAC holds as before, we get cALG ≤ 2 · OPT . Thus, the same algorithm

achieves a factor 2 approximation for 2-Anonymity with Suppression for arbitrary alphabet

size.

4.5 Improved Algorithm for 3-Anonymity

We now present a 2-approximation algorithm for 3-Anonymity with a binary alphabet

(again generalization is equivalent to suppression in this case). The idea is similar to the al-

gorithm for 2-Anonymity. We construct the graph G corresponding to the 3-Anonymity in-

stance as in the previous algorithm. A 2-factor of a graph is a spanning subgraph with each

vertex having degree 2 (in other words, a collection of vertex-disjoint cycles spanning all

the vertices). We first run the polynomial-time algorithm to find a minimum-weight 2-factor

F of the graph G [Cor88]. We show that the cost of this 2-factor, say cOFAC , is at most

2/3 times the cost of the optimal 3-Anonymity solution, say OPT . Then, we show how

to transform this 2-factor F into a 3-Anonymity solution ALG of cost cALG ≤ 3 · cOFAC ,

giving us a factor-2 approximation algorithm for 3-Anonymity.

Lemma 4.5.1 The cost of the optimal 2-factor, cOFAC on graph G corresponding to the

vectors in the 3-Anonymity instance is at most 2
3

times the cost of the optimal 3-Anonymity

solution, OPT .

92 CHAPTER 4. K-ANONYMITY

Proof: Consider the optimal 3-Anonymity solution. Observe that it will cluster 3, 4 or 5

vertices together (any larger groups can be broken up into smaller groups of size at least 3,

without increasing the cost of the solution). Given an optimal solution to the 3-Anonymity

problem, we construct a 2-factor solution as follows: for every cluster of the 3-Anonymity

solution, pick the minimum-weight cycle involving the vertices of the cluster. Next, we

analyze the cost cFAC of this 2-factor. Define the charge of a vertex to be the number of

∗s in the vector corresponding to this vertex in the 3-Anonymity solution. We consider the

following three cases:

(a) If a cluster i is of size 3, the 2-factor contains a triangle on the corresponding vertices.

Let a, b and c be the lengths of the edges of the triangle. By Observation 4.4.2, we

get that (a+ b+ c) is twice the charge of each vertex in this cluster. Thus, OPT pays

a total cost of OPTi = 3
2
(a + b + c) while FAC pays cFAC,i = a + b + c = 2

3
OPTi.

(b) If a cluster i is of size 4, the 2-factor corresponds to the cheapest 4-cycle on the four

vertices. Let τ be the sum of the weights of all the
(

4
2

)

= 6 edges on these four

vertices. Consider the three 4-cycles on these vertices. As each edge appears in two

4-cycles, the average cost of a 4-cycle is 2
3
τ . By choosing the minimum weight 4-

cycle, we ensure that the cost paid by FAC for these vertices cFAC,i ≤ 2
3
τ . Also,

by Observation 4.4.2, the charge of any of these 4 vertices is at least half the cost

of any triangle on (three of) these four vertices. The cost of the most expensive

triangle is at least equal to the average cost over all the
(

4
3

)

= 4 triangles, which is

equal to 2
4
τ (since each edge appears in two triangles). Hence the cost paid by OPT ,

OPTi ≥ 4 · 1
2
· 2

4
· τ = τ . Thus, cFAC,i ≤ 2

3
OPTi.

(c) If a cluster i is of size 5, let τ be the sum of weights of all
(

5
2

)

= 10 edges on these five

vertices. By an argument similar argument to (b), FAC pays cFAC,i ≤ 5
10

τ . Also,

the charge of any of these vertices is at least half the cost of any triangle on (three of)

these vertices. Since the average cost of a triangle is 3
10

τ , the number of ∗s in each

vertex is at least 1
2

3
10

τ . Thus, cost paid by OPT for cluster i, OPTi ≥ 5· 1
2
· 3
10
·τ = 3

4
τ .

Thus, cFAC,i ≤ 2
3
OPTi.

Thus, adding up over all clusters, we get cFAC ≤ 2
3
OPT . Thus, cOFAC ≤ 2

3
OPT . 2

4.5. ALGORITHM FOR 3-ANONYMITY 93

Lemma 4.5.2 Given a 2-factor F with cost cF , we can get a solution for 3-Anonymity of

cost cALG ≤ 3 · cF .

Proof: To get a solution for 3-Anonymity, we make every cycle in F with size 3, 4 or 5 into

a cluster. Let len(C) denote the length of a cycle C in the 2-factor. For each cycle larger

C, if len(C) = 3x for x an integer, then we decompose it into x clusters, each containing

3 adjacent vertices of C. Similarly, if len(C) = 3x + 1, x an integer, we decompose it into

x clusters: x − 1 of size 3, and one of size 4. If len(C) = 3x + 2, x an integer, then we

decompose it into x − 2 clusters of size 3, and two clusters of size 4. In all these cases, of

all the possible decompositions, we choose the one in which the total cost of edges of the

cycle within the clusters is minimized. Depending on the size of the cycle C in the 2-factor,

we can show that the 3-Anonymity solution ALG pays as follows:

(a) For a triangle, ALG pays 3 · 1
2
len(C) ≤ 3 · len(C).

(b) For a 4-cycle, ALG pays at most 4 · 1
2
len(C) ≤ 3 · len(C).

(c) For a 5-cycle, ALG pays at most 5 · 1
2
len(C) ≤ 3 · len(C).

The above inequalities follow from an observation similar to Observation 4.4.2,

namely that the vertices of a cycle C can differ in at most 1
2
len(C) attributes.

(e) For a (3x+ 1)-cycle, x > 1, ALG pays at most 6(x−1)+12
3x+1

· len(C) ≤ 3 · len(C). This

is obtained by considering the minimum 3-Anonymity cost over the (3x+1) possible

decompositions into clusters. Each edge e of the cycle C appears in a cluster of size 4

in three decompositions and contributes a cost of at most 4w(e) to the k-Anonymity

cost of the decomposition. In addition, each edge appears in a cluster of size 3 in

(2(x− 1)) decompositions contributing a cost of at most 3w(e) to the k-Anonymity

cost of these decompositions. Summing over all edges, the total k-Anonymity cost

of all the 3x + 1 decompositions is at most (3 · 2(x − 1) + 4 · 3) · len(C) and ALG

pays no more than the average cost of a decomposition.

(f) For a (3x+ 2)-cycle, x > 1, ALG pays at most 6(x−2)+24
3x+2

· len(C) ≤ 3 · len(C). This

is obtained by an analysis similar to (e) above. Note that we get a better bound on

94 CHAPTER 4. K-ANONYMITY

the cost by splitting into x− 2 clusters of size 3 and two clusters of size 4, instead of

x− 1 clusters of size 3 and one clusters of size 5.

Thus, summing over all clusters, ALG pays no more than three times the total cost of

all cycles, i.e., cALG ≤ 3 · cF . 2

Note that the above analysis is tight, since equality can hold in case (f), when x = 2, e.g.

for vectors {0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000}, where the optimal 2-factor is

a cycle through all the vertices in the given order.

Combining the above lemmas, we obtain a factor 2 approximation for 3-Anonymity.

4.6 Summary and Future Work

We showed that the k-Anonymity problem is NP-hard even when the attribute values are

ternary and we are allowed only to suppress entries. Then we gave an O(k)-approximation

algorithm for k-Anonymity with Generalization for arbitrary k and arbitrary alphabet size.

For a binary alphabet, we provided improved approximation algorithms for k = 2 (an

approximation factor of 1.5) and k = 3 (an approximation factor of 2). We also showed

that for k-Anonymity, it is not possible to achieve an approximation factor better than

k/4 by using the graph representation. It would also be interesting to see a hardness of

approximation result for k-Anonymity without assuming the graph representation.

Releasing a database after k-anonymization prevents definitive record linkages with

publicly available databases [Swe02]. In particular, for each record in the public database,

at least k records in the k-anonymized database could correspond to it, which hides each in-

dividual in a crowd of k other people. The privacy parameter k must be chosen according to

the application in order to ensure the required level of privacy. One source of concern about

the k-anonymization model is that for a given record in the public database, all the k records

corresponding to it in the anonymized database might have the same value of the sensitive

attribute(s) (“Diseases” in our examples), thus revealing the sensitive attribute(s) conclu-

sively. To address this issue, we could add a constraint that specifies that for each cluster

in the k-anonymized database, the sensitive attribute(s) should take at least r distinct val-

ues. Recently Machanavajjhala et al. [MKGV06] propose imposing additional constraints

4.6. SUMMARY AND FUTURE WORK 95

that there be a good representation of sensitive attributes for each block of k-anonymized

records.

Another interesting direction of research is to extend the basic k-Anonymity model

to deal with changes in the database. A hospital may want to periodically release an

anonymized version of its patient database. However, releasing several anonymized ver-

sions of a database might leak enough information to enable record linkages for some of

the records. It would be useful to extend the k-Anonymity framework to handle inserts,

deletes, and updates to a database.

Chapter 5

Achieving Anonymity via Clustering

In this chapter, we continue to address the problem of publishing information from a table

containing personal records, while maintaining individual privacy. As discussed in Chap-

ter 4, the traditional approach of de-identifying records by removing the identifying fields

such as name, address, and social security number is not sufficient to protect privacy. This

is because joining this de-identified table with a publicly available database (like the voter

list) on columns like age, race, gender, and zip code can be used to identify individuals. In

fact, Sweeney [Swe00] observed that for 87% of the population in the United States, the

combination of non-key fields like Date of Birth, Gender, and Zip Code corresponded to a

unique person. Such non-key fields are called quasi-identifiers. In what follows we assume

that the identifying fields have been removed and that the table has two types of attributes:

(1) the quasi-identifying attributes explained above and (2) the sensitive attributes (such as

disease) that need to be protected.

In order to protect privacy, Samarati and Sweeney [Sam01, SS98, Swe02] proposed the

k-Anonymity model, where some of the quasi-identifier fields are suppressed or general-

ized so that, for each record in the modified table, there are at least k − 1 other records

in the modified table that are identical to it along the quasi-identifying attributes. For the

table in Figure 5.1(a), Figure 5.1(b) shows a 2-anonymized table corresponding to it. The

columns corresponding to sensitive attributes, like disease in this example, are retained

96

97

Age Location Disease
α β Flu

α + 2 β Flu
δ γ + 3 Hypertension
δ γ Flu
δ γ -3 Cold

(a) Original table

Age Location Disease
* β Flu
* β Flu
δ * Hypertension
δ * Flu
δ * Cold

(b) 2-anonymized version

Age Location NumPoints Disease
α +1 β 2 Flu

Flu
Hypertension

δ γ 3 Flu
Cold

(c) 2-gather clustering, with maximum radius 3

Age Location NumPoints Radius Disease
α +1 β 2 1 Flu

Flu
Hypertension

δ γ 3 3 Flu
Cold

(d) 2-cellular clustering, with total cost 11

Figure 5.1: Original table and three different ways of achieving anonymity

without change. The aim is to provide a k-anonymized version of the table with the mini-

mum amount of suppression or generalization of the table entries. An O(k log k) approx-

imation algorithm was first proposed for the problem of k-Anonymity with suppressions

only [MW04]. In Chapter 4, we described our improved algorithm that achieves an O(k)

approximation for the general version of the problem [AFK+05b].

In this chapter, instead of generalization and suppression, we propose a new technique

for anonymizing tables before their release. We first use the quasi-identifying attributes to

define a metric space (i.e., pairwise distances have to satisfy the triangle inequality) over

98 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

50 points

���
�

���
�

���
�

8 points

20 points

Maximum Cluster Radius = 10

���
�

��	
	

�
�

8 points
radius 3

20 points
radius 550 points

radius 10

(a) Original points (b) r-gather clustering (c) r-cellular clustering

Figure 5.2: Publishing anonymized data

the database records, which are then viewed as points in this space. This is similar to the

approach taken in [CDM+05], except that we do not restrict ourselves to points in Rd; in-

stead, we allow our points to be in an arbitrary metric space. We then cluster the points and

publish only the final cluster centers along with some cluster size and radius information.

Our privacy requirement is similar to the k-Anonymity framework – we require each clus-

ter to have at least r points1. Publishing the cluster centers instead of the individual records,

where each cluster represents at least r records, gives privacy to individual records, but at

the same time allows data-mining tools to infer macro trends from the database.

In the rest of the chapter we will assume that a metric space has been defined over the

records, using the quasi-identifying attributes. For this, the quasi-identifying attributes may

need to be remapped. For example, zip codes could first be converted to longitude and lat-

itude coordinates to give a meaningful distance between locations. A categorical attribute,

i.e., an attribute that takes n discrete values, can be represented by n equidistant points in

a metric space. Furthermore, since the values of different quasi-identifying attributes may

differ by orders of magnitude, we need to weigh the attributes appropriately while defin-

ing the distance metric. For example, the attribute location may have values that differ

in orders of 10 miles with a maximum of 1000 miles, while the attribute age may differ

by a single year with a maximum of 100 years. In this case we assume that the attribute

location is divided by 10 and the attribute age retained without change if both attributes

are needed to have the same relative importance in the distance metric. For the example

we provide in Figure 5.1, we assume that the quasi-identifying attributes have already been

scaled. We observe that it is quite complicated to algorithmically derive a metric space over

quasi-identifying attributes of records; we leave this problem as an avenue for future work.

1We use r instead of k, as k is traditionally used in clustering to denote the number of clusters.

99

To publish the clustered database, we publish three types of features for each cluster:

(1) the quasi-identifying attribute values for the cluster center (age and location in our

example), (2) the number of points within the cluster, and (3) a set of values taken by the

sensitive attributes (disease in our example). We will also publish a measure of the quality

of the clusters. This will give a bound on the error introduced by the clustering.

We consider two cluster-quality measures. The first one is the maximum cluster radius.

For this we define the r-GATHER problem, which aims to minimize the maximum radius

among the clusters, while ensuring that each cluster has at least r members. As an example,

r-GATHER clustering with minimum cluster size r = 2, applied to the table in Figure 5.1(a)

gives the table in Figure 5.1(c). In this example, the maximum radius over all clusters is 3.

As another example, Figure 5.2(b) gives the output of the r-GATHER algorithm applied to

the quasi-identifiers, shown as points in a metric space in Figure 5.2(a). Our formulation

of the r-GATHER problem is related to, but not to be confused with, the classic k-CENTER

problem [HS85]. The k-CENTER problem has the same objective of minimizing the max-

imum radius among the clusters, however, the constraint is that we can have no more than

k clusters in total. The r-GATHER problem is different from k-CENTER problem in that

instead of specifying an upper bound on the number of clusters, we specify a lower bound

on the number of points per cluster as part of the input. Further the constraint of at least r

points per cluster implies that we can have no more than n/r number of clusters, where n

is the total number of points in our data set.

We also consider a second (more verbose) candidate for indicating cluster-quality,

whereby we publish the radius of each cluster, rather than just the maximum radius among

all clusters. For each point within a cluster, the radius of the cluster gives an upper bound

on the distortion error introduced. Minimizing this distortion error over all points leads to

the cellular clustering measurement that we introduce. More formally, the cellular cluster-

ing measurement over a set of clusters, is the sum, over all clusters, of the products of the

number of points in the cluster and the radius of the cluster. Using this as a measurement for

anonymizing tables, we define the r-CELLULAR CLUSTERING problem as follows: Given

points in a metric space, the goal is to partition the points into cells, a.k.a. clusters, each

of size at least r, and the cellular clustering measurement is minimized. Consider again

the data in Figure 5.1(a). Figure 5.1(d) shows a r-cellular cluster solution with minimum

100 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

cluster size r = 2. The total cost is 2 × 1 + 3 × 3 = 11. Also, Figure 5.2(c) gives the

output of the r-CELLULAR CLUSTERING algorithm applied to the quasi-identifiers shown

as points in a metric space in Figure 5.2(a). The total cost of the solution in Figure 5.2(c)

is: 50× 10 + 20× 5 + 8× 3 = 624. As this cellular clustering objective could be relevant

even in contexts other than anonymity, we study a slightly different version of the prob-

lem: similar to the FACILITY LOCATION problem [JV99], we add an additional setup cost

for each potential cluster center, associated with opening a cluster centered at that point,

but we do not have the lower bound on the number of points per cluster. We call this the

CELLULAR CLUSTERING problem. In fact, we will use the setup costs in the CELLULAR

CLUSTERING problem formulation to help us devise an algorithm that solves r-CELLULAR

CLUSTERING.

Comparison with k-Anonymity. While k-Anonymity forces one to suppress or general-

ize an attribute value even if all but one of the records in a cluster have the same value, the

above clustering-based anonymization technique allows us to pick a cluster center whose

value along this attribute dimension is the same as the common value, thus enabling us to

release more information without losing privacy. For example, consider the table in Fig-

ure 5.3 with the Hamming distance metric on the row vectors. If we wanted to achieve

5-Anonymity, we will have to hide all the entries in the table, resulting in a total distortion

of 20. On the other hand, a 5-CELLULAR CLUSTERING solution could use (1, 1, 1, 1) as

the cluster center with a cluster radius of 1. This will give a total distortion bound of 5 (the

actual distortion is only 4).

Attr1 Attr2 Attr3 Attr4
Record 0 1 1 1 1
Record 1 0 1 1 1
Record 2 1 0 1 1
Record 3 1 1 0 1
Record 4 1 1 1 0

Figure 5.3: A sample table where there is no common attribute among all entries.

Just like k-Anonymity, r-GATHER and r-CELLULAR CLUSTERING are sensitive to

101

outlier points, with just a few outliers capable of increasing the cost of the clustering sig-

nificantly. To deal with this problem, we generalize the above algorithms to allow an ε

fraction of the points to be deleted before publication. By not releasing a small fraction of

the database records, we can ensure that the data published for analysis has less distortion

and hence is more useful. This can be done as long as our aim is to infer macro trends from

the published data. On the other hand, if the goal is to find out anomalies, then we should

not ignore the outlier points. There has been no previous work for k-Anonymity with this

generalization.

We note that, as in k-Anonymity, the objective function is oblivious to the sensitive

attribute labels. Extensions to the k-Anonymity model, such as the notion of l-diversity

[MKGV06], can be applied independently to our clustering formulation.

We provide constant-factor approximation algorithms for both the r-GATHER and r-

CELLULAR CLUSTERING problems. In particular, we first show that the it is NP-hard to

approximate the r-GATHER problem better than 2 and provide a matching upper bound. We

then provide extensions of both these algorithms to allow for an ε fraction of unclustered

points, which we call the (r, ε)-GATHER and (r, ε)-CELLULAR CLUSTERING, respectively.

These are the first constant-factor approximation algorithms for publishing an anonymized

database. The best known algorithms [AFK+05b, MW04] for previous problem formula-

tions had an approximation ratio linear in the anonymity parameter r.

The rest of this chapter is organized as follows. In Section 5.1, we present a tight 2-

approximation algorithm for the r-GATHER problem and its extension to the (r, ε)-GATHER

problem. Next, in Section 5.2, motivated by the desire to reduce the sum of the distortions

experienced by the points, we introduce the problem of CELLULAR CLUSTERING. We

present a primal-dual algorithm for the problem without any cluster-size constraints that

achieves an approximation ratio of 4. We then study the additional constraint of having a

minimum cluster size of r. Finally, we relax the problem by allowing the solution to leave

at most an ε fraction of the points unclustered. We conclude in Section 5.3.

102 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

5.1 r-Gather Clustering

To publish the clustered database, we publish three types of features for each cluster: (1)

the quasi-identifying attribute values for the cluster center, (2) the number of points within

the cluster, and (3) a set of values taken by the sensitive attributes. The maximum cluster

radius is also published to give a bound on the error introduced by clustering. This is similar

to the traditionally studied k-CENTER clustering. In order to ensure r-Anonymity, we do

not restrict the total number of clusters, instead, we pose the alternative restriction that each

cluster should have at least r records assigned to it. We call this problem r-GATHER, which

we formally define below.

Definition 5.1 The r-GATHER problem is to cluster n points in a metric space into a set

of clusters, such that each cluster has at least r points. The objective is to minimize the

maximum radius among the clusters.

We note that the minimum cluster size constraint has been considered earlier in the

context of facility location [KM00].

We first show the reduction for NP-completeness and hardness proofs.

5.1.1 Lower Bound

We show that this problem is NP -complete by a reduction from the 3-Satisfiability prob-

lem, where each literal belongs to at most 3 clauses [GJ79].

Suppose that we have a boolean formula F in 3-CNF form with m clauses and n vari-

ables. Let F = C1 ∧ . . .∧Cm, be a formula composed of variables xi, i = 1 . . . n and their

complements xi.

From the boolean formula, we create a graph G = (V, E) with the following property:

There is a solution to the r-GATHER problem with a cluster radius of 1, with respect to the

shortest distance metric on the graph G, if and only if F has a satisfying assignment.

We create the graph as follows: For each variable xi, create two vertices vT
i and vF

i ,

and create an edge (vT
i , vF

i) between the two vertices; in addition create a set Si of (r − 2)

nodes and add edges from each node in Si to both vT
i and vF

i . Picking vT
i (vF

i) as a center

corresponds to setting xi = T (F). (Note that we cannot choose both vT
i and vF

i since there

5.1. R-GATHER CLUSTERING 103

are not enough nodes in Si.) For each clause Cj, create a new node uj that is adjacent to

the nodes corresponding to the literals in the clause. For example, if C1 = (x1 ∨ x2) then

we add edges from u1 to vT
1 and vF

2 .

If the formula is indeed satisfiable, then there is a clustering by picking vT
i as a center

if xi = T and picking vF
i otherwise. Each clause is true, and must have a neighbor chosen

as a center. Moreover by assigning Si to the chosen center, we ensure that each center has

at least r nodes in its cluster.

Now suppose there is an r-gather clustering. If r > 6 then both vT
i and vF

i cannot be

chosen as centers. In addition, the clause nodes uj have degree at most 3 and cannot be

chosen as centers. If exactly one of vT
i or vF

i is chosen as a center, then we can use this to

find the satisfying assignment. The assignment is satisfying as each clause node has some

neighbor at distance 1 that is a chosen center, and makes the clause true.

This completes the NP-completeness proof. Note that this reduction also gives us a

hardness of 2. We just showed that there is a solution to the r-GATHER problem with a

cluster radius of 1 if and only if F had a satisfying assignment. The next available cluster

radius is 2 in the metric defined by the graph G.

5.1.2 Upper Bound

We first use the threshold method used for k-CENTER clustering to guess R, the optimal

radius for r-GATHER. The choices for R are defined as follows. We will try all values
1
2
dij where dij is the distance between points i and j. Note that this defines a set of O(n2)

distance values. We find the smallest R for which the following two conditions hold:

Condition (1) Each point p in the database should have at least r − 1 other points within

distance 2R of p.

Condition (2) Let all nodes be unmarked initially. Consider the following procedure: Se-

lect an arbitrary unmarked point p as a center. Select all unmarked points within

distance 2R of p (including p) to form a cluster and mark these points. Repeat this

as long as possible, until all points are marked. Now we try to reassign points to

clusters to meet the requirement that each cluster has size at least r. This is done as

104 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

follows. Create a flow network as follows. Create a source s and sink t. Let C be the

set of centers that were chosen. Add edges with capacity r from s to each node in C.

Add an edge of unit capacity from a node c ∈ C to a node v ∈ V if their distance is

at most 2R. Add edges of unit capacity from nodes in V to t and check to see if a

flow of value r|C| can be found (saturating all the edges out of s). If so, then we can

obtain the clusters by choosing the nodes to which r units of flow are sent by a node

c ∈ C. All remaining nodes of V can be assigned to any node of C that is within

distance 2R. If no such flow exists, we exit with failure.

The following lemma guarantees that the smallest R that satisfies these conditions is

a lower bound on the value of the optimal solution for r-GATHER. Suppose we have an

optimal clustering S1, . . . , S` with ` clusters. Let the maximum diameter of any of these

clusters be d∗ (defined as the maximum distance between any pair of points in the same

cluster).

Lemma 5.1.1 When we try R = d∗

2
, then the above two conditions are met.

Proof: By the definition of r-GATHER, every point has at least r − 1 other points within

the optimal diameter, and hence within distance 2R. Consider an optimal r-GATHER clus-

tering. For each point i, all points belonging to the same optimal cluster c as the point i are

within a distance 2R of i. Thus, in the procedure of Condition (2), as soon as any point in

c is selected to open a new cluster, all unmarked points belonging to c get assigned to this

new cluster. So at most one point from each optimal cluster is chosen as a center and forms

a new cluster. We would now like to argue that the reassignment phase works correctly as

well. Let S be the set of chosen centers. Now consider an optimal solution with clusters,

each of size at least r. We can assign each point of a cluster to the center that belongs to

that cluster, if a center was chosen in the cluster. Otherwise, since the point was marked by

the algorithm, some center was chosen that is within distance 2R. We can assign this point

to the center that had marked it. Each chosen center will have at least r points assigned to

it (including itself). 2

Since we find the smallest R, we will ensure that R ≤ d∗/2 ≤ R∗ where R∗ is the

radius of the optimal clustering. In addition, our solution has radius 2R. This gives us a

2-approximation.

5.1. R-GATHER CLUSTERING 105

Theorem 5.1.2 There exists a polynomial time algorithm that produces a 2-approximation

to the r-GATHER problem.

5.1.3 (r, ε)-Gather Clustering

A few outlier points can significantly increase the clustering cost under the minimum clus-

ter size constraint. We consider a relaxation whereby the clustering solution is allowed to

leave an ε fraction of the points unclustered, i.e., to delete an ε fraction of points from the

published k-anonymized table. Charikar et al. [CKMN01] studied various facility location

problems with this relaxation and gave constant-factor approximation algorithms for them.

For the (r, ε)-GATHER problem, where each cluster is constrained to have at least r

points and an ε fraction of the points are allowed to remain unclustered, we modify our

r-GATHER algorithm to achieve a 4-approximation. We redefine the condition to find R.

We find the smallest R that satisfies the following condition: There should be a subset S of

points containing at least 1− ε fraction of the points, such that each point in S has at least

r − 1 neighbors within distance 2R in S.

This condition can be checked in O(n2) time by repeatedly removing any point in S

that has fewer than r − 1 other points in S within distance 2R of itself, with S initially

being the entire vertex set. It is clear that the smallest R we found is no more than R∗, the

optimal radius.

Let R be the value that we found. Let N(v) denote the set of points in S within distance

2R of v, including v itself. We know then N(v) ≥ r. We then consider the following

procedure: Select an arbitrary point p from S. If there are at least r− 1 other points within

distance 2R of p, then form a new cluster and assign p and all points within distance 2R of

p to this cluster. Remove all these points from further consideration and repeat this process

until all remaining points have fewer than r − 1 other points within distance 2R of them.

Let U be the set of points left unclustered at the end of this process. For each u ∈ U ,

there exists a point p ∈ N(u) such that p is assigned to some cluster c in the procedure of

forming clusters. We can see this as follows. Since u was left unassigned at the end of the

procedure, there are fewer than r unassigned points remaining in N(u). This implies that

there is at least one point p in N(u) which is already assigned to some cluster c. We assign

106 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

u to c, which already has at least r points.

Thus, we have assigned all points to clusters, such that each cluster has at least r points.

Note that the radius of each cluster is no more than 4R. This gives us the following theorem.

Theorem 5.1.3 There exists a polynomial time algorithm that produces a 4-approximation

to the (r, ε)-GATHER problem.

We note that in the problem formulation of (r, ε)-GATHER, if we require the cluster

centers to be input points, instead of arbitrary points in the metric, then we can improve

the approximation factor to 3 as follows. In the filtering step we define “candidates” as the

set of points that have at least r points within radius R. The total number of points within

distance R of the candidates should contain at least 1− ε fraction of the points. Call this set

S. Each point in S has at least r− 1 neighbors within distance 2R in S. In the initial phase

we greedily pick clusters of radius R (instead of 2R) that have at least r points and mark

those points covered. If a point in S is now uncovered, it must have a candidate within

distance R that was unable to form a cluster. This is because some of the points within

distance R of the candidate were covered in the first phase by disks of radius R. Hence

each point in S can reach such a cluster center within distance 3R (through the candidate).

5.1.4 Combining r-Gather with k-Center

We can combine the r-GATHER problem with the k-CENTER problem and have the two

constraints present at the same time. That is, we minimize the maximum radius, with the

constraint that we have no more than k clusters, each must have at least r members. We

call this the (k, r)-CENTER problem.

We note that a similar problem has been studied before in the k-CENTER literature.

That is, instead of having a lower bound r on the cluster size as an additional constraint

to the original k-CENTER formulation, an upper bound on the cluster size is specified.

This is called the CAPACITATED k-CENTER problem [KS00]. Bar-Ilan, Kortsarz, and Pe-

leg [BIKP93] gave the first constant approximation factor of 10 for this problem. The bound

was improved subsequently to 5 by Khuller and Sussmann [KS00]. In this subsection, we

only concentrate on the (k, r)-CENTER problem defined above.

5.1. R-GATHER CLUSTERING 107

We note here that the algorithm developed for r-GATHER in Section 5.1.2 can be ex-

tended to provide a 2-approximation for the (k, r)-CENTER problem. We just have to add

to Condition (2) the extra criteria that if the number of centers chosen exceeds k then exit

with failure, i.e., try a different value for R. We can show that Lemma 5.1.1 holds for the

modified conditions, hence an approximation factor of 2.

We also consider the outlier version of this problem, namely, the (k, r, ε)-CENTER prob-

lem.

We show that the following algorithm is a 4-approximation algorithm for the (k, r, ε)-

CENTER problem.

Fix a guess for the optimal radius R (choose the smallest R that succeeds). For each

such guess, we apply the following algorithm. Let D(v, δ) be the set of points within

distance δ of v (including v).

Algorithm:

(Filtering Step) Let S be the set of points v such that |D(v, 2R)| ≥ r. Check to see if

|S| ≥ (1− ε)n, otherwise exit with failure. From now on we only consider points in S.

(Greedy Step) We now choose up to k centers. We put the centers in the set Q. Initially Q

is empty. All points are uncovered to start with. Let N(v, δ) be the set of uncovered points

within distance δ of v (including v itself). Points are either uncovered, or covered. Once

a point is covered it is removed from consideration. At each step i, we choose a center ci

that satisfies the following criteria:

(a) ci is uncovered.

(b) |N(ci, 2R)| is maximum.

All uncovered points in N(ci, 4R) are then marked as covered.

After Q is completely decided, check that the total points covered is at least (1 − ε)n,

otherwise exit with failure.

(Assignment step): Form clusters as follows. For each ci ∈ Q, form a cluster Ci centered

at ci. Each covered point is assigned to its closest cluster center.

For each ci, we denote Gi = N(ci, 2R) and Ei = N(ci, 4R), which are uncovered

points within distance 2R and 4R of ci, when ci is chosen.

In Figure 5.4 we illustrate this algorithm via an example. Consider the Greedy Step and

assume for a moment that R is indeed the optimal radius just for illustration purposes. Let

108 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

O1

O2

O3
E1

E2

O1

O2

O3
E1

Gi

Ei

Oi

ci

G2

c1 G1 G1
c1

c2

Figure 5.4: Optimal clusters and the greedy step

the optimal solution have clusters O1, . . . , Ok. In the figure, we only show cluster centers

to be picked and omit the rest of the points. The left side illustrates the situation when we

are picking c1. Note that G1 includes O1 completely, and overlaps with O2. Because of

this, all points in O1 and O2 are in E1 and marked covered and cannot be chosen as a center

later. Note that E1 in fact will cover points in other optimal clusters as well. For example,

when we choose c1 and cover all points in E1, we also cover some points in O3. However,

we may still pick a remaining point in O3 as the next cluster center c2, as shown in the right

side. Note that in the Greedy Step, we completely ignore the constraint of r, as we are not

forming any clusters but only picking cluster centers. In fact, G2 now could have fewer than

r uncovered points. The key is that the Gi’s are far apart. Hence in the Assignment Step,

all the points in D(c2, 2R) that were initially covered by E1 will eventually be assigned to

the center c2, giving the whole cluster C2 at least r points. Detailed proofs are below.

Lemma 5.1.4 After the assignment step, each cluster formed has at least r points, and

radius at most 4R.

Proof: Every time a center ci is selected, we only cover points within distance 4R, thus

the maximum radius is at most 4R. In the end, each point is assigned to its closest chosen

center in Q. Observe that the cluster centers are more than 4R apart. Thus for each center

ci and its corresponding cluster Ci, all the points within distance 2R of ci are assigned to

the same cluster Ci. By the filtering step, we know that |Ci| ≥ |D(ci, 2R)| ≥ r. 2

Lemma 5.1.5 The optimal solution on set S is the same as the optimal solution on set V .

5.1. R-GATHER CLUSTERING 109

Proof: This is simply true by the filtering step, since every point in the optimal solution

belongs to S. 2

Lemma 5.1.6 Consider the guess R = d∗

2
, where d∗ is the maximum distance between any

two points in the same optimal cluster, our algorithm covers no less points than the optimal

solution on set S.

Proof: We will prove a stronger statement. We will show that our algorithm covers no less

points than the following optimal solution OPT on set S: it has at most k clusters, and the

maximum distance between any two points in the same optimal cluster is at most d∗, but

there is no requirement on the number of points per cluster. Let O1, O2, . . . , Ok denote the

set of optimal clusters in OPT . We claim that:

|E1 ∪ . . . ∪ Ek| ≥ |O1 ∪ . . . ∪Ok| (5.1)

The proof is by induction on k. The claim is true for k = 1, since |E1| ≥ |G1| ≥ |O1|.
Assume that k > 1. Clearly,

k
⋃

i=1

(E1 ∩ Oi) ⊆ E1.

Assume that G1 intersects one of the disks O1, . . . , Ok (say, O1). Then O1 ⊆ E1 and the

following inequality is satisfied.

|E1| ≥ |O1|+
k

∑

i=2

|E1 ∩ Oi|. (5.2)

The above inequality is satisfied even if G1 does not intersect any of the disks O1, . . . , Ok,

since then
k

⋃

i=1

(E1 ∩Oi) ∪G1 ⊆ E1.

Now since |G1| ≥ max{|O1|, |O2|, . . . , |Ok|} ≥ |O1|, we have

|E1| ≥ |G1|+
k

∑

i=1

|E1 ∩Oi| ≥ |O1|+
k

∑

i=2

|E1 ∩ Oi|.

110 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

In either case, inequality (5.2) is satisfied.

Now consider the (k− 1)-center problem on the set S −E1. On this set, our algorithm

could have picked the sets E2, E3, . . . , Ek. Also, for S −E1, it is clear that O2 −E1, O3 −
E1, . . . , Ok − E1 is a solution, although it is not necessarily an optimal one. By induction,

we know that

|E2 ∪ . . . ∪ Ek| ≥ |
k

⋃

i=2

(Oi − E1)| (5.3)

Combining inequalities (5.2) and (5.3) proves (5.1). 2

Combining the above three lemmas we have the following theorem.

Theorem 5.1.7 Our algorithm gives a 4-approximation for the (k, r, ε)-CENTER problem.

5.2 Cellular Clustering

As mentioned in the beginning of the chapter, a second approach is to publish the radius

of each cluster in addition to its center and the number of points within it. In this case, for

each point within a cluster, the radius of the cluster gives an upper bound on the distortion

error introduced. The CELLULAR CLUSTERING problem aims to minimize the overall

distortion error, i.e., it partitions the points in a metric space into cells, each having a cell

center, such that the sum, over all cells, of the products of the number of points in the cell

and the radius of the cell is minimized. We even allow each potential cluster center to have

a facility (setup) cost f(v) associated with opening a cluster centered at it. This will later

allow us to solve the problem in the case when each cluster is required to have at least r

points within it.

Definition 5.2 A cluster consists of a center along with a set of points assigned to it. The

radius of the cluster is the maximum distance between a point assigned to the cluster and

the cluster center. To open a cluster with cluster center v and radius r incurs a facility cost

f(v). In addition, each open cluster incurs a service cost equal to the number of points in

the cluster times the cluster radius. The sum of these two costs is called the cellular cost

of the cluster. The CELLULAR CLUSTERING problem is to partition n points in a metric

space into clusters with the minimum total cellular cost.

5.2. CELLULAR CLUSTERING 111

The CELLULAR CLUSTERING problem is NP-complete via reduction from dominating

set. We present a primal-dual algorithm for the CELLULAR CLUSTERING problem that

achieves an approximation factor of 4.

Let c = (vc, dc) denote a cluster c whose cluster center is the node vc and whose radius

is dc. By definition, the setup cost f(c) for a cluster c = (vc, dc) depends only on its center

vc; thus f(c) = f(vc). For each possible choice of cluster center and radius c = (vc, dc),

define a variable yc, a 0/1 indicator of whether or not the cluster c is open. There are O(n2)

such variables. For a cluster c = (vc, dc), any point pi within a distance of dc of its center

vc is said to be a potential member of the cluster c. For all potential members pi of a cluster

c, let xic be a 0/1 indicator of whether or not point pi joins cluster c. Note that the pair (i, c)

uniquely identifies an edge between pi and the center of cluster c. We relax the integer

program formulation to get the following linear program:

Minimize:
∑

c(
∑

i xicdc + fcyc)

Subject to:
∑

c xic ≥ 1 ∀i
xic ≤ yc ∀i, c
0 ≤ xic ≤ 1 ∀i, c
0 ≤ yc ≤ 1 ∀c

And the dual program is:

Maximize:
∑

i αi

Subject to:
∑

i βic ≤ fc ∀c
αi − βic ≤ dc ∀i, c
αi ≥ 0 ∀i
βic ≥ 0 ∀i, c

The above formulation is similar to the primal-dual formulation of facility

location [JV99]. However, since the assignment of additional points to clusters increases

the service cost incurred by existing members of the cluster, we need a different approach

to assign points to clusters.

Algorithm 5 describes the details of the growth of dual variables and the assignment of

points to clusters. We say an edge (i, c) is tight if αi ≥ dc. When an edge (i, c) becomes

112 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

tight, the corresponding cluster c becomes partially open and pi contributes an amount of

(αi − dc) to the fixed facility cost of f(c). At any step of the algorithm, a point is labeled

unassigned, idle or dead. Initially, all points are unassigned. As some cluster becomes

tight, all unassigned or idle points having tight edges to it become dead. In addition, some

of the unassigned points become idle as described in the algorithm.

Algorithm 5 A PRIMAL DUAL METHOD FOR CELLULAR CLUSTERING

1: repeat
2: Grow the unfrozen dual variables αi uniformly.
3: if αi ≥ dc for some cluster c and its potential member pi, i.e., edge (i, c) is tight, and

c has not been shut down then
4: Open the cluster c partially, and grow the dual variable βic at the same rate as αi.
5: end if
6: if

∑

i βic = fc for some cluster c then
7: Freeze all variables αi for which the edge (i, c) is tight.
8: All unassigned points with a tight edge to c are assigned to c. Call this set V U

c .
9: Let V I

c be the set of all idle points that have a tight edge to c.
10: Permanently shut down any cluster c′ 6= c for which a point pi in V U

c ∪ V I
c has a

tight edge (i, c′). Assign to c all unassigned points pj with a tight edge to c′. Call
this newly-assigned set of points V IU

c .
11: All points in V IU

c are labeled idle and their dual variables are frozen.
12: All points in V U

c and V I
c are labeled dead.

13: end if
14: until All points become dead or idle.

We now show that the primal solution constructed has a cost of at most 4 times the value

of the dual solution found using Algorithm 5. For this, we note the following properties:

(1) At any instant, the value of αi for all unassigned points i is the same. Moreover, this

value is no less than the value of αj for any dead or idle point j.

(2) Once a point has a tight edge to a particular cluster c (i.e., a cluster is partially open),

all unassigned potential members of that cluster (i.e.points within a distance dc of the

cluster center vc) have tight edges to it.

(3) When a cluster opens, all its unassigned potential members are assigned to it and

become dead.

5.2. CELLULAR CLUSTERING 113

(4) When a point pi becomes dead, all but one facility partially supported by pi is shut

down.

(5) When a cluster shuts down, all its unassigned potential members are assigned to some

open cluster and become idle.

Property (1) follows from the definition of our algorithm. Property (2) follows from

property (1) and the fact that the edge (i, c) becomes tight when the dual variable αi equals

dc. Property (3) then follows from (2). Property (4) again follows from the definition of the

the algorithm. Property (5) can be seen as follows: we shut down a cluster c only when one

of its unassigned or idle members has a tight edge to the cluster c′ currently being opened,

and also has a tight edge to c. By property (2), all unassigned members of c have tight

edges to c. Hence in Steps 10 and 11 of the algorithm, these members will be assigned to

c′ and become idle.

Lemma 5.2.1 The service cost for each point,
∑

c xicdc, is no more than 3αi.

Proof: Consider the cluster c to which point i is assigned. When cluster c opens, points

in V U
c and V IU

c are assigned to c. We need to bound the radius of the cluster consisting of

V U
c ∪ V IU

c . By property (1), all points in V U
c and V IU

c have the same dual variable value,

say α. Let p be the cluster center of c. Clearly, for a point q ∈ V U
c , d(q, p) ≤ dc ≤ α. For a

point r ∈ V IU
c , let c′ be its cluster that was shut down (in Step 10) when r was assigned to c.

Let p′ be the cluster center of c′, and let q′ ∈ V U
c be the point that was partially supporting c′.

Clearly, α ≥ dc′ since q′ is partially supporting c′. Combined with the fact that r and q′ are

potential members of c′, we get that d(r, p) ≤ d(r, p′)+d(p′, q′)+d(q′, p) ≤ 2dc′+dc ≤ 3α.

Thus, the cluster made of V U
c and V IU

c has overall radius no more than 3α = 3αi. 2

Lemma 5.2.2 The cost of opening the clusters,
∑

c ycfc, is no more than
∑

i αi.

Proof: A cluster c is opened when
∑

i βic equals fc. Thus, for each open cluster c, we need

to find Vc ⊆ V , s.t.
∑

i βic can be charged to
∑

i∈Vc
αi. To avoid charging any point i more

than once, we need to make sure that the Vc’s are disjoint. We begin by noting that when a

cluster c opens, only points i with a tight edge to c can contribute to
∑

i βic. When a point

114 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

is labeled dead, by Property 4, all the clusters to which it has a tight edge are shut down

and are not opened in future. This implies that clusters which are opened do not have tight

edges to dead points. Thus, when a cluster c is opened, V U
c and V I

c are the only points

which have tight edges to c. If we let Vc = V U
c ∪ V I

c , then
∑

i∈Vc
αi ≥

∑

i βic. Also, since

the points in V U
c ∪ V I

c are labeled dead in this iteration, they will not appear in V U
c′ ∪ V I

c′

for any other cluster c′. 2

We thus obtain the following theorem.

Theorem 5.2.3 The primal-dual method in Algorithm 5 produces a 4-approximation solu-

tion to the CELLULAR CLUSTERING problem.

5.2.1 r-Cellular Clustering

We now extend the above primal-dual algorithm to get an approximation algorithm for the

r-CELLULAR CLUSTERING problem which has the additional constraint that each cluster

is required to have at least r members. The notation (r, C) is used to denote a solution

having a total cost of C, and having at least r members in each cluster.

Comparison with prior clustering work. Since our algorithm can be viewed as an ex-

tension of facility location, we briefly discuss related results. The facility location (and

k-median) problems have been studied with the minimum cluster size constraint [KM00],

as well as in the context of leaving an ε fraction of the points unclustered [CKMN01]. Let

OPTr be the optimal facility location cost with minimum cluster size r. If as stated before

(r, C) denotes a solution with minimum cluster size r and solution cost C, bi-criteria ap-

proximation for the facility location problem of (r/2, 5.184OPTr) was achieved indepen-

dently by Guha, Meyerson and Munagala [GMM00] and by Karger and Minkoff [KM00].

It is not known whether it is possible to achieve a one-sided approximation on facility lo-

cation cost alone. In contrast, for the r-CELLULAR CLUSTERING problem, we provide an

one-sided approximation algorithm, specifically we obtain a (r, 80OPTr) solution, where

OPTr is the cost of the optimal solution with cluster size at least r,

To achieve this, we first study a sharing variant of this problem, where a point is allowed

to belong to multiple clusters, thus making it easier to satisfy the minimum cluster size

constraint. Interestingly, allowing sharing changes the value of the optimal solution by at

5.2. CELLULAR CLUSTERING 115

most a constant factor. We note that this observation does not hold for facility location,

where a shared solution might be arbitrarily better than an unshared one. The algorithm

consists of three main steps:

1. Augmenting with Setup Costs. Given an instance of r-CELLULAR CLUSTERING,

we first construct an instance of CELLULAR CLUSTERING as follows: augment the cluster

cost fc of a cluster c by r × dc. In addition, if a cluster c = (vc, dc) has fewer than r points

within distance dc of its center vc, this cluster is eliminated from the instance. If the original

r-CELLULAR CLUSTERING instance has an optimal solution with cost OPTr, it is not hard

to see that the same solution works for the CELLULAR CLUSTERING instance constructed

above with a total cost of at most 2OPTr. We invoke the 4-approximation algorithm for

CELLULAR CLUSTERING on this new instance to find a solution with cost at most 8OPTr.

2. Sharing Points between Clusters. We now describe the notion of a shared solution

for r-CELLULAR CLUSTERING. In a shared solution, points are allowed to be assigned

to multiple clusters, as long as they pay the service cost for each cluster they are assigned

to. A shared solution is feasible if all clusters have at least r (potentially shared) members.

We modify the solution obtained above to get a feasible shared solution for r-CELLULAR

CLUSTERING as follows: for each open cluster c with center P , assign the r closest neigh-

bors of P to c as well, regardless of where they are initially assigned. The extra service

cost of at most r × dc for these r points can be accounted for by the extra facility cost of

r×dc being paid by the open cluster c in the CELLULAR CLUSTERING solution. Thus, we

have obtained an (r, 8OPTr) shared solution for the r-CELLULAR CLUSTERING instance.

3. Making the Clusters Disjoint. Finally we show how to convert a shared solution to a

valid solution where each point is assigned to only one cluster, with only a constant blowup

in cost. We note that for the corresponding facility location problem, it is not feasible to do

this “unsharing” without a large blowup in cost in the worst case.

Initially, all points are labeled unassigned. We consider the clusters in order of increas-

ing cluster radius dc. If a cluster c has at least r unassigned members, then it is opened

and all its unassigned members are assigned to c and labeled assigned. We stop this pro-

cess when all the remaining clusters have fewer than r unassigned members each. The

remaining clusters are called leftover clusters. We temporarily assign each of the unas-

signed points arbitrarily to one of the leftover clusters it belongs to. Since each cluster had

116 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

at least r members in the shared solution, each leftover cluster c′ must have a member in

the shared solution, which is now assigned to an open cluster o, s.t. dc′ ≥ do. We thus have

the situation illustrated in Figure 5.5.

Member

Leftover Cluster

Center

Assigned members
Shared members

m ≥ r

VmV2V1

m′ < r
U1

U2
Um′

(weight m′)

Open Cluster o

Figure 5.5: Structures of open and leftover clusters

The points are organized in a forest structure, where each tree has two “levels”. We can

regroup points into clusters, on a per tree basis. It is obvious that each tree has at least r

points, since it contains at least one open cluster o. We further simplify the structure into

a true two-level structure as in Figure 5.5, by collapsing each leftover cluster into a single

node with weight equal to the number of points temporarily assigned to it. Nodes in the

first level of the tree have weight 1. We apply the following greedy grouping procedure:

first consider only the nodes at the second level of the tree and collect nodes until the total

weight exceeds r for the first time. We group these nodes (belonging to leftover clusters)

into a cluster, and repeat the process. Notice that since we did not touch the first-level

nodes, the total weight of remaining nodes in the tree is at least r. If the total weight of

remaining nodes in the second level, Ws, is less than r, then we extend the grouping into the

first level nodes. Let m denote the total weight of nodes in the first level. If Ws + m ≥ 2r,

then we group the nodes in the second level with r −Ws first level nodes together into a

cluster; the remaining nodes in the first level form a cluster. Otherwise, all the remaining

nodes (both the first and second level) are grouped into a cluster. If we break up the tree

using the procedure above, each resulting cluster has size at least r.

Lemma 5.2.4 For a cluster that contains any second-level nodes, the total number of

points in the cluster is no more than 2r − 1.

5.2. CELLULAR CLUSTERING 117

Proof: Since a single second-level node has weight less than r, a cluster containing only

second-level nodes has at most 2r − 1 members. If the cluster contains both the first

and second-level nodes, then we must have reached the case where the total weight of

remaining nodes in the second level is less than r. In that case, by definition, the cluster

formed containing these second-level nodes has size either r or less than 2r − 1. 2

There could be a cluster that only contains the first level nodes, and its entire cost (both

the service and cluster cost) can be accounted for by its cost in the original (r, 8OPTr)

shared solution. We now bound the cost of clusters containing the second-level nodes.

Lemma 5.2.5 For each cluster c formed that contains second level nodes, there exists a

leftover cluster c′ unique to c, such that the following holds: let p be the center of c′, if we

center the cluster c at p, then the radius of cluster c, radius(c) ≤ 5dc′ .

Proof: Among all the leftover clusters that contributed to c, let c′ be the one with the

maximum radius. By definition, all nodes assigned to a leftover cluster get assigned to a

single cluster, guaranteeing the uniqueness of c′. Let do be the radius of the open cluster

at level 1 of this tree. Consider a point q ∈ c. If q is a first-level node, then d(q, p) ≤
2do + dc′ ≤ 3dc′. If q is a second-level node, then let c′′ be the leftover cluster that q was

assigned to, then d(q, p) ≤ 2dc′′ + 2do + dc′ ≤ 5dc′. 2

The above lemma implies that by choosing p as the cluster center, the service cost of

each point in c is no more than 5dc′ and the total facility cost incurred within our solution

is no more than that of the shared solution. Together with Lemma 5.2.4, we conclude that

the service cost of points in c is no more than 10r × dc′. Notice that in the shared solution,

points in cluster c′ are paying a total service cost of at least r × dc′ . We thus have the

following theorem.

Theorem 5.2.6 The above procedure produces a solution with minimum cluster size r and

total cost no more than 80OPTr, i.e., a (r, 80OPTr) solution, where OPTr is the value of

the optimal solution with a minimum cluster size of r.

We note that the above algorithm and analysis can be combined with the technique de-

veloped in [CKMN01] to give an constant approximation to the (r, ε)-CELLULAR CLUS-

TERING problem. The above algorithm can also be adapted to provide a constant-factor

118 CHAPTER 5. ACHIEVING ANONYMITY VIA CLUSTERING

approximation for the problem where the diameter of any cluster is not allowed to exceed

a certain pre-specified threshold.

5.3 Summary and Future Work

Publishing data about individuals without revealing sensitive information is an important

problem. The notion of privacy called k-Anonymity has attracted a lot of research attention

recently. In a k-anonymized database, values of quasi-identifying attributes are suppressed

or generalized so that for each record there are at least k − 1 records in the modified table

that have exactly the same values for the quasi-identifiers. However, the performance of the

best known approximation algorithms for k-Anonymity depends linearly on the anonymity

parameter k. In this chapter, we introduced clustering as a technique to anonymize quasi-

identifiers before publishing them. We studied r-GATHER as well as a newly introduced

clustering metric called r-CELLULAR CLUSTERING and provided the first constant-factor

approximation algorithms for publishing an anonymized database table. Moreover, we

generalized these algorithms to allow an ε fraction of points to remain unclustered. Defining

the right metric space over the quasi-identifying attributes of records and improving the

approximation ratios are interesting avenues for future work.

Chapter 6

Conclusions

We addressed the problem of statistical disclosure control – revealing aggregate statistics

about a population while preserving the privacy of individuals. We presented models and

algorithms for protecting the privacy of individuals in statistical databases while allowing

users to mine useful trends and patterns. Our focus was on two frameworks – interactive

and non-interactive – for protecting privacy in such databases. We studied methods under

both these frameworks as each method is useful in different contexts.

In the first part of the thesis, we considered the interactive framework, in which the user

(researcher) queries the database through a privacy mechanism, which may deny the query

or alter the answer in order to ensure privacy. For the online query auditing problem, we

uncovered the fundamental issue that query denials leak information and introduced the

simulatable auditing model to overcome this problem. We also described a probabilistic

notion of (partial) compromise, in order to overcome the known limitations of the existing

privacy definition. We then presented simulatable auditing algorithms under both these def-

initions. The second problem we considered is output perturbation, in which the database

administrator computes the exact answer to the query and then outputs a perturbed version

as the response to the query. Inspired by the desire to enable individuals to retain control

over their information, we provided a fault-tolerant distributed implementation of output

perturbation schemes, thereby eliminating the need for a trusted database administrator.

119

120 CHAPTER 6. CONCLUSIONS

In the second part of the thesis, we focused on the non-interactive framework and con-

sidered two anonymization methods for publishing data. We presented approximation al-

gorithms for anonymizing databases under the k-Anonymity model. Then we proposed a

new method for anonymizing data records, where the data records are clustered and then

cluster centers are published, and provided approximation algorithms for the same.

At the end of each chapter, we outlined open problems related to the work described

in that chapter. It would be interesting to address privacy concerns arising in contexts

other than statistical databases. For example, consider the privacy issues associated with

the availability of massive amounts of user-generated data such as the logs maintained by

internet search engines. When a person searches for personally identifiable information

(such as her home address) followed by a sensitive query, the corresponding logs have the

same session information and hence one may be able to identify the person who issued the

sensitive query. The challenge is to design a scheme that prevents learning private infor-

mation through association of the log entries, while allowing useful data mining. Another

direction for further research is to develop a unified privacy framework and provide a tax-

onomy of the different privacy models and techniques with respect to measures such as

privacy and utility. This would involve comparing different definitions of privacy and also

understanding the trade-off between privacy and utility. Developing such a framework may

play a crucial role in fully understanding the relative merits of different privacy techniques.

Bibliography

[AA01] D. Agrawal and C. Aggarwal. On the design and quantification of pri-

vacy preserving data mining algorithms. In Proceedings of the 20th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

pages 247–255, 2001.

[ABG+04] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,

N. Mishra, R. Motwani, U. Srivastava, D. Thomas, J. Widom, and Y. Xu.

Vision paper: Enabling privacy for the paranoids. In Proceedings of the 30th

International Conference on Very Large Data Bases, pages 708–719, 2004.

[AFK+05a] G. Aggarwal, T. Fèder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas,

and A. Zhu. Anonymizing tables. In Proceedings of the 10th International

Conference on Database Theory, pages 246–258, 2005.

[AFK+05b] G. Aggarwal, T. Fèder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas,

and A. Zhu. Approximation algorithms for k-Anonymity. Journal of Privacy

Technology, 2005. Paper number: 20051120001.

[AFK+06] G. Aggarwal, T. Fèder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas,

and A. Zhu. Achieving anonymity via clustering. In Proceedings of the 25th

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, pages 153–162, 2006.

[AMP04] G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the kth-ranked

element. In Advances in Cryptology: Proceedings of Eurocrypt, pages 44–55,

2004.

121

122 BIBLIOGRAPHY

[An96] M. An. Log-concave probability distributions: Theory and statistical testing.

Technical Report 9611002, Economics Working Paper Archive at WUSTL,

1996. Available at http://ideas.repec.org/p/wpa/wuwpga/9611002.html.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, pages

439–450, 2000.

[AST05] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving OLAP. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of

Data, pages 251–262, 2005.

[AW89] N. Adam and J. Wortmann. Security control methods for statistical databases:

A comparative study. ACM Computing Surveys, 21(4):515–556, 1989.

[Bar02] B. Barak. Constant-round coin-tossing with a man in the middle or realizing

the shared random string model. In Proceedings of the 43rd Annual IEEE

Symposium on Foundations of Computer Science, pages 345–355, 2002.

[BDMN05] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The

SuLQ framework. In Proceedings of the 24th ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pages 128–138,

2005.

[Bec80] L. Beck. A security machanism for statistical database. ACM Transactions on

Database Systems, 5(3):316–338, 1980.

[BGR96] M. Bellare, J. Garay, and T. Rabin. Distributed pseudo-random bit generators

– a new way to speed-up shared coin tossing. In Proceedings of the 15th ACM

Symposium on Principles of Distributed Computing, pages 191–200, 1996.

[BIKP93] J. Bar-Ilan, G. Kortsarz, and D. Peleg. How to allocate network centers. Jour-

nal of Algorithms, 15(3):385–415, 1993.

BIBLIOGRAPHY 123

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for

non-cryptographic fault-tolerant distributed computation. In Proceedings of

the 20th Annual ACM Symposium on Theory of Computing, pages 1–10, 1988.

[CCD88] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure

protocols. In Proceedings of the 20th Annual ACM Symposium on Theory of

Computing, pages 11–19, 1988.

[CD89] B. Chor and C. Dwork. Randomization in Byzantine agreement. Advances in

Computing Research, 5:443–497, 1989.

[CDM+05] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in

public databases. In Proceedings of the 2nd Theory of Cryptography Confer-

ence, pages 363–385, 2005.

[CGH+85] B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, and R. Smolensky.

The bit extraction problem of t-resilient functions. In Proceedings of the 26th

IEEE Symposium on Foundations of Computer Science, pages 429–442, 1985.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing

and achieving simultaneity in the presence of faults. In Proceedings of the

26th IEEE Symposium on Foundations of Computer Science, pages 383–395,

1985.

[Chi86] F. Chin. Security problems on inference control for SUM, MAX, and MIN

queries. Journal of the ACM, 33(3):451–464, 1986.

[CKMN01] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan. Algorithms for fa-

cility location problems with outliers. In Proceedings of the 12th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 642–651, 2001.

[CKS05] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople:

Practical asynchronous Byzantine agreement using cryptography. Journal of

Cryptology, 18(3):219–246, 2005.

124 BIBLIOGRAPHY

[CO81a] F. Chin and G. Ozsoyoglu. Auditing for secure statistical databases. In Pro-

ceedings of the ACM ’81 conference, pages 53–59, 1981.

[CO81b] F. Chin and G. Ozsoyoglu. Statistical database design. ACM Transactions on

Database Systems, 6(1):113–139, 1981.

[Cor88] G.P. Cornuejols. General factors of graphs. Journal of Combinatorial Theory,

45:185–198, 1988.

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem provably se-

cure against adaptive chosen ciphertext attack. In Advances in Cryptology:

Proceedings of Crypto, pages 13–25, 1998.

[CW89] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and

weak random sources. In Proceedings of the 30th Annual IEEE Symposium

on Foundations of Computer Science, pages 14–19, 1989.

[Dal77] T. Dalenius. Towards a methodology for statistical disclosure control. Statis-

tisk Tidskrift, 15:429–444, 1977.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Pro-

ceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages

542–552, 1991.

[DFK+06] I. Damgård, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally se-

cure constant-rounds multi-party computation for equality, comparison, bits

and exponentiation. In Proceedings of the 3rd Theory of Cryptography Con-

ference, pages 285–304, 2006.

[DJL79] D. Dobkin, A. Jones, and R. Lipton. Secure databases: protection against user

influence. ACM Transactions on Database Systems, 4(1):97–106, 1979.

[DKM+06] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data,

ourselves: Privacy via distributed noise generation. In Advances in Cryptol-

ogy: Proceedings of Eurocrypt, pages 486–503, 2006.

BIBLIOGRAPHY 125

[DLN96] C. Dwork, J. Lotspiech, and M. Naor. Digital signets for protection of digital

information. In Proceedings of the 28th Annual ACM Symposium on Theory

of Computing, pages 489–498, 1996.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensi-

tivity in private data analysis. In Proceedings of the 3rd Theory of Cryptogra-

phy Conference, pages 265–284, 2006.

[DN03] I. Dinur and K. Nissim. Revealing information while preserving privacy.

In Proceedings of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 202–210, 2003.

[DN04] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically parti-

tioned databases. In Advances in Cryptology: Proceedings of Crypto, pages

528–544, 2004.

[EGS03] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in pri-

vacy preserving data mining. In Proceedings of the 22nd ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages

211–222, 2003.

[Fei99] U. Feige. Noncryptographic selection protocols. In Proceedings of the 40th

Annual IEEE Symposium on Foundations of Computer Science, pages 142–

153, 1999.

[FL82] M. Fischer and N. Lynch. A lower bound for the time to assure interactive

consistency. Information Processing Letters, 4:183–186, 1982.

[FM88] P. Feldman and S. Micali. Optimal algorithms for byzantine agreement. In

Proceedings of the 20th Annual ACM Symposium on Theory of Computing,

pages 148–161, 1988.

[FM97] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous

Byzantine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

126 BIBLIOGRAPHY

[FNP04] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set

intersection. In Advances in Cryptology: Proceedings of Eurocrypt, pages

1–19, 2004.

[Gen96] R. Gennaro. Theory and practice of verifiable secret sharing. PhD thesis,

MIT, 1996.

[GJ79] M. Garey and D. Johnson. Computers and intractability, a guide to the theory

of NP-completeness. W.H. Freeman and Company, New York, 1979.

[GM82] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental

poker keeping secret all partial information. In Proceedings of the 14th Annual

ACM Symposium on Theory of Computing, pages 365–377, 1982.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28(2):270–299, 1984.

[GM98] J. Garay and Y. Moses. Fully polynomial Byzantine agreement for n > 3t

processors in t + 1 rounds. SIAM Journal on Computing, 27(1):247–290,

1998.

[GMM00] S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network

design problems. In Proceedings of the 41st Annual IEEE Symposium on

Foundations of Computer Science, pages 603–612, 2000.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or

A completeness theorem for protocols with honest majority. In Proceedings

of the 19th Annual ACM Symposium on Theory of Computing, pages 218–229,

1987.

[Gol04] O. Goldreich. Foundations of Cryptography - Basic Applications, volume 2.

Cambridge University Press, 2004.

[GRS04] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic extractors for bit-fixing

sources by obtaining an independent seed. In Proceedings of the 45th IEEE

Symposium on Foundations of Computer Science, pages 394–403, 2004.

BIBLIOGRAPHY 127

[HS85] D. Hochbaum and D. Shmoys. A best possible approximation algorithm for

the k-center problem. Mathematics of Operations Research, 10(2):180–184,

1985.

[JV99] K. Jain and V. Vazirani. Primal-dual approximation algorithms for metric

facility location and k-median problems. In Proceedings of the 40th Annual

IEEE Symposium on Foundations of Computer Science, pages 2–13, 1999.

[Kan94] V. Kann. Maximum bounded H-matching is MAX SNP-complete. Informa-

tion Processing Letters, 49:309–318, 1994.

[KM00] D. Karger and M. Minkoff. Building steiner trees with incomplete global

knowledge. In Proceedings of the 41st Annual IEEE Symposium on Founda-

tions of Computer Science, pages 613–623, 2000.

[KMN05] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In Proceed-

ings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pages 118–127, 2005.

[KPR03] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing boolean attributes.

Journal of Computer and System Sciences, 66(1):244–253, 2003.

[KS00] S. Khuller and Y. Sussmann. The capacitated K-center problem. SIAM Jour-

nal on Discrete Mathematics, 13(3):403–418, 2000.

[KU77] J. Kam and J. Ullman. A model of statistical databases and their security.

ACM Transactions on Database Systems, 2(1):1–10, 1977.

[KZ03] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources

and exposure-resilient cryptography. In Proceedings of the 44th Annual IEEE

Symposium on Foundations of Computer Science, pages 92–101, 2003.

[LP02] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryp-

tology, 15(3):177–206, 2002.

128 BIBLIOGRAPHY

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[LV03] L. Lovasz and S. Vempala. Logconcave functions: Geometry and efficient

sampling algorithms. In Proceedings of the 44th Annual IEEE Symposium on

Foundations of Computer Science, pages 640–649, 2003.

[LWWJ02] Y. Li, L. Wang, X. Wang, and S. Jajodia. Auditing interval-based inference. In

Proceedings of the 14th International Conference on Advanced Information

Systems Engineering, pages 553–567, 2002.

[MKGV06] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-

Diversity: Privacy beyond k-Anonymity. In Proceedings of the 22nd Interna-

tional Conference on Data Engineering, 2006.

[MS06] N. Mishra and M. Sandler. Privacy via pseudorandom sketches. In Proceed-

ings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pages 143–152, 2006.

[MW04] A. Meyerson and R. Williams. On the complexity of optimal k-Anonymity.

In Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 223–228, 2004.

[NMK+06] S. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. Towards

robustness in query auditing. In Proceedings of the 32nd International Con-

ference on Very Large Databases, 2006.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of

Computer and System Sciences, 52(1):43–52, 1996.

[PR05] R. Pass and A. Rosen. Concurrent non-malleable commitments. In Proceed-

ings of the 46th Annual IEEE Symposium on Foundations of Computer Sci-

ence, pages 563–572, 2005.

[Pre95] A. Prekova. Stochastic Programming. Akadémiai Kiadó, Budapest and

Kluwer, Dordrecht, 1995.

BIBLIOGRAPHY 129

[Rab83] M. Rabin. Randomized Byzantine generals. In Proceedings of the 24th IEEE

Symposium on Foundations of Computer Science, pages 403–409, 1983.

[Rei79] S. Reiss. Security in databases: A combinatorial study. Journal of the ACM,

26(1):45–57, 1979.

[Sam01] P. Samarati. Protecting respondent’s privacy in microdata release. IEEE

Transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors. Bul-

letin of the EATCS, 77:67–95, 2002.

[SS98] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when

disclosing information (abstract). In Proceedings of the 17th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, page 188,

1998.

[Swe00] L. Sweeney. Uniqueness of simple demographics in the U.S. population.

Technical Report LIDAP-WP4, Laboratory for International Data Privacy,

Carnegie Mellon University, Pittsburgh, PA, 2000.

[Swe02] L. Sweeney. k-Anonymity: A model for protecting privacy. International

Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–

570, 2002.

[TV00] L. Trevisan and S. Vadhan. Extracting randomness from samplable distribu-

tions. In Proceedings of the 41st Annual IEEE Symposium on Foundations of

Computer Science, pages 32–42, 2000.

[Yao82] A. Yao. Protocols for secure computations (extended abstract). In Proceedings

of the 23rd IEEE Symposium on Foundations of Computer Science, pages

160–164, 1982.

[Yao86] A. Yao. How to generate and exchange secrets. In Proceedings of the 27th

IEEE Symposium on Foundations of Computer Science, pages 162–167, 1986.

