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Abstract

It is well known that if n balls are inserted into n bins,
with high probability, the bin with maximum load con-
tains (1 + o(1)) log n/ log log n balls. Azar, Broder, Kar-
lin, and Upfal [1] showed that instead of choosing one
bin, if d ≥ 2 bins are chosen at random and the ball in-
serted into the least loaded of the d bins, the maximum
load reduces drastically to log log n/ log d+O(1). In this
paper, we study the two choice balls and bins process
when balls are not allowed to choose any two random
bins, but only bins that are connected by an edge in an
underlying graph. We show that for n balls and n bins,
if the graph is almost regular with degree nε, where ε
is not too small, the previous bounds on the maximum
load continue to hold. Precisely, the maximum load is
log log n+O(1/ε)+O(1). So even if the graph has degree
nΩ(1/ log log n), the maximum load is O(log log n). For
general ∆-regular graphs, we show that the maximum
load is log log n+O( log n

log(∆/ log4 n)
)+O(1) and also provide

an almost matching lower bound of log log n+ log n
log(∆ log n) .

Further this does not hold for non-regular graphs even if
the minimum degree is high.

Vöcking [29] showed that the maximum bin size with
d choice load balancing can be further improved to
O(log log n/d) by breaking ties to the left. This requires
d random bin choices. We show that such bounds can
be achieved by making only two random accesses and
querying d/2 contiguous bins in each access. By group-
ing a sequence of n bins into 2n/d groups, each of d/2
consecutive bins, if each ball chooses two groups at ran-
dom and inserts the new ball into the least-loaded bin
in the lesser loaded group, then the maximum load is
O(log log n/d) with high probability. Furthermore, it
also turns out that this partitioning into aligned groups
of size d/2 is also essential in achieving this bound, that
is, instead of choosing two aligned groups, if we simply
choose random but possibly unaligned random sets of
d/2 consecutive bins, then the maximum load jumps to
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Ω(log log n/ log d) even if the two sets are always chosen
to be disjoint.

1 Introduction

The analysis of balls and bins has several interesting ap-
plications including hashing and online load balancing.
It is well known that if n balls are randomly thrown into
n bins, with high probability, the bin with maximum
load contains (1 + o(1)) log n

log log n balls [19]. Azar, Broder,

Karlin, and Upfal [1] showed that instead of choosing one
bin, if d ≥ 2 bins are chosen at random, the maximum
load reduces drastically to log log n

log d + O(1). Vöcking [29]
showed that asymmetry helps in load balancing; when
bins have equal size, if ties are broken to the left, then
the maximum bin size drops to log log n

d ln φd

+ O(1) where φd

is a constant > 1 that approaches ln 2 for large d. He
also showed that the above bound is tight, that is, the
maximum load is at least log log n

d ln φd

− O(1) even if the d
bins are chosen from an arbitrary fixed distribution, and
irrespective of the policy used to decide the bin out of
the d choices for a given ball. Berenbrink et al. [3] ex-
tended these results to the case when the number of balls
m is greater than the number of bins n showing that the
maximum height is at most log log n

ln d + O(1) above the
average when d bins are chosen at random and similar
results when ties are broken asymmetrically. The max-
imum load can also be reduced by moving previously
inserted balls into their alternate bin choice(s) when a
new ball is inserted [24, 18]; with two choice load bal-
ancing, by performing at most h moves per insert, we
can maintain a maximum load of O( log log n

h log(log log n/h) ) for

n balls and n bins [25]. Further there has been a lot of
work on parallel balls and bins where balls are thrown
parallelly into bins in rounds [2, 7, 13].

A natural extension of the earlier work is to consider a
graph-based model where balls are not allowed to choose
any two random bins but only bins that are connected by
an edge in a given underlying graph. While the earlier
studies use a complete underlying graph, an understand-
ing of balls and bins processes over arbitrary graphs is
not only theoretically interesting but also meaningful in
pratical scenarios. For example, if bins are arranged in a
line, what if balls are only allowed to choose two random
bins that are close-by, say at most distance ∆ apart –
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here the underlying graph has edges only when the bins
are at most distance ∆ apart. How small can ∆ be so
that the earlier results continue to hold? This is useful
from a practical point of view because the cost of access-
ing the two bins may depend on the distance between
them. For example, if the bins represent hash buckets of
a hash table stored on disk, then after having accessed
the first bucket, the time required to access the second
bucket depends on how far the head has to move from
the first to the second bucket, as the access time is dom-
inated by the seek time. Or, it may be easier to read
memory in large bursts and accomplish the read of the
two buckets that are at most ∆ apart in one random ac-
cess. Similarly when d random bins are explored, it may
be beneficial to group the accesses into as few bursts as
possible.

Another example could be the load-balancing of re-
quests in a network setting. To apply the two-choice
heuristic, a client may make a request to a server. The
server may then query another random server and the
client may be serviced by the least-loaded of the two
servers. However it may be inefficient for the server to
query any other server; perhaps it only knows about a
few servers, or it is close to only a few servers, or only
a few other servers may be able to service the client’s
request. So instead it may be connected to ∆ neigh-
boring servers and could only query one of these at
random. This amounts to the following question: If
each ball picks a random bin and that bin again se-
lects a random “neighboring” bin and the ball is in-
serted into the least-loaded of the two bins, then what
is the maximum load? This is equivalent to picking
a random edge in the graph for each ball. For what
graphs, do the results for two choices continue to hold?
First we show a lower bound of Ω(log log n + log n

log(∆ log n) )

for maximum bin size where ∆ is the average degree
of the graph; in particular if the average degree is nε

for some constant ε, then the lower bound implies a
maximum load of Ω(log log n + 1/ε). However, if the
graph is not regular, we show that the maximum bin
size can be much higher; even for graphs with minimum
degree nε, it can be Ω(log n/ log log n). On the other
hand, for ∆-regular graphs, the maximum bin size is
log log n+O( log n

log(∆/ log4 n)
)+O(1), which almost matches

the lower bound (Section 2). This means that the earlier
bound on the maximum load with two choice load bal-
ancing (on a complete graph) continues to hold on almost
regular graphs with degree as low as nε for any constant
ε – the maximum load is log log n + O(1/ε) + O(1). So
even if the graph has degree only nΩ(1/ log log n), the max-
imum load is still O(log log n). We also show that when
the number of balls m is more than the number of bins
n, the earlier results by Berenbrink et al. [3] do not carry
over; even for graphs of degree nε where ε is constant, the

maximum load can be m/n + ω(log log n). We achieve
similar results when moves are allowed (Section 3).

Further, Vöcking’s observation that the maximum
load of O( log log n

d ) can be achieved by breaking ties asym-
metrically requires d random bin choices. Is it possible
to achieve similar bounds when the d choices may not be
random, but preferably close together or in a few groups
where bins within a group are close-by? Such an ac-
cess pattern may be more efficient especially when bins
represent memory locations in a hash table. We show
that such bounds can be achieved by making two ran-
dom accesses and querying d/2 contiguous bins in each
access, even if ties are not broken asymmetrically. By
partitioning a sequence of n bins into 2n/d groups, each
of d/2 consecutive bins, if each ball chooses two groups
at random and inserts the new ball into the least-loaded
bin in the lesser loaded group, then the maximum load
is 2 log log n/d + O(1) with high probability (Section 4).
This is surprising as it shows that querying d bins in
two groups of size d/2 outperforms querying d random
bins! Furthermore, it also turns out that this partition-
ing into aligned groups of size d/2 is also essential in
achieving this bound. Instead of choosing two aligned
groups, if we simply choose two disjoint but possibly un-
aligned random sets of d/2 consecutive bins – which only
seems like a simple, natural variation – then the maxi-
mum load jumps to log log n

log d ! Similarly we also show that
it is important to insert into the lesser loaded group. In
fact, we can get arbitrarily close to Vöcking’s bound of
log log n
d ln φd

+O(1) by using c random groups of size d/c each
and breaking ties asymmetrically. Moreover, our result
implies that we can achieve constant load by making two
burst accesses of log log n bins each, provided these ac-
cesses are made from a set of disjoint groups; otherwise
the maximum bin size becomes log log n

log log log n .

2 Two choice Load Balancing on

∆-regular Graphs

One method to obtain bounds on maximum load with
two choice load balancing is to use the layered induc-
tion technique [1] that recursively bounds the fraction of
bins, pi with load i. For a new ball to fall at a height of
i + 1 (that is, into a bin with at least i balls), both of
its bin choices must have at least i balls, which happens
with probability at most p2

i . This essentially implies that
pi+1 ≈ p2

i , implying a quadratic drop with height, giving
a maximum load of log log n with high probability. This
technique fails on arbitrary graphs, because the prob-
ability that both the bin choices for a subsequent ball
insert have load at least i is no longer p2

i as the two bins
are not chosen independently and randomly. Alterna-
tively the witness tree method tracks the occurrence of
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a bin with a high load using a suitable tree of events and
shows that such a tree is unlikely to occur. This type of
analysis was introduced in the context of PRAM simula-
tions [7, 22] and later adapted for balls and bins [6, 5, 29].
Using this method, we analyze the maximum load when
the underlying graph is ∆-regular.

First we prove a lower bound on the maximum load
for a ∆-regular graph.

Theorem 2.1 Given a ∆-regular graph with n nodes
representing n bins, if n balls are thrown into the bins
by choosing a random edge and placing into the smaller
of the two bins connected by the edge, then the maxi-
mum load is at least Ω(log log n + log n

log(∆ log n) ) with high

probability of 1− 1/nΩ(1).

Proof: The Ω(log log n) term in the lower bound fol-
lows from Vöcking’s lower bound [29] for placement of
n balls into n bins if each ball picks two bins at ran-
dom using any arbitrary but fixed distribution. The sec-
ond term follows by analyzing the ratio of the number
of balls to the number of edges: since there are n balls
and n∆/2 edges, with high probability, some edge will
get log n

log(∆ log n/2) balls (this is like throwing n balls into

n∆/2 bins). Hence at least one of the endpoints of this
edge will get log n

2 log(∆ log n/2) balls. �

This implies that if the bins are arranged in a line
and if each ball chooses two bins that are at most dis-
tance ∆ apart, the maximum load is at least Ω(log log n+

log n
log(∆ log n) ).

1 In particular, when ∆ is polylog(n) the

maximum bin load is Ω( log n
log log n) ). If ∆ = nε for some

constant ε, then the lower bound implies a maximum
load of Ω(log log n + 1/ε).

The following theorem gives an almost matching upper
bound on the maximum load for ∆-regular graphs.

Theorem 2.2 Given a ∆-regular graph with n nodes
representing n bins, if n balls are thrown into the bins
by choosing a random edge and placing into the smaller
of the two bins connected by the edge, then the maxi-
mum load is log log n +O( log n

log(∆/ log4 n)
) +O(1) with high

probability of 1− 1/nΩ(1).

This holds even if the graph is almost regular, that is,
each node has degree, Θ(∆).

Corollary 2.1 Given a nε-regular graph with n nodes
representing n bins, if n balls are thrown into the bins
by choosing a random edge and placing into the smaller

1While the lower bound applies to the algorithm that always
picks two random bin choices at most distance ∆ apart when bins
are arranged in a line, it is easy to generalize to any algorithm
that chooses two bins for every ball that are distance ∆ apart in
expectation.

of the two bins connected by the edge, then for any
ε > 8 log log n/ log n, the maximum load is log log n +
O(1/ε) + O(1) with high probability of 1 − 1/nΩ(1).

The basic idea behind the witness tree method is to
start with a ball at a large height and to construct a
shallow tree with about log n nodes and depth about
log log n where nodes are the bins and an edge represents
the two bin choices of a ball and argue that such a tree
is unlikely to exist. While the construction as described
may not necessarily produce a tree, we show later that
the graph obtained has only a few extra edges in addition
to a tree structure.
Construction of the witness graph: The root of the
witness graph is the node with load l + c where c is a
constant. For each of the top l balls in this node, there
must be an alternate bin choice. These alternate bin
choices are set to be the children of the root node. The
edges are labeled by the corresponding balls. Similarly
we recurse for each of the l children. For a parent node
with load x, the ith ball from the top at height x −
i + 1 must have had an alternate bin choice with load
at least x − i; this is the ith child of the parent node.
The ith child, which has load at least l − i + c, will be
expanded down further to l − i children corresponding
to the alternate bin choices for its top l − i balls. We
continue this recursion as long as a node has load greater
than c and stop when it equals c which corresponds to
the leaf nodes. We also label each node (bin) with the
set of lowest c balls. These balls are distinct from the
balls corresponding to the edges incident on this node.
Clearly, this witness graph must be a subgraph of the
original underlying graph on the bins.

It is possible that during this process, we run into
cycles, that is, the child of some node may be an already
existing node in the tree. For now, let us assume that
this does not happen and the graph constructed is truly
a tree. We will later argue that there cannot be too many
cycle producing edges. Intuitively this is true because we
are unlikely to run into cycles when a small number of
log n nodes are explored as edges are chosen randomly.

Assuming that no cycles are found, after this process,
we have a tree where each node with load i + c has i
children with loads i− 1 + c, i− 2 + c, . . . , c respectively.
Each edge corresponds to a distinct ball and each node
is associated with c additional distinct balls. Each edge
indicates a distinct ball whose bin choices are exactly the
end points of the edge. It is easy to check inductively
that the total number of nodes in this tree is exactly
2l (the recurrence relation for the number of nodes is
f(l) = f(l − 1) + . . . + f(0) + 1 where f(0) = 1).

We now show that there cannot exist a set of log n
nodes connected by a tree where each edge represents
a distinct ball and further each node has a constant c
number of distinct additional balls.
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Lemma 2.1 The probability that there exists a set of
Ω(log n) bins connected by a tree where each edge repre-
sents a distinct ball and further each node has an addi-
tional set of c distinct balls is at most 1/nΩ(1)

Proof: We will bound the probability of existence of
such a tree, with say m nodes, by counting the number
of such possible trees and multiplying by the probability
that a given tree exists. The total number of different
“shapes” (two shapes are the same if they are isomor-
phic) for a rooted tree on m nodes is at most 4m [20].

Choosing bins and balls for nodes and edges: For a
given shape, the root bin can be chosen in n ways. Once
a node has been chosen, a given child can be chosen in ∆
ways. Hence the total number of ways of choosing all the
nodes is at most n∆m−1. For each of the m−1 edges, the
ball can be chosen in at most n ways and the probability
that it falls in this edge out of the total of n∆/2 choices
is 2/n∆. So, for a given shape, the total probability
multiplied by the number of ways of choosing nodes and
edges in the tree is at most n∆m−1nm−1(2/n∆)m−1 =
n2m−1.

Choosing additional c balls per node: In addition, for
a given set of m nodes, we need c distinct balls to be
associated with each node. This means that there are a
total of cm balls that are associated with nodes in the
tree, that is, each of these balls is chooses some node in
the tree. These cm balls can be chosen in

(

n
cm

)

ways.
Since each node has ∆ edges incident on it, the m nodes
of the tree have a total of m∆ edges and each of these cm
balls must choose one of these edges. This probability is
at most

(

n
cm

)

(m∆
n∆ )cm ≤ ( en

cm )cm(m∆
n∆ )cm = (e/c)cm.

Putting it all together, the total probability of finding
such a tree is at most 4mn2m−1(e/c)cm ≤ n[8(e/c)c]m.
The idea is to choose c to be a large enough constant so
that this probability is 1/nΩ(1); this can be achieved by
setting m to Ω(log n). �

Remark 2.1 While the witness tree arguments in prior
work [21, 29] do not look at all possible shapes of trees
on m nodes, we use this approach as it extends easily to
the witness tree analysis in the case when balls moves are
allowed (Section 3).

Since a witness tree with root of load l + c has 2l

nodes, for l = log log n + Ω(1) the number of nodes be-
comes Ω(log n); by Lemma 2.1, this is unlikely with high
probability. So far we have assumed that the witness
graph is a tree, ignoring the possibility of having cycles.
We will show that the probability of finding many cycle-
producing edges is very low. During the construction
of the witness graph, an edge that leads to an existing
node is called a cycle-producing edge (such edges are
called pruning edges in past work [21, 29]). Let p be the
number of cycle-producing edges.

The next lemma shows that there cannot exist a wit-
ness graph with too many cycle-producing edges.

Lemma 2.2 The probability that there exists a set of
O(log2 n) bins satisfying the following conditions is at
most 1/nΩ(1) for sufficiently large constants k and c.

• the bins are connected by a tree where each edge rep-
resents a distinct ball.

• there are additional p = k log n
log(∆/ log4 n)

edges between

these nodes representing distinct bins.

• and each node (bin) has an additional set of c dis-
tinct balls.

Proof: As in proof of Lemma 2.1, we will bound the
probability by counting the number of ways of choosing
the balls, bins and edges and multiplying by the proba-
bility of each case. Let us consider a tree with m nodes
and p additional edges. For a given shape of the tree,
the additional p edges can be chosen in at most m2p.

For each of the p additional edges, balls can be chosen
in n ways and the probability that the ball chooses the
edge is 2/n∆, giving a total probability of np(2/n∆)p =
(2/∆)p.

As in proof of Lemma 2.1, the number of ways of
choosing shapes for the tree, bins for the nodes of the
tree and balls for the edges and c balls for each node,
multiplied by the probability of each case is at most
n[8(e/c)c]m.

So the total probability of finding a witness graph
with m nodes and p cycle-producing edges is at most
m2p(2/∆)pn[8(e/c)c]m = (2m2/∆)pn[2(e/c)c]m.

If p = Ω( log n
log(∆/ log4 n)

), then this probability is 1/nΩ(1).

�

We are now ready to prove the main theorem.

Proof of Theorem 2.2: To take into account the pos-
sibility of cycle-producing edges, instead of starting with
a node of load l+ c, we start with a node of load l+ c+p
where p = k log n

log(∆/ log4 n)
. At the first level, we expand

to p children corresponding to the top p balls. The ith

child of the root will have l + p − i + c. For this child,
we treat c′ = p − i + c and expand as before till every
leaf has load exactly c′, giving exactly 2l nodes in this
subtree (where nodes may be repeated). The total num-
ber of nodes, M = 2lp + 1 = p logn + 1 ≤ k log2 n + 1
for l = log log n. The probability that there are more
than p cycle-producing edges is at most 1/nk−1. If there
are less than p cycle-producing edges, then during the
construction of the witness graph, for at least one of
the p children, the construction below it is free of cycle-
producing edges. This gives a witness tree where the
root node has load at least l + c. By Lemma 2.1, the
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probability of this occurrence is at most 1/nΩ(1). So the
probability of finding a witness graph whose root node
has load log log n + p + c is at most 1/nΩ(1). �

We also show that this result does not hold for non-
regular graphs even if the minimum degree is ∆. The
counter-example is a complete bipartite graph with n−∆
nodes on one side and ∆ on the other.

Lemma 2.3 There exist graphs with minimum degree
nε for any constant ε < 1 such that after insertion of n
balls by the same process as above, the maximum load of
a bin is Ω( log n

log log n ) with high probability of 1 − 1/nΩ(1).

Proof: Consider the complete bipartite graph with n−∆
nodes on one side (left) and ∆ on the other (right). We
break the n inserts into log n phases of n/ logn inserts
each. The essential idea is to show that for most of the
early phases, after i phases, each of the ∆ nodes on the
right side has load at least i and at least 1/(4 logn)i

fraction of the left side vertices has load i as long as
n/(4 logn)i+1 > ∆ log n. We prove this inductively. As-
suming it is true at the end of the ith phase, in the
first n/(2 log n) inserts in the (i + 1)st phase, at least
n/(4 logn)i+1 of them in expectation choose the left ver-
tex to be of load at least i. This by assumption is at least
∆ log n and hence, if ties are broken to the right, then
with high probability, all the ∆ vertices on the right side
would have been chosen and hence would have incurred
a load of at least i+ 1. For the remaining n/(2 logn) in-
serts of the phase, in expectation, at least n/(4 logn)i+1

of the left vertices with load i are chosen and they will
all incur achieve a load of at least i + 1. This goes on
as long as n/(4 logn)i > ∆ log n which means that the

maximum load is at least i = log(n/(∆ log n))
log log n . For ∆ = nε,

this is Ω( log n
log log n ). All expectation results can be shown

to hold with high probability using Chernoff bounds. �

We now show that when the number of balls m is
more than the number of bins n, the earlier results by
Berenbrink et al. [3] do not carry over; even for graphs
of degree nε where ε is constant, the maximum load can
be m/n + ω(log log n).

Lemma 2.4 There exist nε-regular graphs for any con-
stant ε < 1 such that after insertion of m balls by pick-
ing edges at random, the maximum load of a bin is
m/n + ω(log log n) with high probability of 1 − 1/nΩ(1)

for sufficiently large m.

Proof: The graph we use is a collection of n1−ε cliques of
size nε. Some clique must get m/n1−ε+

√

m ln n1−ε/n1−ε

balls when m ≥ n ln n as this is like throwing m balls
into n1−ε bins [27]. Hence some bin in this clique must
get m/n +

√

m ln n1−ε/n1+ε balls. The result follows by
setting m = Ω(n1+ε). �

3 Balls and bins with moves

If moves are allowed during inserts of balls then the maxi-
mum load can be reduced further [24, 18]. On a complete
graph, by performing at most h moves per insert, we can
maintain a maximum load of O( log log n

h log(log log n/h)) [25]. In

particular by performing up to log log n moves we achieve
a constant maximum load.

To understand how moves help in reducing load we
view the balls and bins as nodes and edges of a graph
which is a subgraph of the underlying graph; since mul-
tiple balls may choose the same pair of bins it is actually
a multigraph. By making this graph directed, we could
use the direction of an edge to indicate the choice of the
bin among the two for placing the ball. The direction of
each edge is chosen online by a certain procedure. The
load of a vertex (bin) is equal to its in-degree. For each
edge insertion, the two-choice algorithm directs the edge
towards the vertex with the lower in-degree. During the
ball insertion process, say U is one of the vertices (bins)
a ball chooses. Observe that if V U is a directed edge,
and if the load on V is significantly lower, we could per-
form a move from U to V , thus freeing up a position in
U . Essentially, in terms of load, the new ball could be
added to either U or V , whichever has a lower load. This
principle could be generalized to the case where there is
a directed path from V to U , and would result in per-
forming moves and flipping the directions along all the
edges on the path. If there is a directed sub-tree rooted
at U , with all edges leading to the root, we could choose
the least loaded vertex in this tree to incur the load of
the new ball.

We now extend these bounds on maximum bin size
with at most h moves per insert to ∆-regular graphs. We
again use the same method as in section 2.2 but using
a different witness tree. We use the same witness tree as
described in [25]. Starting from a node with load 4l + c,
we get a witness tree with llh nodes assuming no cycles
are found during the construction. Further each node has
a set of additional c balls. So for l = Ω( log log n

h log(log log n/h) )

the number of nodes becomes Ω(log n).

Lemmas 2.1 and 2.2 continue to hold as they only
refer to random choices of edges for balls which are same
as before. So again there cannot be a witness tree with
Ω(log n) nodes or a witness graph with more than p =
k log n

log(∆/ log4 n)
cycle-producing edges. Again as before if

we start with a node with load 4l + c + k log n
log(∆/ log4 n)

then at least one of the children of the root must be such
that the witness graph construction under that node is
free of cycle-producing edges, giving the following desired
result.

Theorem 3.1 Given a ∆-regular graph with n nodes
representing n bins, if n balls are thrown into the bins
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by choosing a random edge for each ball and performing
at most h moves as described above, then the maximum
load is O( log log n

h log(log log n/h) + log n
log(∆/ log4 n)

) with high prob-

ability of 1 − 1/nΩ(1).

4 Choosing bins in groups

Vöcking [29] observed that asymmetry helps in load bal-
ancing and showed that if ties are broken to the left when
n balls are inserted into n bins with d random choices
per ball, the maximum load is log log n

d ln φd

+ O(1) where φd

approaches ln 2 for large d.2 This is a significant im-
provement over the log log n

log d bound. He also showed that
the above bound is tight, that is, even if the d bins are
chosen from an arbitrary fixed distribution, the maxi-
mum load is at least log log n

d lnφd

− O(1) irrespective of the
policy used to decide the bin out of the d choices for a
given ball.

We achieve a similar bound without making d random
bin choices as in Vöcking’s result. Our algorithm makes
two random accesses and chooses d/2 consecutive bins
from each access. If the bins represent memory locations
in a hash table then two burst accesses may be more
efficient than d random accesses. The maximum load of
any bin is log log n

d ln φ2
+ O(1) = 1.38 log log n

d + O(1).
Our algorithm works as follows. Group the n bins into

disjoint groups of d/2 consecutive bins each. Call these
super-bins. Pick two super-bins at random and select
the super-bin with the lesser total load (breaking ties to
the left) where the total load of a super-bin is the sum
of the loads of its d/2 bins. Then place the ball into the
least-loaded of the d/2 bins in the super-bin.

Theorem 4.1 If n balls are inserted into n bins by
the above algorithm, the maximum load of any bin is
log log n
d ln φ2

+O(1) with high probability. Instead of using two

random groups of size d/2, if we use c ≥ 2 groups of size
d/c, then the maximum load of any bin is log log n

d lnφc
+O(1).

Note that this approaches Vöcking’s bound as c be-
comes large. Moreover, our result implies that we can
achieve constant load by making two burst accesses of
log log n bins each.

Furthermore, it also turns out that this partition-
ing into groups of size d/2 is essential in achieving this
bound. It would seem that the bound of Theorem 4.1
would continue to hold even if all bins are not grouped
into super-bins of size d/2, but instead the algorithm
picks two random bins at least d/2 apart and d/2 con-
secutive bins starting from each of the chosen bins. Sur-
prisingly this turns out to be false, i.e., the distribu-

2φd = limk→∞
k
p

Fd(k) where Fd(k) is a generalization of Fi-

bonacci sequence defined recursively as Fd(k) =
P

d

i=1
Fd(k − i)

and Fd(k) = 0 for k ≤ 0 and Fd(1) = 1.

tion becomes much worse if instead of choosing from
well-aligned groups, the algorithm is allowed to choose
two random disjoint sets of d/2 consecutive bins. For
d = log log n, instead of getting a constant load, we get
a maximum load of log log n

log log log n .

Theorem 4.2 Instead of grouping the n bins into
aligned groups of size d/2, if we pick two disjoint random
sets of d/2 consecutive bins, then the maximum load is
(1− o(1))( log log n

log d ) with high probability at least 1− o(1).
As before, the algorithm picks the set with the smaller
total load and places the ball into the least loaded bin in
the selected set.

Similarly it turns out that it is also important to
choose the lesser loaded of the two chosen super-bins,
that is, even with aligned bins, if the algorithm inserts
into the least loaded bin in the two super-bins without
considering the total load of the super-bins, then the
maximum load of a bin becomes higher.

Theorem 4.3 If we place the ball into the least-loaded
of the d bins (that is, both the super-bins put together) in
the above scheme without looking at the total loads of the
each of the super-bins, then the maximum load of any
bin is (1 − o(1))( log log n

log d ) with high probability at least

1− o(1).

We now prove Theorem 4.1 by analyzing super-bin
loads using two-choice load-balancing results.

Proof of Theorem 4.1: Since each insert into a super-
bin always goes into the least-loaded bin, the loads of
any two bins in a super-bin differ by at most 1. Hence
it is sufficient to analyze the maximum load of a super-
bin. This is equivalent to throwing n balls into 2n/d
bins by choosing two bins at random, breaking ties to
the left. Berenbrink et al. [3] extended Vöcking’s result
when the number of balls m′ is greater than the number
of bins n′ showing that the maximum bin size is at most
m′

n′
+ log log n′

d lnφd

+ O(1). Hence the maximum load of a

super-bin is d
2 + log log(2n/d)

2 ln φ2
+ O(1). Thus the maximum

load of any bin is at most 2 + log log n+O(1)
d ln φ2

. Similarly if

the super-bins are of size d/c, the maximum load of any
bin is at most log log n

d lnφc

+ O(1). �

We now prove Theorem 4.2. The intuition behind why
the load increases when the groups are not aligned is the
following: Let us artificially group the bins into aligned
super-bins of size d although this is not what the algo-
rithm does. Let us estimate the fraction of bins with load
at least i + 1, pi+1 recursively. Earlier for a super-bin I
to grow from i to i + 1, the second super-bin that was
chosen must have at least i balls. This is no more true
if super-bins need not be aligned. Consider two adjacent
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J

I
′

I

bI

Figure 1: Unaligned super-bins: I and J are aligned, I ′

is unaligned.

aligned super-bins I and J with loads i and j = bi/dcd
respectively. If j = kd, all bins in I have load either k
or k + 1 and all bins in J have load k (see Figure 1). If i
is not a multiple of d, then it is possible that the bin bI

in I next to J has load k. If the algorithm chooses the
set I ′ of d consecutive bins with the last bin bI in I and
the adjacent d − 1 bins from J , then note that load of
I ′ is j. If the algorithm chooses to insert into super-bin
I ′, it could very well place the new ball in bI , as all bins
in I ′ have equal load. This event happens if the other
super-bin chosen had load at least j. The intuition is
that since j could be as low as i − d and probabilities
drop quickly, the probability that the d bins next to I
have load k each and that I ′ is one of the super-bins
chosen by the algorithm and the other super-bin chosen
has load at least j is much larger than p2

i . Essentially
the second super-bin need not have load i; it could have
load j that could be as small as i − d + 1. Informally
speaking, the probability that the super-bin J has load
j is pj ; the probability that the second super-bin chosen
has load at least j is also roughly pj ; probability that
the super-bin I has load i is pi. So the probability that
the load of I increases by one in a step could be about
pipjpj , which is much lower than p2

i , as j can be as small
as i − d. While this reasoning is not formal, to convert
this into an inductive proof, we will need the neighbor-
ing super-bin of J to have load j − d and its neighboring
super-bin to have load j − 2d and so on.

For ease of exposition, we will use groups of size d
instead of d/2. With a total of n bins, we have n/d
super-bins. Let us group super-bins into n/td blocks of
t consecutive super-bins each. (We will later set t to be
about 4d logn.)

Definition 1 A block of super-bins is a k-step if the first
super-bin has all bins with load k, the next has all bins
with load k − 1, and so on and the last t − k super-bins
have all empty bins. Formally all bins in lth super-bin
in the group have load max(0, k − l) (Figure 2).

We will track the number of k-steps in our bin con-
figurations as inserts proceed in rounds of n/t inserts.
Let qr denote the fraction of blocks that are r-steps af-
ter r rounds of n/t inserts each. The following lemma
provides a lower bound on qr recursively.

Super−bin 1 Super−bin 2 Super−bin tSuper−bin k

Figure 2: k-step: all bins in the ith super-bin have load
k − i if i ≥ k and 0 otherwise.

Lemma 4.1 Expected value of qr ≥ ( 1
10t3d2 )rd ·

∏r−1
i=0 qd

i ·
qr−1

Proof: We will bound the fraction of r − 1-steps that
become r-steps after a round of n/t inserts, only consid-
ering r-steps that are formed from r−1-steps by exactly
a specific sequence of rd insertion steps. Each of the
bins in the rth through the first super-bin receive ex-
actly one ball each in that order. Further the bins in
the first super-bin receive balls in the left to right order.
Precisely, the sequence of inserts is as follows:

1. The r-th super-bin is chosen as one of the two
choices for insert and the insert ends up in this
super-bin. This happens d times making all bins
in this super-bin to have load 1.

2. Similarly d inserts happen in the r − 1-st super-
bin in the block causing all its bins to have load 2.
Similarly for the r−2-nd, r−3-rd and so on till the
second super-bin. After this, the block is almost an
r-step except that the first super-bin needs to add
an item to each of its bins.

3. We will insist that the last super-bin is handled ex-
actly by the following process. Observe that all bins
in the first and second super-bin have load r−1. Let
Sm denote the sequence of d bins which are exactly
the last d−m bins from the first super-bin and the
remaining m from the second.

(a) First S0 (same as the first super-bin) is chosen
for an insert and the new item goes into the
first bin in S0, which clearly is one of the least
populated bins, as required for insert. Next, S1

is selected for an insert and the new item goes
into the first bin in S1. And so on till Sd−1.
In this way, all the bins in the first super-bin
have load r making the block an r-step.

Note that we require exactly these rd inserts within
the block in this sequence among the total of n/t in-
serts. First let us find the number of r − 1-steps that
are chosen exactly rd times in n/t inserts. Proba-
bility that a given r − 1-step gets chosen exactly rd
times is

(

n/t
rd

)

(1/n)rd(1 − (t + 1)d/n)n/t−rd. This is
≥ (1/(trd)rde−2d). So the expected fraction of r − 1-
steps that get exactly the correct number of choices is
≥ (1/(10trd)rd).
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Assuming an r−1-step gets chosen exactly rd times in
that order, let us now estimate the probability that all
the rd inserts go into the desired bins. The last d inserts
go to the right bins with probability at least qr−1

td . This
is because there are at least qr−1n

td unaligned-super-bin
choices out of the total n that have all bins of size at
least r − 1 and if the second choice is made from any of
these, then it will clearly be larger than the choice in the
r − 1-step in consideration and so the insert can happen
in the right bin in the r − 1-step. Similarly the ith set
of d inserts go to the right bins with probability at least
qi−1

td .

Hence qr = ( 1
10trd )rd ·

∏r−1
i=0 ( qi

td )d · qr−1 ≥ ( 1
10t3d2 )rd ·

∏r−1
i=0 qd

i · qr−1. While we assumed that ties are broken
in our favor, the proof goes through even if we assume
that the ties are broken randomly. �

This can be converted into a high probability
bound with probability at least 1 − 2/ logn (see
Appendix 5.1), giving the slightly weaker recurrence

qr ≥ ( 1
4 )d · ( 1

10t3d2 )rd ·
∏r−1

i=0 qd
i · qr−1 as long as the

right hand side of this bound is at least log n
n/(td) and

t ≥ 4d logn. Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2: Now that we have the
recurrence on qr, we show inductively that qr ≥
1/(40t3d2)(d+2)r

. Let Qr =
∏r

i=0 qr. Multiplying both
sides of the recurrence by Qr−1, we get that Qr ≥
( 1
40t3d2 )rd · (Qr−1)

d+1 · qr−1 ≥ ( 1
40t3d2 )rd · (Qr−1)

d+2. In-

ductively it is easy to check that Qr ≥ ( 1
10t3d2 )(d+3)r

.

The recurrence can be used as long as qr ≥ log n
n/(td)

which holds as long as Qr ≥ log n
n/(td) . This holds as long

as r ≤ logd+3 log40t3d2
n

td log n ≤
log log n

td log n
−log log(t3d)

log(d+3) .

Setting t = 4d log n, we get that r = (1− o(1))( log log n
log d ).

At this value of r, there are at least log n r-steps, com-
pleting the proof. The total proabability of exceeding
the bound is at most O(r/ log n) which is o(1). �

Next we prove Theorem 4.3.
Proof Sketch of Theorem 4.3: All the bins in a super-
bin with total load i have load either exactly bi/dc or
di/de. The crucial idea is that it is no more true that in
order for a super-bin I with total count i, the probability
of adding an extra ball is lower than p2

i where pi is the
fraction of super-bins with load i. This is because if i is
just smaller than a multiple of d/2, then any bin with
load j where j is the multiple of d/2 just less than i could
be chosen as one of the two choices along with I and the
next ball assignment could still go to I . This means
that pi+1 ≈ pipbi/dcd. Analyzing this recursion gives
the result. A formal proof can be obtained by using
log n rounds of n/ logn ball inserts as in the proof of
Lemma 2.3. �
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5 Appendix

5.1 High probability version of

Lemma 4.1

Here we convert the expected value of qr to a high prob-
ability bound for qr.

The essential step is bounding the fraction of r − 1-
steps that receive exactly rd inserts in the right order.
While we proved earlier that the expected fraction is
≥ (1/(10trd)rd), we now show that the deviation from
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this mean is small and hence Chebyshev inequality can
be applied to obtain high probability bound. Let Xi

denote the indicator variable for the event that the ith

(r − 1)-step gets the desired sequence of inserts.

Lemma 5.1 P (XiXj) ≤ (1 + ε)P (Xi)P (Xj) where ε =
4d/t.

Proof: P (Xi) = P (Xj) =
(

n/t
rd

)

(1/n)rd(1 − (t +

1)d/n)n/t−rd

P (XiXj) ≤
(

n/t
rd

)(

n/t−rd
rd

)

(1/n)2rd(1 − 2td/n)n/t−2rd

Comparing the terms, we get that

P (XiXj)

P (Xi)P (Xj)
≤

(

n/t−rd
rd

)

(

n/t
rd

)
·

(1 − 2td/n)n/t−2rd

(1 − (t + 1)d/n)2(n/t−rd)

After simplification, this is less than (1 + 4d/t). �

Lemma 5.2 For any random variable R =
∑

Xi, if
P (XiXj) ≤ (1 + ε)P (Xi)P (Xj), then the variance of
R, var(R) ≤ µ + εµ2, where µ denotes E[R].

Proof: For any random variable R =
∑

Xi, vari-
ance of R equals E[(

∑

Xi)
2] − E[

∑

Xi]
2 ≤

∑

E[X2
i ] +

2ε
∑

E[Xi]E[Xj ] ≤
∑

E[Xi]+ ε(
∑

E[Xi])
2 = µ+ εµ2

�

Let µ denote the expected number of (r − 1)-steps
that receive the desired rd inserts. So the probability
that less than µ/2 get the desired rd inserts is at most
var(R)/(µ2/4) ≤ 1/µ + ε.

Assuming qr
n
td ≥ log n and t ≥ 4d log n, this prob-

ability is at most 2/ logn. So with probability at least
(1−2/ logn), half µ will get the desired number of inserts.
After that, by Chernoff bounds, assuming µ/2 ≥ log n,

we get that at least half of (
∏r−1

i=0
qr−1

td )d fraction will be-
come r-steps, except for an exponentially low probabil-
ity. Chernoff bound is applicable as long as the expected
fraction of r-steps, qr

n
td is at least log n. So both the high

probability bounds apply as long as qr
n
td ≥ log n, giving

the slightly weaker recurrence qr ≥ 1
4 · ( 1

10t3d2 )td · qtd+1
r−1 .
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