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ABSTRACT
Large web search engines process billions of queries each day over
tens of billions of documents with often very stringent requirements
for a user’s search experience, in particular, low latency and highly
relevant search results. Index generation and serving are key to
satisfying both these requirements. For example, the load to search
engines can vary drastically when popular events happen around
the world. In the case when the load is exceeding what the search
engine can serve, queries will get dropped. This results in an un-
graceful degradation in search quality. Another example that could
increase the query load and affect the user’s search experience are
ambiguous queries which often result in the execution of multiple
query alterations in the back end.

In this paper, we look into the problem of designing robust index-
ing strategies, i.e. strategies that allow for a graceful degradation
of search quality in both the above scenarios. We study the prob-
lems of index generation and serving using the notions of document
allocation, server selection, and document replication. We explore
the space of efficient algorithms for these problems and empirically
corroborate with existing theory that it is hard to optimally solve the
allocation and selection problems without any replication. We pro-
pose a greedy replication algorithm and study its performance un-
der different choices of allocation and selection. Further, we show
that under random selection and allocation, our algorithm is opti-
mal.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Information Search
and Retrieval

General Terms
Search Engine, Index Generation, Index Serve, Performance, Al-
gorithm, Experiment
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Figure 1: An inverted index over documents and terms
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1. INTRODUCTION
As the content of the web grows richer, more users rely on search

engines to locate relevant information, making search engines one
of the most used applications of modern information technology.
User experience on a search engine is largely governed by two fac-
tors: latency, which measures how fast the results are returned to
the user, and accuracy, which measures how relevant the results are
to the query.

The performance of a search index is crucial to a search en-
gine’s goal of providing good user experience. Today’s commercial
search engines employ an inverted index structure that allows effi-
cient retrieval of documents containing a particular term (or word).
An inverted index over a collection of terms and the underlying
documents consists of a set of inverted lists, one for each term, and
often sorted by the relevance of the document for that term [14]
(see Figure 1).

The indices of commercial search engines are extremely large
and consume a lot of data center resources including CPU, memory,
and power. Two important problems involving search indexes that
affect search engine performance are:

1. Index generation: This problem deals with allocation of
documents to index servers and building an inverted index
on each index server. A naive allocation could be a random
assignment of documents to index servers using simple hash-
ing schemes.

2. Index serving: At query answering time, each selected index
server returns a set of top results for the user query, which are
then typically aggregated and ranked by a ranking module in
the search engine. Under naive allocation, all index servers
are typically queried because there is no knowledge of the



index servers to which the top documents for the given query
are allocated.

In this paper, we study the inherent trade-off between index se-
lection and allocation strategies on the performance of the index in
terms of the quality of the returned search results. More specifi-
cally, our goal is to identify strategies that are robust under heavy
query loads, i.e. they do not drop queries but instead they allow
for a graceful degradation of the quality of results. We begin by
observing that under the naive allocation and selection strategies
(which we collectively refer to henceforth as indexing strategies),
there can be a drop in performance of the system under increased
query loads as well as other scenarios such as server failures. Be-
fore we proceed to discuss these observations, we need to define
what we mean by performance of an index. Generally, a good in-
dexing strategy has to satisfy the following properties even in the
presence of unusual spikes in query loads. We will define these
notions more formally in Section 2.

(1) Quality: The indexing strategy has to surface highly relevant
results to user queries.

(2) High throughput/Low latency: The indexing strategy should
support high throughput of queries.

(3) Availability: The documents and the associated inverted in-
dex should be available to answer the user queries effectively.

One can clearly observe that the naive indexing strategies do not
satisfy all the above properties. Under an unusually high query
load, in the absence of any explicit mapping of documents to index
servers, all servers need to be queried and therefore there is no way
for the search engine but to drop queries that the index cannot han-
dle above its designed peak load. This leads to a drop in the quality
of the results since there are queries for which no results are pro-
duced. In another scenario when there are node failures, which in
principle are common in large distributed systems, property-based
allocation (see Section 6) could lead to a drastic drop in quality if
the server on which the top documents reside crashes. Often, search
engines mitigate this problem by keeping multiple copies of the in-
dex (replication) at the cost of increased resource usage such as
memory and power. In another scenario, all major search engines
apply extensive query rewriting techniques1 to get better search re-
sults for the user’s queries. Thus, a single user query often results
in multiple queries to the index. Again, under the naive selection
and allocation strategies, these multiple queries are typically pro-
cessed sequentially on all the index server nodes possibly resulting
in higher latency for the user query.

One important signal that can be exploited for designing effec-
tive indexing strategies is the knowledge of the query workload and
the quality of the documents that the search engine typically serves.
Both the query frequency and document quality have a direct effect
on the indexing strategies. Given the skew typically observed in
search query frequencies and the skew in the quality of documents
for a given query,2 one can design more synergistic allocation and
selection strategies that can a) gracefully handle high query loads;
b) handle node failures; and c) reduce any hot spots (i.e. cases
where one or few of the servers see a relatively high fraction of the
queries) in the index.

1For example, the query ‘camera’ may be changed to ‘digital cam-
era’, ‘digital photography’, ‘video camera’ and so forth.
2Typically observed as a power-law or log-normal distribution.

1.1 Motivation and Objective
Due to the issues with the naive indexing strategies mentioned

above, one natural question to ask is: Can we use less machines
in the cluster to answer user queries and also achieve acceptable
search quality? We will show that answers to this question come
from more synergistic consideration of allocation and selection strate-
gies. Let us begin by motivating the need for query workload and
document-quality aware indexing strategies. Most search engine
users only care about the top-k results where k is a number often
comparable to the number of index servers available for serving
the query results. Therefore, it is likely that only a (small) subset
of servers really contribute to serving a query, as explained by the
following balls-and-bins argument [13]. Given k balls (top-k re-
sults for a query) and n bins (servers in the cluster), the expected
number of empty bins after k uniformly random tossings is:

n ∗
(n− 1

n

)k

≈ n

e
(when k equals to n).

In other words, only about 65% of the servers contain a docu-
ment in the top-k results when k is equal to n. As n grows, the
fraction of non-contributing servers also grows. Figure 2 illustrates
the growth rate when k = 10.

Based on the above observations, we propose the following ob-
jective.

Given a collection of documents D and n servers, find
strategies for replication, allocation, and selection such
that the quality of results retrieved from m ( < n) servers
is maximized.

1.2 Contribution
In this paper, we address the above index generation problem by

considering how to replicate and allocate documents across servers,
and the index serving problem by considering how to select servers
for query execution. We explore different allocation and selection
strategies and their combinations for improved index performance.
Overall, in this paper we make the following contributions:

1. We study different allocation and selection strategies for ro-
bust indexing. We propose a new selection strategy which
outperforms previous selection strategies in search quality.

2. We evaluate our indexing strategies based on speed, qual-
ity and availability (or load balancing). Previous work has
mostly focused on studying the speed and quality of index.
In our work we also study the availability of the results.

3. We study how to employ replication strategies in combina-
tion with allocation and selection strategies in order to create
indexes with high speed, quality and availability. We study
different replication strategies and we propose a greedy repli-
cation strategy that is optimal when combined with specific
allocation and selection strategies.

4. We experimentally evaluate our indexing strategies on a web
dataset of 25.2 million documents. Our results demonstrate
that improvement can achieve compared to existing strate-
gies.

The rest of our paper is organized as follows: in Section 2 we
discuss the preliminaries and the performance metric for our prob-
lem setting. Section 3 and Section 4 study different allocation and
selection techniques and their combinations, while Section 5 dis-
cusses replication strategies. In Section 6 we present our experi-
mental results and Section 7 discusses the related work. Section 8
concludes.



Figure 2: Expected percentage of non-contributing servers. x-
axis is the total number of servers, y-axis is the expected per-
centage of servers which do not contain documents in the top-
10 results

2. MODEL
We denote the set of queries by Q, and for each query q, its fre-

quency, or the expected number of times q is queried against the
search engine, by f(q). We denote the set of documents to be in-
dexed by D. For each document d ∈ D, there exists a score s(q, d)
that reflects the relevance of document d is to query q. We treat the
scores as input to our problem formulation, and explain the one we
used in experiments in the relevant section. For a given query q and
a collection of documents C ⊆ D, we denote the k documents with
the highest score by B(q, C, k). We denote the set of machines, or
servers, byM = {M1,M2, . . . ,Mn}. Documents are stored on
these machines.

We study the questions of replication, allocation, and selection
in this work. Formally, replication is the question of how many
copies of a particular document d ∈ D we make available across
all the servers. We denote this by its replication factor R(d). Al-
location is the question of which R(d) servers get assigned a copy
of document d. The set of servers that got allocated document d
is denoted by A(d), and we view a server Mi as a collection of
documents. In particular, this allows us to meaningfully take the
union over machines, as this is simply the union of the underlying
documents stored in the machines. Both replication and allocation
are performed offline. Selection is the question of which servers
are used to answer a query at runtime. Given a query q, and a de-
sired number of servers m, we select S(q,m) to answer the query.
Under normal circumstances, we expect m = n; however, as moti-
vated previously, due to machine failures or abnormally high query
load, we may want to select only a subset of servers to answer a
query. Indeed, our focus is on situations where m < n, possibly
substantially so. A system is determined by the choice of replica-
tion, allocation, and selection strategies, (R,A, S).

From the users’ perspective, given a query q, the set of top-k
documents retrieved when m machines are used is

docs(R,A, S, q,m, k) = B(q, {∪S(q,m)}, k) .

This is determined not only by selection, but also by replication
and allocation as they in turn determine what documents are stored
on which servers. When it is clear from context, we simply write
docs(q,m, k).

Next, we formalize the three desired properties of a system that
we outlined in Section 1. We begin with quality. For a given query

q, we define the quality of the retrieved results by the sum total of
the scores of the top-k documents retrieved.

qual(q,m, k) =
∑

d∈docs(q,m,k)

s(q, d) .

The expected quality of a system, when m servers are used to re-
trieve top-k results, is given by

qual(R,A, S,m, k) =
∑
q∈Q

f(q)qual(q,m, k) .

High throughput or low latency implies that no index server be-
comes a hotspot, i.e., a bottleneck, in the presence of query load
spikes or server failures. In other words, no index server should be
selected to answer queries all the time. We can make this formal by
measuring the load of a machine, in terms of the number of queries
it has to answer. We define load of the machine as follows.

load(Mi,m) =
∑

q∈Q,Mi∈S(q,m)

f(q) .

In other words, load of server Mi is determined by the expected
number of queries it has to answer. The load of a system is deter-
mined by the most loaded machine, i.e.,

load(S,m) = max
i

load(Mi,m) .

Under this definition, a system with smaller load will have lower
latency, and all else being equal, we prefer a system with smaller
load. Note that load is determined only by selection, and how many
machines are used to answer queries.

A useful way of thinking about load is as follows. Consider the
baseline of using all servers to answer all queries. The load on each
server will then be

∑
q∈Q f(q). If we manage to reduce the load

on the most loaded machine by half, then we can handle twice the
number of queries without an increase in latency. Of course, if this
is achieved by selecting only a subset of servers to answer queries,
we may suffer from an associated drop in quality. Indeed, this is
the subject of investigation in this paper.

Finally, availability implies that most of the documents should
still be accessible during server failures for any query. It suggests
that machine failures should not lead to drastic decrease in the qual-
ity of results. We approximate the potential damage when server
Mi fails by the expected contribution of Mi to answering queries.
Specifically, we define the value of server Mi in terms of the ex-
pected number of top-k documents it contributes, weighted by the
number of times the document is replicated, namely,

value(Mi, R,m, k) =
∑
q∈Q

f(q)
∑

d∈(docs(q,m,k)∩Mi)

1

R(d)
.

One way to interpret the definition of value of a server is as fol-
lows. The baseline is determined by the documents the system
retrieves in the absence of machine failures, docs(q,m, k). If a
server fails, then it leads to losing certain documents, captured by
the set (docs(q,m, k) ∩Mi). For these documents, the actual loss
is determined by how many copies of this document is available in
the system. The loss is 100% if there is only one copy (R(d) = 1),
but less if it is replicated more. Hence, we weigh the loss by 1

R(d)
.

The availability of a system is determined by the loss in value in
the worst-case failure

loss(R,A, S,m, k) = max
i

value(Mi,m, k) .

Under this definition, a system with smaller loss will have higher
availability, and all else being equal, we prefer a system with smaller



loss. For simplicity and to ensure that loss depends only on repli-
cation and allocation, we choose m = n in our computations. Al-
ternative formalization that captures random or multiple failures is
possible; the current one is chosen for simplicity and ease of inter-
pretation.

In summary, we are interested in choosing replication, alloca-
tion, and selection strategies so as to maximize quality, minimize
load, and minimize loss. There are trade-offs among these conflict-
ing objectives, which constitute the focus of this study.

3. DOCUMENT ALLOCATION
Allocation studies the problem of how to assign documents to

servers. It plays an important role in determining the availability
and the quality of the system. We propose a balanced allocation
strategy that exploits the query work load and the document quality.

Instead of assigning documents uniformly at random and achiev-
ing good availability in expectation, one can attempt to explicitly
minimize the worst-case loss of the system. Recall that to maxi-
mize availability, our objective is to:

min loss(R,A, S,m, k) .

However, optimizing this objective requires knowing the choice
of selection strategy. To work around this difficulty, instead of al-
locating the documents in the top-k results as balanced as possible
among the servers, we approximate the value of a document by its
expected score to a random query,

v(d) =
∑
q∈Q

f(q)s(q, d)

We then want to evenly spread the scores for documents among
servers. This is known as the "makespan problem" in job schedul-
ing [2, 3]. To this end, we utilize a solution similar to the Longest
Processing Time (LPT) algorithm in [8]. More specifically, we al-
locate the documents greedily to the server with the lowest sum
total value of documents. This algorithm is essentially a 4/3 ap-
proximation of the optimal [8]. The complete algorithm is given as
follows:

foreach Mi ∈M do v(Mi)← 0;
Sort D in descending order of value(d);
foreach d ∈ D do

Find Mi with smallest v(Mi);
Assign d to Mi;
v(Mi)← v(Mi) + v(d);

end
Algorithm 1: BALANCEDALLOCATION Algorithm

Later, in our experimental section we compare the BALANCEDAL-
LOCATION algorithm with two well-known allocation techniques,
more specifically random allocation and property-based allocation [10,
11, 16, 19].

4. SERVER SELECTION
Selection studies the problem of which servers are chosen to an-

swer a query. It plays a central role in determining the speed of the
system. Together with allocation, they jointly determine the qual-
ity of the system. It is typically implemented with two processes:
an offline process that precomputes certain statistics, and a runtime
process that uses the statistics to select the servers to answer a query
at runtime.

If one cares only about quality, the best strategy is to always
select all servers. However, this may be infeasible in case of abnor-
mally high workloads as the alternative will be to ignore the queries
of some users entirely. In this section, we study selection strategies
where the fraction of servers that can be used to answer the query is
specified as an input. We propose a selection strategy based on the
distribution of document quality for any given query. We approx-
imate the distribution by computing the histogram of term-level
scores. In our experimental section, we will compare our proposed
selection strategy with those in the literature, i.e. ReDDe [11] and
Gloss [9].

In our histogram-based method, we select servers with the high-
est estimated number of relevant documents to the query. This
number is estimated using histogram of term-level scores of each
server, similar to [18]. Here, we implicitly assume that the rel-
evance score of a document equals the sum of the scores of the
document to terms in the query. For each term t, let H(t,Mi) de-
note the histogram of scores of the documents stored on server Mi

for term t. We assume that the histogram is stored at the finest
level—a list of scores in decreasing order; in practice, the list is
approximated by pairs of (range, count), but the approach can be
suitably adapted. We assume that the histogram only stores the
non-zero scores, and denote its length by Lt. In the following, we
treat the histogram as an array.

Consider some two-term query q = {t1, t2}. Assuming term in-
dependence, one can estimate the number of documents on server
Mi for which the sum of scores exceed threshold τ using Algo-
rithm 2. The m servers with the highest estimates are selected to
answer the query.

input : Histograms H(t1,Mi), H(t2,Mi), threshold τ
output: Estimated no. of relevant docs ≥ τ on Mi

E({t1, t2}, τ,Mi)← 0;
for i1 ← 1 to Lt1 do

s1 ← H(t1,Mi)[i];
Search for s2 in H(t2,Mi) where s1 + s2 ≥ τ ;
Let i2 be the position of s2 in H(t2,Mi);
E({t1, t2}, τ,Mi)← E({t1, t2}, τ,Mi) +

i1i2
|Mi|

;
end
return E({t1, t2}, τ,Mi)

Algorithm 2: HISTOGRAMSELECTION Algorithm

Note that we can perform certain optimizations to speed up the
algorithm, such as reducing the search space using the fact that the
position in the second histogram is monotonically non-increasing,
and to perform early termination when the scores of the remaining
documents are too low. The algorithm can easily be generalized to
queries with more than two terms.

The algorithm requires an input threshold that can be estimated
with the help of the entire histogram for the terms, H(t1, D) and
H(t2, D). We start with a very high threshold τ , and use Algo-
rithm 2 to estimate the number of documents exceeding this thresh-
old for the entire document collection. We repeatedly lower the
threshold until the number of documents is at least k, the desired
number of documents to return. The threshold is then used in the
selection process.

5. ALLOCATING MULTIPLE COPIES
Previous work [10, 9, 16] mainly focuses on indexing strategies

which try to use less machines and return good search results, with-
out studying the availability of the index. As discussed before, the



availability is a very important factor in designing search engine
indexing, especially in a large cluster where disk failure is very
common. Given the importance of the index availability, in this
section we study different replication strategies. Replication stud-
ies the problem of how many copies of each document we make
available across all the servers. It plays a key role in determining
the availability and the quality of the system. Replication, together
with allocation and selection, determines the quality of the system.

We assume that the amount of additional space available for
replication is specified by a parameter C > 0 (typically C could
be a fraction, say, 0.1 or 0.2). The total space available over all
servers can accommodate a total of (1 + C)|D| documents. Each
server is assumed to have the same capacity, that is, it can accom-
modate (1+C)|D|/n documents. The goal of replication strategy
is to determine the replication function R(), so that for each doc-
ument d ∈ D, R(d) copies are made available across all servers.
We require every document to be replicated at least once, that is,
R(d) ≥ 1 ∀d ∈ D. Hence we study how to assign the additional
space (C|D|) to documents in D. To enable better understand-
ing of replication and for ease of analysis and experimentation, we
separate the replication strategy from the allocation strategy, that is,
we determine the replication factor of a document independent of
which servers would receive the copies of the document. We study
four replication strategies below.

We first state and discuss a result that motivates our study of
replication.

THEOREM 1. For a given document replication vector, under
random selection, the expected quality of the results returned does
not have any dependence on the allocation strategy.

In other words, the theorem implies that if we use the simple and
easy-to-implement strategy of random selection, the allocation strat-
egy does not affect the quality of the results. However, the replica-
tion strategy is important since it determines if a top document for a
query will be part of the results retrieved and thus indeed affects the
quality of the results. As a corollary, when there is no replication
(R(d) = 1 ∀d ∈ D), if random server selection is used, we can
allocate documents with the goal of maximizing availability, that
is, minimizing loss.

The proof of the theorem follows from the following intuition.
Since m different servers are selected at random, for a query and
any document d, the probability that it will be included in docs(q,m, k)
does not depend on the specific choice of servers where the R(d)
copies of d are allocated. In other words, due to the randomness
in selection, the probability that there is overlap between the set
of m servers randomly selected and the set of R(d) servers where
d is allocated depends only on n,m,R(d) and not on the specific
choices (ids) of the R(d) servers. Thus, under random selection,
the allocation strategy does not influence the quality of results.

5.1 Uniform Replication
A naive way to replicate documents is to treat all the documents

equally and distribute the additional space equally amongst all doc-
uments. First each document is replicated (1 + ⌊C⌋) times, and
then with probability (C − ⌊C⌋), each document is allowed an ad-
ditional copy. When 0 < C < 1, this process is equivalent to
including a second copy of a document with probability C. We
call this replication strategy uniform replication. As uniform repli-
cation strategy is easy and natural to implement, we use it as our
baseline in experiments.

5.2 Quality-Based Replication
Instead of treating all the documents equally, we next consider a

strategy that gives preference to documents with high value. The

intuition is that high value documents are more likely to be among
the top k results of queries and hence it is desirable to replicate
them more often. In quality-based replication, we first assign one
copy of every document, and allocate the remaining C|D| space
greedily based on the document value, that is, consider the docu-
ments in the descending order of value and replicate each such doc-
ument on all servers until there is no more space available. Recall
that the value of a document d is defined as:

v(d) =
∑
q∈Q

f(q)s(q, d) .

Algorithm QUALITYBIASEDREPLICATION formally describes
this replication strategy.

foreach d ∈ D do
v(d)←

∑
q∈Q f(q)s(q, d);

end
w ← ⌊ (C−1)|D|

n−1
⌋;

Let d1, d2, . . . , d|D| represent the documents sorted in the
descending order of v(d);
for i = 1 . . . w do

R(di)← n;
end
R(dw+1)← (C − 1)|D|+ 1− (n− 1)w;
for i = w + 2 . . . |D| do

R(di)← 1;
end
Algorithm 3: QUALITYBIASEDREPLICATION algorithm

5.3 Workload-Aware Replication
In workload-aware replication, we assume that the workload is

known, and hence the number of available servers (m) to answer
a query is also known. To improve upon quality-based replication,
instead of replicating a high value document on all servers, we only
need to replicate on n + 1 −m servers. Since we select m out of
n servers for each query, we are guaranteed to select at least one
server containing the high value document.

Algorithm WORKLOADAWAREREPLICATION is similar to QUAL-
ITYBIASEDREPLICATION, the only difference being that the maxi-
mum replication factor is smaller (n+1−m instead of n), hence the
available space permits maximal replication of more (high-valued)
documents.

foreach d ∈ D do
v(d)←

∑
q∈Q f(q)s(q, d);

end
w ← ⌊ (C−1)|D|

n−m
⌋;

Let d1, d2, . . . , d|D| represent the documents sorted in the
descending order of v(d);
for i = 1 . . . w do

R(di)← n+ 1−m;
end
R(dw+1)← (C − 1)|D|+ 1− (n−m)w;
for i = w + 2 . . . |D| do

R(di)← 1;
end

Algorithm 4: WORKLOADAWAREREPLICATION algorithm



5.4 Greedy Replication
Our final replication strategy is motivated by the following obser-

vation. As more copies of a document become available, intuitively
the incremental benefit of an additional copy follows diminishing
return. In fact, we implicitly used this fact in workload-aware repli-
cation, by observing that beyond n + 1 −m copies, an additional
copy of a document carries no benefit.

Formally we analyze the probability that a document replicated
R(d) times will be selected (or “hit”) when m servers are probed
randomly. We observe that this probability depends only on the
number of servers n, as well as m and R(d), and hence denote it
as Pr(hit(d)|n,m,R(d)). Then,

Pr(hit(d)|n,m,R(d)) = 1−
m−1∏
i=0

(
1− R(d)

n− i

)
(1)

For given choices of n and m, consider the successive differ-
ences in the above probability as R(d) increases, and denote it as:
δ(R(d)) = Pr(hit(d)|n,m,R(d))−Pr(hit(d)|n,m,R(d)−1).
We remark that δ(R(d)) decreases as R(d) increases. Table 1
shows how the values behave for n = 10 and m = 2 as R(d)
is increased from 1 to 10. For example, it is more beneficial to
provide an extra copy when there are just 2 copies as compared to
when there are already 7 copies.

Hence given two documents d1 and d2 with v(d1) slightly larger
than v(d2), we prefer their replication counts to be close. Under
workload-aware replication, it is possible that d1 is replicated n +
1−m times and d2 just once.

Combining the above desired property with the desire to give
preference to high value documents, we devise the following opti-
mization objective for replication.

Maximize
∑
d∈D

v(d) · Pr(hit(d)|n,m,R(d))

s.t.
∑
d∈D

R(d) ≤ (1 + C)|D| and R(d) ≥ 1 ∀d ∈ D.

This optimization problem consists of |D| variables (R(d)’s),
with an objective function that is extremely non-linear (in fact, has
degree m dependence on each variable). Because of this complex-
ity, at first, this problem seems impossible to solve optimally or to
even approximate.

We next propose a greedy algorithm and surprisingly show that
it achieves the optimal solution. The key insight is to notice that
even though Pr(hit(d)|n,m,R(d)) is non-linear in R(d), there
are only n meaningful choices for R(d) for any document d and
thus only n possible values for Pr(hit(d)|n,m,R(d)) or δ(R(d)).
For each of C|D| steps, the algorithm picks a document with max-
imum incremental benefit to the objective, that is, with maximum
v(d) · δ(R(d)) and assigns an additional copy to the document.

This algorithm can be efficiently implemented by maintaining a
binary heap of the incremental gain (v(d) · δ(R(d)+1)) values for
every document. At each step, exactly one document is assigned an
additional copy, and thus only its gain value needs to be updated.
As this update requires O(log |D|) steps in the worst case, the al-
gorithm has time complexity O(C|D| log |D|).

We next show that the greedy algorithm is optimal, i.e., the lo-
cally optimal choices gives a globally optimal solution.

THEOREM 2. Algorithm GREEDYREPLICATION finds the opti-
mal replication vector with respect to the replication optimization
objective.

Compute the vector (δ(1), δ(2), . . . , δ(n)) using Eqn 1;
foreach d ∈ D do

v(d)←
∑

q∈Q f(q)s(q, d);
R(di)← 1;

end
for i = 1 . . . C|D| do

Choose the document that can contribute the maximal
incremental gain to the objective, that is,
d∗ ← arg maxd∈D(v(d) · δ(R(d) + 1));
R(d∗)← R(d∗) + 1;

end
Algorithm 5: GREEDYREPLICATION algorithm

The basic intuition is that the incremental gain in quality by
replicating a document decreases as a document is replicated more
times. Further, the gain from replicating a document is independent
on how many times the other documents are replicated. Therefore,
when presented with a choice of documents to replicate, one can
proceed greedily. A formal argument is provided below.

PROOF. The proof follows by contradiction. Suppose GREEDYREPLI-
CATION is not optimal, so that the objective evaluated on the so-
lution ALG computed by GREEDYREPLICATION is less than the
optimal value. Then for any optimal solution OPT , we can always
find two documents d1, d2 ∈ D on which ALG and OPT differ
in opposite directions, that is, ROPT (d1) ≥ RALG(d1) + 1 and
RALG(d2) ≥ ROPT (d2) + 1. If there is more than one optimal
solution, we fix OPT as the one with smallest number of copies
for d1.

Define a new valid assignment DIF that differs from OPT on
just d1 and d2: RDIF (d1) = ROPT (d1)− 1 (has one less copy of
d1) and RDIF (d2) = ROPT (d2) + 1 (has one more copy of d2).
It follows that DIF is not optimal, and hence we have:

v(d1) · δ(ROPT (d1)) > v(d2) · δ(ROPT (d2) + 1) (2)

Since δ() is a decreasing function, using ROPT (d1) ≥ RALG(d1)+
1 and RALG(d2) ≥ ROPT (d2) + 1, we have:

v(d1) · δ(RALG(d1) + 1) ≥ v(d1) · δ(ROPT (d1)) (3)

v(d2) · δ(ROPT (d2) + 1) ≥ v(d2) · δ(RALG(d2)) (4)

Combining equations 2, 3 and 4, we get:

v(d1) · δ(RALG(d1) + 1) > v(d2) · δ(RALG(d2)), (5)

implying that when algorithm GREEDYREPLICATION chose to in-
clude the last copy of d2, d1 would have been a better choice. This
is a contradiction since our algorithm is greedy.

6. EXPERIMENTAL EVALUATION

6.1 Dataset and Performance Metric
In this section we experimentally evaluate the performance of

our algorithms on a real-world dataset based on the notions of qual-
ity, availability and speed that we discussed earlier. To serve as our
collection of documents we used the Gov2 dataset from TREC’s
Terabyte Track [1] which consists of 25.2 million Web pages from
the .gov domain. To serve as our query load for our various poli-
cies we used a random subset of the query log of a major search
engine comprising 100 thousand queries. In order to have a setting



R(d) 1 2 3 4 5 6 7 8 9 10
Pr(hit(d)|n,m,R(d)) 0.20 0.37 0.53 0.66 0.77 0.86 0.93 0.97 1.00 1.00
δ(R(d)) 0.20 0.17 0.16 0.13 0.11 0.09 0.07 0.04 0.03 0.00

Table 1: Diminishing return observed with more copies of a document (n = 10, m = 2)

close to that of a realistic search engine, we performed our experi-
ments on a cluster of 50 machines.

The exact ranking function that each search engine employs is
closely guarded secret. In this paper we define the score of a docu-
ment d to query q similar to section 2 as:

score(q, d) =
∑

term t in q

score(t, d)

To compute the term relevance we used the BM25 scores [17].
Finally, to measure the quality performance of our policies we

used the mean precision at k. That is, for a given allocation, se-
lection, replication policy configuration, we compute the average
fraction of top-k documents returned when the policy is applied
compared to the top-k when no policy is applied. More formally,
for a query load of m queries and for a configuration p:

Quality(p) =
1

m

m∑
i=1

|Resp(qi) ∪ResOPT (qi)|
|ResOPT (qi)|

where Resp(qi) is the top-k result set of configuration p for
query qi, and ResOPT (qi) is the top-k result set for query qi when
no policy is applied (i.e. the query is sent to every machine). In our
experiments we used k = 10.

6.2 Comparison of Allocation Strategies
We compare BALANCEDALLOCATION strategy with two well-

known document allocation paradigms.

6.2.1 Random Allocation
A simple allocation strategy is to assign documents uniformly at

random to the servers. Random allocation typically achieves good
availability as each server receives in expectation the same num-
ber of relevant documents for each query. Formally, under random
allocation, and assuming that each server has the same probability
of serving a query, the expected value of each of the server is the
same, i.e., for any two servers Mi and Mj ,

E[value(Mi, R,m, k)] = E[value(Mj , R,m, k)] .

Since the total value of the system is fixed, this means that the loss
is minimized in expectation.

6.2.2 Property-Based Allocation
A popular class of allocation strategies operate by first grouping

the documents by certain properties, and then assigning documents
with the same (or similar) property value to the same server.

Several property-based allocation strategies have been proposed
in the past literature. This includes (1) source-based allocation that
is based on treating the domain of a document as its property, used
as a baseline for evaluation in [19]; (2) query-driven allocation that
is based on grouping together documents that are used to answer
similar queries [16]; and (3) topic-based allocation that is based
on clustering documents around topics using KL-divergence as the
distance function [11, 10].

Property-based allocation strategy typically does not guarantee
good availability, as it may happen that many valuable documents

get assigned to the same server. To understand better the perfor-
mance of such allocation strategies, we implemented and compared
the source-based allocation method with other allocation strategies
in our experiment. This allocation sorts all the pages based on the
URLs, then groups consecutive documents and assigns each group
to the same server.

6.3 Comparison of Selection Strategies
We compare the HISTOGRAMSELECTION strategy with three

strategies, viz., random selection, selection based on a random sub-
set of documents, and a centralized strategy.

6.3.1 Random selection
Random selection is a pure runtime strategy that does not require

the storage of any precomputed statistics. Given a query, we ran-
domly select a subset of machines to answer the query.

6.3.2 ReDDe
ReDDe is proposed in [11]. During the offline process, a random

sample of documents of about 0.1% of the total size of the collec-
tion are drawn, and an index over these samples are computed and
stored in a central server. At runtime, given a query, this central
index is first queried, and the subset of machines is chosen based
on the result to the first query.

6.3.3 Gloss
Gloss is proposed in [9]. During the offline process, for each

server, for each term, the average score of the documents for the
term for the server is computed and stored in a central server. At
runtime a score for each server is computed assuming indepen-
dence, and the servers with the highest scores are selected.

6.4 Evaluation of Result Quality
We start our experimental evaluation by comparing the quality of

results of different combinations of policies. To this end, we first
loaded the documents to the cluster of 50 machines using different
allocation policies. Then, we ran the queries against the cluster
using different combinations of allocation and selection policies. In
order to have a consistent view among the runs of the configurations
and minimize variations, we evaluated the effect of the work load
increase by using the same set of queries over all configurations
while restricting our policies to direct each query to a progressively
decreasing number of machines (denoting a corresponding increase
in the work load). For each combination and selection policies we
report the Quality metric as defined in the previous section.

We show the results in Figures 3, 4 and 5, each one correspond-
ing to an allocation policy with different lines corresponding to dif-
ferent selection policies. The horizontal axis represents the work-
load expressed as a multiple of the initial workload when we can af-
ford to use all 50 machines. For example, a workload of 2.0 implies
that we have twice the amount of workload and hence we will use
half of our machines to answer each query. The vertical axis corre-
sponds to the Quality of a given allocation, selection configuration.
To better evaluate the performance of our policies we also report the
quality of an optimal selection policy (denoted OPT) which selects
the best possible combination of machines for a given allocation



Figure 3: Quality of random allocation with different selection
strategies under increasing work load.

Figure 4: Quality of LPT allocation with different selection
strategies under increasing work load.

Figure 5: Quality of source-based allocation with different se-
lection strategies under increasing work load.

policy. Also, following [11], for the ReDDe selection policy we
used 0.1% of the index to store the necessary statistics.

The general observation regarding the performance of different
configurations is that they perform worse than optimal. Addition-
ally, as expected, the achieved quality of the policies decreases as
the work load increases. Regarding the random allocation shown in
Figure 3, we observe that the Gloss, ReDDe and Random selection
policies achieve similar performance. Since documents are evenly
spread out among machines, Gloss and ReDDe cannot make good
predictions. Our Histogram selection is slightly better overall, but
it comes with the additional cost in space and computation time as
we discussed in Section 2. Additionally, its performance difference
is diminishing as the work load increases.

The LPT allocation policy’s goal is to allocate the documents
in a very balanced way across all servers. Due to this fact, as we
can see from Figure 4, all the selection policies perform similarly
to each other. Additionally, their overall performance is slightly
worse than the random allocation, which is again an artifact of the
more balanced allocation that LPT achieves.

Finally, regarding the Source-based allocation policy shown in
Figure 5, we observe that the techniques taking advantage of statis-
tics on the documents on each machine in general outperform the
random selection. In this case, ReDDe and Gloss perform similarly
with ReDDe slightly better than Gloss. This is due to the fact that
Source-based allocation in its attempt to maintain the average score
of documents the same across machines may create an imbalance
in the number of documents allocated among machines for a given
term, which benefits ReDDe.

We also conducted two statistical tests to determine the signif-
icance of the differences in quality of the results under different
workloads, selection strategy, and allocation strategy. Under a repeated-
measure analysis of variance (ANOVA), where each query is treated
as a subject that is tested under different combinations of work-
loads, selection, and allocation, all of these three factors are statis-
tically significant in determining the quality of the retrieved results
(at p-value of < 0.0001). Histogram selection and Source-based
allocation has especially large positive effect in the quality of the
retrieved results across all workloads. Under a paired t-test be-
tween all pairs of different conditions, almost all of the differences
in the quality of the results are statistically different at p-value of
< 0.0001. There are two cases where the results are statistically
insignificant: (1) when random selection strategy is paired up with
any allocation strategy, which is expected as random selection does
not select servers based on statistics of the documents stored; and
(2) between random selection and Gloss when allocation is either
random or LPT, which is due to both allocation strategy gives rise
to servers with close to identical average scores, in which server
selection under Gloss is more or less random.

In summary, based on our observations regarding the quality of
the different allocation and selection policies we conclude that the
Random allocation and Random selection combination is a good
candidate due to its simplicity of implementation. Histogram-based
selection does perform better than Random selection, however if
this particular selection policy is employed it is best combined with
Source-based allocation. In the next section we study the availabil-
ity of these two policies.

6.5 Evaluation of Availability
Another important characteristic of an effective indexing strat-

egy is high availability. Given the scale of search engine indexes, it
is important for the system to continue providing good results even
under the presence of node failures. In this experiment we study the
availability of the indexes created under the various allocation poli-



Figure 6: Loss function indicating availability for different al-
location and replication policies.

Figure 7: Quality for different replication policies under Ran-
dom allocation and Random selection.

cies that we used in our previous experiment. To this end, for the
three allocation policies, namely Random, LPT and Source-based
we computed the loss value for our query set as defined in Sec-
tion 2. We show the result in the first group of bars of Figure 6.
The vertical axis shows the relative loss compared to the average
loss across all servers. The higher the value (i.e. the loss), the more
concentrated the good documents are in one particular server and
thus the lower the availability and the more the system will suffer
in the worst case node failure.

From the graph, we observe that the allocation policy with the
minimum loss is the LPT allocation policy. This is expected since
this particular policy makes an explicit attempt to balance the doc-
uments across the machines. The Random allocation policy also
achieves reasonably good loss value as it is slightly higher than
the LPT. Finally, although the source-based allocation policy was
shown to perform very well in terms of quality in our previous ex-
periment, its performance is the worst among the three policies in
terms of availability. Its relative loss is almost 4 times higher than
that of LPT and Random allocation policies.

6.5.1 Benefit of Replication
One way that is typically used to increase availability is the repli-

cation of the documents within the index. As additional copies of
the same document exist in the system, the availability is expected
to be higher since the replicated documents can still be found in
case of a node failure. To study this effect, we repeated our avail-
ability experiment with the different replication policies that we
discussed in Section 5. All replication policies were allowed an
additional of 20% (i.e. C = 0.2) of the index to be used for
replicating documents. We show the relative loss for the Uniform,
Quality-based, Workload-aware and Greedy replication policies in
the rightmost 4 groups of bars of Figure 6 respectively.

Our first observation comes from the fact that the availability re-
mains almost the same for the Random and LPT allocation policies
across the board. The availability of the Source-based allocation
is increased when it is combined with the Quality-based replica-
tion policy (which also improves slightly the Random allocation).
Unfortunately however, the benefits of Source-based allocation in
terms of quality are not paired with high availability since it has a
loss value twice as high as Random and LPT, even when combined
with the best replication policy. On the contrary, the Random al-
location with Random selection is more balanced in terms of both
quality and availability.

Since we have allowed additional space for replicated documents
in our index, we have also affected quality as more versions of the
same document are available in the system. To this end, we studied
the quality of the Random-allocation and Random-selection com-
bination3 under different replication policies. We show the results
in Figure 7 with the horizontal axis representing workload and the
vertical axis the quality as before. We observe that, overall, the
quality of the results has increased which is due to the fact that the
selection policy can now find more good quality documents. Over-
all, the Greedy replication policy performs the best.

6.6 Evaluation of Speed
We now turn to study the performance of the different policies

in terms of query throughput. One of our main goals in designing
an effective indexing mechanism is to be able to accommodate in-
creases in the query load (possibly with some loss in quality) but
without suffering delays to the queries served by the system.

To this end, we assume a setting where our system is operat-
ing at a query load close to peak capacity and where a selection
policy will take charge to select a subset of the machines to serve
an incoming query. In our experiment, we set this point to be 1000
queries per second for each of the 50 machines. Then, we increased
the incoming query load to the system and we report the number of
queries per second directed to the machine that received the max-
imum number of queries. The higher this number, the higher the
expected number of dropped queries since the machine receiving
the queries may not be able to serve them.

We report the result on Figure 8. We report our results for the
combinations of Random allocation with Random selection, LPT
allocation with Histogram selection and Source-based allocation
with Histogram selection. Note that the presence of a replication
policy does not affect the outcome of our experiment since the same
set of machines will be selected. The horizontal axis represents the
query load and the vertical axis shows the number of queries per
second reaching the most loaded machine under a given query load.

Our first observation is that, overall, as the work load increases
the maximum work load at one server remains more or less sta-
ble for Random and LPT. For these two policies, about half of the
machines got a query load that was higher than the current operat-
ing work load of 1000 queries per second. In the case of Source-
based, the maximum query load that the busiest machine receives
increases proportionally to the increase in the query load in the sys-
tem. For example, when the work load increases by 6 the maximum
query load in the busiest machine increases almost 5 times. Over-
all, the combination of Random allocation with Random selection
performs the best with the maximum load being only 1.4% higher
than the current operating work load.

This last observation makes the combination of Random allo-
cation, Random selection and Greedy Replication policies a very
good all-around candidate for organizing an index. This combina-
3The observations for the remaining policy combinations are simi-
lar; we omit the graphs due to space constraints.



Figure 8: Throughput in thousand queries per second for in-
creasing work loads.

tion is simple to implement and maintain, and it achieves a very
good balance between quality, availability and speed.

7. RELATED WORK
In web search literature, there is a plethora of work on document

allocation policies across shards of index servers. This work can be
broadly classified into two categories. One that exploits relation-
ship between documents and the other that is based on relationship
between queries. The relationship between documents can be based
on either semantic (e.g., topic-based) [19] or on other features (e.g.,
source-based) [19]. In their work on document allocation based on
topic-based clustering, Xu and Croft [19, 11] used a two-pass K-
means clustering algorithm and a KL-divergence distance metric
to organize a collection into 100 topical clusters. Several property-
based allocation strategies have been proposed in the past literature.
This includes a source-based allocation that is based on treating the
domain of a document as its property, used as a baseline for evalua-
tion in [19] and a query-driven allocation that is based on grouping
together documents that are used to answer similar queries [16].

In the literature related to selection strategies, people have broadly
considered exhaustive search and selective search strategies. In
the space of selective search strategies, Kulkarni and Callan [11]
proposed a two-query approach in which the first query is used
to estimate the number of relevant results on each index server.
The second query is executed against the servers chosen based on
the results of the first query. Gravano and Garcia-Molina [9] pro-
posed a centralized solution for database servers in which a central
server keeps appropriate term and server statistics. These statistics
are computed offline and at query time, a score for each server is
computed assuming independence, and the servers with the highest
scores are selected. Ricardo Baeza-Yates et al. studied the feasibil-
ity of geographically building multi-site search systems in [4] and
B. Barla Cambazoglu etc. proposed query forwarding techniques
under geographically distributed indexes [7]. Also in [5] YouSe-
arch is proposed to efficiently search personal web servers.

There has been work on improved load balancing techniques us-
ing some degree of replication of documents stored on the servers [12,
6]. Pitoura et al [15] have studied the trade-off between load-
balancing and latency using replication in P2P systems.

8. CONCLUSIONS
In this study, we explored the space of algorithms for index serv-

ing and generation strategies. We measured the performance of
our strategies using three natural properties of a search index, viz.,
quality, latency, and availability. First, we showed that the straight-
forward random allocation and selection strategies indeed produced

good quality results comparable to the more complicated but better
strategies such as source-based allocation and histogram selection.
Second, we showed the benefit of replication on availability of the
search index in surfacing relevant results to the user’s query. We
empirically showed that without some degree of replication, naive
strategies of allocation and selection do not help in producing top-
k results with some quality guarantees. In particular, we observed
that for a given set of allocation and selection strategies, our greedy
replication strategy helps in surfacing the results with the highest
quality. Finally, we report that no replication strategy affects the
throughput significantly and that the combination of random al-
location and selection reduces throughput the least. Overall, we
observe that the combination of random allocation and selection
combined with greedy replication are a good choice of strategies
for index organization.
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