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ABSTRACT

The emergence of tablet devices, cloud computing, and abun-
dant online multimedia content presents new opportunities
to transform traditional paper-based textbooks into tablet-
based electronic textbooks, and to further augment the ed-
ucational experience by enriching them with relevant sup-
plementary materials. The use of multimedia content such
as educational videos along with textual content has been
shown to improve learning outcomes. While such videos
are becoming increasingly available, even a highly relevant
video can be created at a granularity that may not mimic the
organization of the textbook. We focus on the video assign-
ment problem: Given a candidate set of relevant educational
videos for augmenting an electronic textbook, how do we as-
sign the videos at appropriate locations in the textbook? We
propose a rigorous formulation of the video assignment prob-
lem and present an algorithm for assigning each video to the
optimum subset of logical units. We also show that our ob-
jective function exhibits submodularity and hence admits an
efficient greedy algorithm with provable quality guarantees,
when the number of logical units is large. Our experimen-
tal evaluation using a diverse collection of educational videos
relevant to multiple chapters in a textbook demonstrates the
efficacy of the proposed techniques for inferring the granu-
larity at which a relevant video should be assigned.

1. INTRODUCTION

Textbooks have been the primary teaching instrument since
the 19th century. Education literature has extensively high-
lighted the central role played by textbooks in delivering
content knowledge to the students, improving student learn-
ing, and in helping teachers prepare the lesson plans [14,
38]. The rapid proliferation of cloud-connected electronic
devices has enabled the availability of textbooks in electronic
format. However, many of these e-textbooks are predomi-
nantly digital versions of the printed books, and hence do
not make use of the rich functionalities provided by the elec-
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tronic medium (and/or the cloud-connectedness). Thus, we
have the opportunity to enrich the reading experience by
augmenting e-textbooks with supplementary materials ap-
propriate to the learning style of the student, be it auditory,
visual or kinesthetic style [7, 10, 11, 16, 32, 36].

Towards this goal, we focus on enriching the experience of

reading from a textbook by interspersing rich video content

at specific, appropriate locations in the textbook. In fact,

the use of multimedia content along with textual material

has been shown to result in better content retention [35]

and improved concept understanding [28]. Our problem is

further motivated by the rapid growth in online educational

videos that are created and uploaded by self-appointed ‘teach-
ers’. YouTube Edu alone contains over 700,000 high quality

educational videos from over 800 channels [27].

With the availability of abundant online video content, one
can envision retrieval algorithms that can identify videos
relevant to the textbook. In fact, we use one such existing
algorithm to narrow the video collection to a relevant subset
for the textbook [3]. However, this does not solve the prob-
lem entirely. Since the videos on the web are not created
specifically for the textbook of interest, there are significant
differences in the authoring style of a video creator versus
that of a textbook author (we discuss other challenges in
§1.1). The textbook author creates a logical hierarchy (chap-
ter — sections — subsections, etc.) that is best suited for
presentation of all the material that needs to be covered in
the book. In contrast, the author of a video focuses only
on the content to be presented in the video. This central
difference makes it challenging to match videos to textbook
units. While some videos may provide a high-level overview
of the subject and hence may be appropriate at the granular-
ity of the entire book, other videos may illustrate a specific
concept or demonstrate an activity and hence may be ap-
propriate at the level of a subsection or even a paragraph.
Similarly, there may be videos that summarize a chapter or
a section, and hence may be best placed at an intermedi-
ate granularity. For example, a video that contains material
about different sections in a chapter can either be placed
at the chapter beginning (if it provides an overview), or at
the chapter end (if it helps to review the material in the
chapter).

The focus of this paper is to recognize this mismatch and
automatically determine the appropriate textbook locations
for assigning the videos. More precisely [20, 21]:



Given a textbook (or a chapter in a textbook) and a video
relevant to the textbook (or the chapter), how do we identify
the best subset of logical units (such as sections) that covers
the material present in the video?

We propose a rigorous formulation of the video assignment
problem and present an algorithm for assigning each video to
the optimum subset of logical units. We also show that our
objective function exhibits submodularity and hence admits
an efficient greedy algorithm with provable quality guaran-
tees, when the number of sections is large. As part of com-
puting the objective function, we provide a novel represen-
tation for videos in terms of concept phrases present in the
textbook, and their significance to the video. Our empirical
study over a diverse collection of educational videos corre-
sponding to multiple chapters in a textbook demonstrates
the efficacy of the proposed techniques.

1.1 Other Considerations

In addition to identifying relevant videos and suggesting
them at the appropriate granularity, there are other con-
siderations that form important research questions beyond
the scope of this paper. In particular, we need to consider
aspects along three dimensions: the video, the viewer and
the presenter. The relevancy of the video content to the text-
book, the appropriate granularity in the textbook where the
video should be placed, duration of the video, and the video
quality [31] are examples of aspects related to the video.
The appropriateness of the video to the viewer’s prior sub-
ject knowledge and preference for the type of video such
as lecture, demonstration, or animation are examples of as-
pects related to the viewer. The presentation style, accent,
and diction are examples of the presenter aspects [25]. The
rich diversity provided by the above dimensions also moti-
vates the need for going beyond one source of videos (such
as Khan Academy). For example, YouTube Edu alone has
over 800 channels, and contains over 30 videos with nearly
identical content but on different aspects of a single topic
such as “the law of conservation of mass”. Which of these 30
videos is the right augmentation for “the law of conservation
of mass”? This is a function of all the above dimensions. In
this paper, our focus is on the relevancy and the appropriate
granularity: how do we automatically assign the candidate
relevant videos at the appropriate granularity?

We also do not discuss specific mechanisms for integrating
the augmentations into the textbook, or their implications
for royalty sharing and intellectual property rights. Further,
issues and complementary approaches such as enhancing our
results using collaboration and crowdsourcing [33] and inte-
grating the augmentations with other interventions for im-
proving the learning outcomes [14, 29] are very important,
but are beyond the scope of this paper.

2. RELATED WORK
2.1 Enhancing Textbooks

There has been considerable work on augmenting textbook
sections with relevant supplementary materials mined from
the web [1, 3, 4]. In [4], the focus has been on finding textual
content from the web that is relevant for a section. Some-
what related is the work proposed in [39] that augments
textual documents such as news stories with other textual

documents such as blogs. In [1], a method was proposed to
identify the focus of the section, which was then used to ob-
tain relevant web videos. However, it is not always possible
to assign a video to a single section. A video may contain
content that extends across sections, as the author of the
video may have chosen a logical ordering different from that
of the author of the textbook. In this paper, we present a
technique that, given the videos relevant to the entire chap-
ter, identifies the minimal combination of sections that best
encapsulates the material covered in the video. Towards this
goal, we infer a representation for a video as a byproduct of
the CoMITY algorithm [3] which we adapt to obtain relevant
videos.

2.2 Re-ranking Search Results

There has been extensive work in the broad area of infor-
mation retrieval for (a) identifying videos (or other content)
relevant to a textual query, and (b) re-ranking these results
based on a number of preferences and additional metadata.
In this paper, we assume that the candidate set of relevant
videos for each textbook chapter is provided by an oracle
(described in §3). Therefore, we compare and contrast our
work with literature on re-ranking along three dimensions:
(a) diversification, (b) use of additional information, and (c)
personalization based on preferences.

Diversification of results: The premise for diversification
is as follows: As the user query can be ill-defined with re-
spect to user needs, the retrieval system needs to trade-off
between having relevant results of the ‘dominant’ intent and
diverse results in the top positions. The Maximal Marginal
Relevance (MMR) criterion was proposed in [8] to obtain a
trade-off between redundancy and maintaining query rele-
vance in re-ranking retrieved documents. Since then, many
techniques have been proposed for diversifying retrieved re-
sults by making use of a number of additional signals such
as click patterns [2, 9, 15, 37].

The focus of our work is to re-assign a video to the combina-
tion of sections that best describes the content of the video.
Diversification techniques can be used to provide richer sug-
gestions (when multiple videos are identified for the same set
of sections). The diversification can be performed with re-
spect to additional dimensions such as speaking styles (e.g.,
liveliness) or presentation types (e.g., demonstrations vs.
lectures) used in the videos.

Leveraging video content for re-ranking: In order to
refine rankings, a number of recent works has made use of
visual, auditory and spoken words in the video. In [17], rel-
evant results were further analyzed and re-ranked by identi-
fying salient visual patterns of relevant and irrelevant shots.
This work was further extended to incorporate recurrent
shots using a random walk over the context graph where
video stories are the nodes and the edges between them are
weighted by contextual multimodal similarities based on vi-
sual cues and transcripts of the spoken words [18]. In a sim-
ilar line of work, a graph based approach based on PageR-
ank was proposed in [24] while a maximum weighted bipar-
tite matching algorithm that uses video-clip similarities was
proposed in [13].

In these works, the focus has been to enhance the retrieval



Algorithm 1 ComITy

Input: A textbook chapter j; Number of desired video
results k; Number of desired video search results per query
t; Number of desired concept phrases n.

Output: A list of top k video results from the web, along
with relevance scores.

—_

: Obtain (up to) top n concept phrases from chapter j.

2: Form queries consisting of two concepts phrases each
((%) queries in total).

3: Obtain (up to) top t video search results for each of the
queries using a search engine.

4: Aggregate over (;‘) video result lists to obtain relevance
score, \;; associated with each video ¢ for chapter j.

5: Return top k videos along with their \;; values.

scores by making use of rich signals provided in the visual
and speech cues. Our work differs in multiple respects.
First, given the relevant videos for a book chapter, we want
to re-assign them to a subset of sections that best describes
the content delivered in the video. Second, while one may
resort to using automated speech recognition to extract the
spoken words, this is not always possible: Educational videos
from the wild (e.g., from YouTube) have a wide range of
recording conditions, speaker accents, and speaker age ranges
making it quite challenging for automatic speech recogniz-
ers to extract transcripts reliably. Therefore, we propose a
novel approach for inferring the underlying content in the
video. In particular, we make use of the queries to a video
search engine that led to the retrieval of the video. Using
these queries as the basis, we design a representation that
captures not only the salient concept phrases in the video,
but also their relative importance to the video, and then
perform assignment making use of this representation (§4).

Personalization of results: There is also a line of work on
re-ranking the video results based on user preferences. For
instance, an algorithm to provide personalized video sugges-
tions by making use of the user-video graph was proposed
in [6]. Such approaches can be used to further personalize
the assignments, for instance, factoring in learner preference
for a certain type of video.

3. CANDIDATE VIDEO SELECTION USING

comiry ALGORITHM

In this paper, we assume that we have access to the candi-
date set of videos relevant to a textbook chapter. In order
to obtain that relevant set, we adapted one of the methods,
namely, COMITY algorithm, proposed in [3] for augmenting
textbook sections with images. We describe our adaptation
of CoMITY algorithm next as we also use the internals of
this algorithm for other dependent tasks in our approach.

In [3], CoMITY algorithm was used on a per-section basis to
mine relevant images from the web. We found that when
this technique was applied at the section level for retrieving
videos, there was a huge redundancy in the retrieved videos,
across multiple sections'. We highlight two key observa-
tions: First, the content of the same video could be shared

!Similar observation was also made in [3] with respect to
the images retrieved.

Concept Phrases Queries Videos
water [water, food|————*all you eat”
/

o food [water, calculate]
% calculate :
6 : [water, epithelium]

\} hydrogen

epithelium [epithelium,hydrogen|—“cell membrane”

Figure 1: Query based video representation

across multiple sections, calling for an approach such as the
one proposed in this paper to identify the combination of
sections that best describes the video. Second, by apply-
ing the algorithm at the chapter level, we identify a richer
set of videos, by exploiting dependencies between concepts
elucidated in different sections.

Algorithm 1 provides a quick overview of our adaptation of
CoMITY algorithm. It uses top m concept phrases present
in a chapter to query a commercial video search engine?.
We will use cphr to denote a concept phrase present in a
text. There are multiple approaches for identifying cphrs
from a text. In this paper, we define the set of cphrs as
the set of phrases that map to Wikipedia article titles [12,
26, 34]. This set is further refined using the techniques pro-
posed in [4]. Since a cphr in isolation may not be repre-
sentative of the text as the same text can discuss multiple
concepts, COMITY forms (;’) video search queries by combin-
ing two cphrs each, in order to provide more context about
the chapter. Figure 1 shows an example of how the queries
are constructed from cphrs extracted from a textbook chap-
ter on Biology. A relevant video for the chapter is likely to
occur among the top results for many such queries. Thus,
by aggregating the video result lists over all combinations of
queries, we obtain the most relevant videos for the chapter.
In particular, the score associated with a video i for a chap-
ter j is given by A\i; := 3= _(1/(p(4,q, R(q)) + 0)), where the
summation is over (1) queries issued and p(i,q, R(q)) de-
notes the position of video 7 in the result list R(q) for query
q if i is present in R(q) and oo otherwise. € is a smoothing
parameter. This score captures the empirical observation
that a video occurring among the top results for multiple
queries was more relevant to the chapter than a video that
occurred among the top results for only one query.

We slightly modified the algorithm presented in [3]: We used
only a single search engine. We constructed queries by com-
bining two cphrs while the original method used up to three
cphrs. Since we considered the cphrs in the entire chapter,
it was rather impossible to consider all (z) queries.

4. APPROACH & ALGORITHMS
4.1 Representation of Textbook

Assume we have a textbook, consisting of K chapters. Each
chapter is subdivided into sections. Let Cpoor denote the set

2 A natural question is whether we could simply use the text
string of a chapter to query a commercial video search engine
and obtain the relevant videos. However, current search
engines do not perform well with long queries [19, 22].



[kind, water, report, shows, residue, list drink, alcohol, term, drinking water, watch, difference, note, category]

gold foil

experiment

lelec

[water, scientist, opinion, word, percentage, tube, study, crystallization, variety, molecule, symbol, experiment]

pressure, water, home, check, determine, Watt, work, atmospheric pressure, press|

[electran, Ernest Rutherford, gold foil experiment, gold leaf, atom, implication, structure, neutron, proton)
[atom, experiment, structure, Ernest Rutherford, gold foil experiment, gold leaf, neutron, proton, particle]

on, Ernest Rutherford, gold foil experiment, gold leaf, atom, structure, neutron, proton|

Figure 2: Illustration of important (‘gold foil experiment’) vs non-important (‘water’) concept phrases

of all cphrs (concept phrases) in the book. As discussed in
§3, we define Cpoor to be the set of phrases in the book that
map to Wikipedia article titles [12, 26, 34], further refined
using the techniques proposed in [4].

Each cphr differs in its importance to the underlying text.
For instance, a seemingly common cphr such as ‘air’ can be
extremely important when we discuss ‘air pollution’. Thus,
we need to take into account the context in which the cphr
occurs in order to compute its importance. Therefore, we in-
troduce context-dependent importance score, I(c) for a cphr
c that is determined directly from the data.

How do we compute I(c)? We make the following observa-
tion: If a cphris important for the context of the text, then
the videos retrieved using it as one of the query terms will
be related to each other. On the contrary, if the cphr is not,
then the videos retrieved using it as one of the query terms
will be very diverse and diffused. We operationalize this ob-
servation to infer the context-dependent score for each cphr.

For each cphr, we consider top m most frequent videos re-
trieved when the cphr is used in conjunction with all other
cphrs in the textbook. Figure 2 shows top cphrs associated
with three most frequent videos for two cphrs, ‘water’ and
‘gold foil experiment’ (we describe the computation of cphrs
in a video in §4.2). Consider the cphr ‘water’. The inter-
section of the three sets of cphrs is only the cphr, ‘water’.
On the other hand, for the cphr ‘gold foil experiment’, the
top three most frequent videos have a much larger set of
common cphrs: {electron, Ernest Rutherford, gold foil ex-
periment, foil, gold leaf, atom, structure, discovery, neutron,
proton} (note that the intersection is computed over all the
cphrs associated with the videos whereas only the top cphrs
are shown). Thus, a specific phrase is likely to lead to videos
that are more similar to each other than a generic phrase.

With this intuition, we measure I(c) as the average pair-wise
inner product between top m videos retrieved in response to
queries that contained c:

_ Zl§i<j§m < ‘/”‘/J >
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where V; is the vector representation (in terms of c¢phrs and

associated weights) for it" top video for c.

1(c) (1

While one can directly use I(c), we found that these scores

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Vacuole magnesium chloride  myocyte air
plastid polyatomic ion manure ways
cotyledon mole hydrogen hand

cell monera energy level day

tissue isotope red blood cell area
dicotyledon j j thomson cell (biology) place
nervous tissue physical property diatomic molecule water
plant cell proportionality cork f.o.o.d

Table 1: Cphrs binned based on their context-
dependent importance scores. Clusters 1 to 4 show
decreasing importance. Cphrs are from a chapter in
a Science textbook.

exhibited variances that are due to noise in the data, and not
inherent to the cphrs themselves. We addressed this issue by
clustering the scores into a small number of clusters (we used
4 clusters) and assigning cluster means as the importance
scores. Table 1 shows examples of cphrs in the resulting four
clusters for five chapters from a Science textbook: cluster
1 contains highly specific cphrs while cluster 4 has all the
cphrs with very low context-dependent importance scores.
We can see that the cphr ‘cell’ is inherently ambiguous (e.g.,
cell can be used in the context of fuel cells, biological cells,
etc.). However, since it is used specifically in the context of
a Biology chapter and used in context with other c¢phrs with
similar interpretation, this cphr is highly significant for the
chapter. In contrast, the cphrs ‘air’ and ‘place’ are not.

4.2 Representation of Candidate Videos

In order to match a video to a set of sections, we also need
a representation of the video. While one obvious approach
would be to use transcripts associated with videos, most
videos in our corpus did not have high quality user-uploaded
transcripts, and were too difficult for automatic speech rec-
ognizers to extract reliable speech signal (due to a wide range
of recording conditions & speaker accents / age ranges).

Hence, we devise a representation motivated by the following
observation: When a video is retrieved in a highly ranked po-
sition for a query, the corresponding query represents some
aspects of the content of the video. As an example, consider
Figure 1. The video “all you eat” describes dietary habits,
and is retrieved as a top result for the queries “water, food”
and “water, calculate”. Thus, the cphrs, ‘water’, ‘food’, and
‘calculate’ can be associated with this video. Similarly, for
the video “cell membrane”, the relevant cphrs are ‘epithe-
lium’, ‘hydrogen’, ‘water’, and ‘calculate’. However, the rel-
ative importance between the cphrs that lead to retrieving



a video varies. In this example, the video on cell membrane
should be related more to epithelium than to water. There-
fore, we represent a video with not only the cphrs that led
to the video, but also their importance to the video. For
each cphr ¢ and video v, we define the importance w, . of ¢
to v as the fraction of queries that contain ¢ for which video
v was retrieved as a top result:

{q € Qc|(v € TopResults(q)}
Wy,c = ’
Qe
where Q. is the set of queries that contain cphr c¢. The
intuition behind this definition is that the higher the fraction

of queries that led to a specific video, the more related this
phrase is with the video.

(2)

In our implementation, we restricted the possible cphrs that
can lead to a video to be only those that are present in
the textbook. However, one can extend this representation
in many ways, e.g.., by using multiple books of the subject
matter or identifying the cphrs in the transcript of the video,
especially when the transcript is user-uploaded.

4.3 Section Subset Selection For Videos

For a given candidate video v, let S be the candidate col-
lection of sections from the textbook chapter. From this
large candidate set, we would like to select a minimal subset
of top sections, 7 C S that best covers the content in the
video. We model this section subset selection problem as
identifying a subset of sections that maximizes the following
objective function:

F(v,T) = cover(v,T) — AT, 3)

where cover(v,7) is a function that measures how well the
set of sections 7 captures the content of the video v, which
we describe momentarily. Our objective function incorpo-
rates a penalty for using more sections than required for
explaining the video, by discounting for the number of sec-
tions |T]. Thus, the objective function provides a trade-off
between the extent to which the content of the video is cap-
tured and the number of sections used. Different trade-offs
can be obtained through different choices of the non-negative
parameter \: A large value of A corresponds to a greater
penalty for having more sections.

This trade-off ensures that each additional section must ex-
plain a significant portion of the video. Suppose for exam-
ple that the cover score for a video v and a set of sections
S" = {92,855} is 0.85, and for S” = {S2,S3,54} is 0.86.
While S” has a larger absolute cover score, it does not cover
significantly more material than S” and hence we would pre-
fer the assignment, S’. In other words, F(v,7T) provides a
trade-off between the extent of content match and the num-
ber of sections in the subset. Hence, our goal is to determine
the subset 7" that maximizes the objective function:

T* =argmax F(v,T). (4)
Te2s

Computing cover(v,T): Let C(v) C Cpoor denote the set
of cphrs present in our representation of video v and let
C(T) C Crook denote the set of cphrs present in the subset
of sections 7. Then, cover(v,7T) captures how much of the
video v is explained by the subset of sections 7. In our

implementation, we define this function to be the weighted
fraction of the cphrs in the video that is also covered by the
subset of sections:

2ce(cwnae(ry) Weel (€)
ZCEC(U) 'LUUCI(C)
The cover score takes values between 0 and 1, and the higher

the value, the more video content is contained in the corre-
sponding subset of sections.

()

cover(v,T) =

Brute-force optimization: One approach to solve the
above optimization is to exhaustively search over all possible
subsets of S and pick the best subset as given by Eq. 4. This
algorithm takes the set of sections in a textbook chapter and
a candidate video as inputs. In addition to the size penalty
parameter A\, we also include the coverage threshold 6 that
represents the minimum fraction of the video content that
must be covered by including all sections in the chapter, in
order to assign this video to any subset of sections. If the
entire chapter covers less than # fraction of the video con-
tent, then any subset of sections will also cover less than 6
fraction (since cover(v,.) is a monotonically increasing set
function), and hence the algorithm chooses to return no as-
signment. Otherwise, the algorithm returns the subset of
sections that maximizes F (v, 7). We discuss the parameter
choices in §5.3.

Greedy optimization: Clearly, brute force approach is
prohibitive even for a reasonable size of S. Hence, we ex-
ploit the fact that the functions, cover(v,.) and F(v,.) are
submodular (which we show below). While maximizing non-
negative monotonically increasing submodular functions (sub-
ject to cardinality constraints) is intractable in general, one
can design greedy solutions that are at most (1 — é) times
worse than the optimal solution for this class of submodu-
lar functions [30]. While cover (v, .) is a submodular function
that satisfies the additional requirements, F (v, .) is not guar-
anteed to be monotonically increasing or even non-negative,
and hence the results from [30] do not directly carry over.
We next describe the greedy algorithm and show that we can
still provide theoretical guarantees. Initialize with a section
s that has the largest value of cover(v,{s}). Then, itera-
tively add sections, one at a time, such that the added sec-
tion (along with previously chosen set of sections) gives the
maximal incremental gain in the function, F(v,.). Note that
the section that provides the maximal incremental gain in
F(v,.) also gives the maximal incremental gain in cover(v, .)
(since the additional penalty for including any single sec-
tion is A, a fixed value irrespective of the section included).
The algorithm continues until either all sections in the chap-
ter have been included, or the maximal incremental gain
in F(v,.) for any further section is negative (due to the
penalty). This greedy approach is not guaranteed to result
in an optimal solution, but is really efficient, which makes a
potential extension from the chapter level to the book level
fairly trivial and feasible.

Let k™ denote the number of sections included using the
above greedy algorithm. Let Fix greedy and Cix greedy Te-
spectively denote the values of the function F(v,.) and the
function cover(v,.) evaluated at the corresponding greedy
solution. Let Fi opt and Cy opt respectively denote the opti-
mum values of the function F (v, .) and the function cover(v, .)



subject to the cardinality constraint that exactly k sections
are present in the solution. Finally, let F,,; denote the opti-
mum value of the function F(v,.) (that is, without any car-
dinality constraints). We provide a guarantee for the value
of the greedy solution with respect to the optimum solution
containing exactly the same number of sections, even though
the guarantee is not with respect to the true optimum Fop:.
We formally state the guarantees below.

THEOREM 4.1.

1 A-k*
Fk*,gv‘eedy Z (]- - g) : Fk*,opt - T

Proor. The proof follows by making use of the result
from [30] for the function, cover(v, .) since this function sat-
isfies the non-negativity and monotonically increasing re-
quirements and further cover(v, ¢) = 0. Using this result,
we can derive: Fix greedy = Ci= greedy — A - k™ > (1 — é) .
Cropt = A k" = (1= 1) Fe ope — 252, O

e

Submodularity of F(v,.) and cover(v,.): A submodular
function g has the property of “diminishing returns”: The
difference in the value of the function that a single element
makes when added to an input set decreases as the size of the
input set increases. Formally, if X C Y C S, then adding
an element z € S\ 'Y to both X and Y should satisfy:

9(XUz) —g(X) > g(YUz)—g(Y) (6)

Since the summation in the numerator in the function, cover(v, .)

is over cphrs that belong to the sections (intersected with
those in video v), we can observe the following: With respect
to the incremental gain in cover(v,.) upon including z, the
summation can include additional number of cphrs for set X
compared to set Y. Hence, cover(v,.) is a submodular func-
tion. Further, it is monotonically increasing, non-negative,
and has zero value for empty set: cover(v,¢) = 0. Since
F(v,.) is obtained by adding a linear function to the func-
tion, cover(v,.), it follows that F(v,.) is also submodular,
although it does not satisfy these additional properties.

S. EVALUATION

We next perform empirical validation to demonstrate the
efficacy of our approach in identifying the subset of sections
that best covers the material presented in a video relevant
to the chapter.

5.1 Dataset

We first construct a ground truth test set of videos for
each textbook chapter. However, given the huge number
of videos available online, it is infeasible to create such a
set by inspecting all the videos. Therefore, we take a dif-
ferent approach: We consider the first five chapters of a
9" grade science book. We chose this textbook for two rea-
sons. First, these chapters span different sub-branches of sci-
ence: Physics (Chapter 1: “Matter in our surroundings” and
Chapter 2: “Is matter around us pure”), Chemistry (Chap-
ter 3: “Atoms and molecules” and Chapter 4: “Structure
of the atom”), and Biology (Chapter 5: “The fundamental
unit of life”). There are about 5 sections (median value) in

these chapters. Second, these chapters differ in the extent
to which there is content overlap and commonality across
sections. These differences help us to characterize when our
approach is most beneficial. Although our approach uses
CoMITY algorithm at the chapter level to obtain the candi-
date set of relevant videos, for the purposes of comparative
evaluation, we chose to apply COMITY algorithm at the sec-
tion level (see §5.2 for details). That is, for each chapter,
we run the COMITY algorithm, but by restricting to com-
binations of top n cphrs that are present in a section. We
set n = 20,¢t = 50, and k = 20. This process resulted in
178 unique videos across all chapters. We assigned a human
assessor to read all these five book chapters. After reading
the chapters, the judge is asked to watch each video and
manually identify all the sections that together capture the
content of the video®. The judge can revisit the book to
read multiple times. Note that the judge does not have ac-
cess to the underlying algorithm that identified the video.
The judge is also asked to remove videos that are irrelevant,
or cover material beyond the scope of the book.

This judgment process resulted in 112 videos (denoted by
V) along with their best set of sections assignments that
describe the content of each video. For each video v, we
denote the set of sections that are assigned by this process
by 8¢, where G stands for the ground truth set.

5.2 Algorithm used for comparison

Besides using the ComITy algorithm to identify the candi-
date set of videos for creating ground truth, we also used
CoMITY’s resulting assignments as a baseline algorithm for
comparison. Specifically, we associate each video with all
the sections for which that video was retrieved by the algo-
rithm. In particular, for video v, we denote S$ be the set
of sections for which ComITy algorithm retrieved v as one
of the top ranking videos. Since our goal is to compare the
performance of our approach to this CoMITY baseline, for
the purposes of evaluation, we only included videos that are
retrieved by running COMITY algorithm at the section level
(that is, not at the chapter level).

In Figure 3, we show the overlap of the videos across the
sections. We can see that only about 50% of the videos
are assigned to a single section, 25% to two sections and
the remaining to more than two sections. From this figure,
we would like to highlight two main observations. First,
CoMITY can be used as a baseline since it also identified mul-
tiple sections for the same video (in nearly half the cases).
Second and more importantly, since there is sufficient con-
tent that is shared across multiple sections, we need an as-
signment algorithm that identifies the correct granularity to
which a video needs to be assigned.

5.3 Choice of Parameters

Our algorithm uses two parameters, 6 and A\. The coverage
threshold 0 determines if the algorithm will match the video
to any section. We set § = 0.8. We also varied 6 in the range
[0.6,0.9] obtaining very similar results indicating that the al-
gorithm is not sensitive to this parameter. We estimated the

3Due to the volume of work needed per judge, this task was
not a suitable candidate for use of workers from Amazon Me-
chanical Turk platform. In fact, our initial experimentation
also confirmed this observation.
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Figure 3: Number of sections that CoMmITY assigns
for each of the 112 videos.

value for the size penalty parameter A using a cross valida-
tion set. This process resulted in A = 0.48. We used top
three videos (m = 3) for computing the context-dependent
importance score of each cphr.

5.4 Metrics

For each video v, let ST be the set of sections that are iden-
tified by our proposed algorithm. We propose two metrics,
‘Accuracy’ and ‘Relaxed Accuracy’ to compare the perfor-
mance.

Accuracy: This metric measures how accurately an algo-
rithm can identify the entire set of sections that best cap-
tures the content in the video:

Tucy 1188 =57) -

where A € {C, P} and I[X = )] evaluates to 1 if the sets
X and Y have identical elements and 0 otherwise. |V| is the
number of videos in the ground truth collection.

Accuracy =

Relaxed Accuracy: The above accuracy metric is strin-
gent in that it requires all the sections identified by the al-
gorithm to match with that of the ground truth. Consider
the following example: Let the best assignment for a video
be section 2. Consider two algorithms, A and B. Suppose
that A identifies sections 2 and 3, while B identifies sec-
tions 4 and 5. Then, the above metric would penalize both
algorithms equally. Clearly, algorithm A is better than algo-
rithm B since the former identified section 2, that is present
in the ground truth. We capture this intuitive notion using
a distance function that takes into account how different is
the inferred set from the ground truth set. In particular,
inspired by the edit distance for string comparison [23], we
compute “edit distance” (ED) between two sets as the num-
ber of sections that need to be inserted or deleted so that
the predicted set matches the ground truth. For instance,
ED between {2} and {4,5} is 3 while ED between {2} and
{2,3} is 1. We define:

Zvev (1 |_V|ma:]cEDDED) 7 (8)

Relaxed Accuracy =

where maxp ED is maximum edit distance that can be ob-
tained in our dataset D. Note that Relazed Accuracyée [0,1],
with 1 being perfect overlap and 0 being no overlap. We can
also see that the edit distance is maximized when the sec-
tions identified correspond to all the sections in the chapter
that are not part of the ground truth sections, so that the
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Figure 4: Breakdown of performance based on

CoMITY assignment

maximum edit distance equals the number of sections, |Sau|
in the chapter. The edit distance between two sets equals
their symmetric set difference. Thus, we can compute this

metric as:
|sAasf|
Zvev (1 T Saul )
V| ’
where A € {C, P} and S;* A 8§ denotes the symmetric set

difference (edit distance) between the set of sections identi-
fied by an algorithm and the set of ground truth sections.

9)

Relaxed Accuracy =

5.5 Results

We evaluated the algorithms based on two different ways of
slicing the data: (A) grouping based on the number of sec-
tions assigned by COMITY to evaluate overall performance,
and (B) chapter—wise results to understand performance based
on chapter characteristics.

Performance based on COMITY assignments: Here, we
would like to investigate the performance of our algorithm in
comparison to COMITY on the basis of the number of sections
that a video is assigned to by CoMITy. We partitioned the
videos into two groups: videos that are assigned to only one
section by COMITY, and those that are not. From Figure 3,
roughly 50% of the videos fall into either of these two groups.

Figure 4 shows the comparative results between the two
methods for the two groups of videos under both metrics.
We can see that when CoMITY assigns a video to multi-
ple sections, in many cases, it does so incorrectly, as shown
by the achieved accuracy of 0.47. On the other hand, our
approach is able to assign videos to the appropriate sub-
set of sections with much higher accuracy (0.73). Under
the relaxed accuracy metric, COMITY’s performance is still
lower than our approach (0.81 v.s. 0.90 ), indicating that
even though the videos considered are relevant (recall our
assumption that relevant videos are provided at the chapter
level), COMITY either incorrectly assigns additional sections
or finds only a subset of the ground truth sections. We
further analyzed failure cases and found that our approach
often fails to assign the right set of sections due to insuffi-
cient representation of the video, arising from the inherent
restriction of issuing queries based on the section content.

For the group of videos where COMITY assigned to only one
section, there is no significant difference in performance be-



tween the two methods. We investigated the reasons for this
similar performance: For a video belonging to this group,
the corresponding section often tends to be very focused on
a particular topic (we discuss this next), and hence there
is only a single logical section to which the video could be
assigned. Consequently, the two methods result in similar
performance for such videos.
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Figure 5: Chapter level comparison

Performance across chapters: We also investigated if
there is difference in performance across chapters. Figure 5
shows the results. We further analyzed two chapters, one
for which the two methods had similar performance and the
other with huge difference in performance. For the former,
we found that the corresponding sections in the chapter “Is
matter around as pure” have unique focus: for instance, sec-
tion 2 deals with different types of mixtures, while section
3 presents procedures for separating mixtures. These sec-
tions do not overlap much in terms of the concept phrases
explained. As a result, videos assigned to each section are
unique, and thus, the content of each video is not shared
across sections in the chapter. In contrast, in chapter 1 ti-
tled “Matter in our surroundings”, the first section explains
the physical nature of matter, while the second one discusses
the characteristics of particles of matter, leading to a huge
overlap in the content of these sections. This commonality
across sections results in videos that have similar content.
Since our approach explicitly models these dependencies, it
is able to assign the videos more accurately. In contrast,
CoMITY is myopic and hence is unable to tease out the in-
terrelationships between sections in the chapter.

6. SUMMARY, DISCUSSION, AND FUTURE
WORK

In this paper, we introduced the problem of identifying a set
of logical units in a textbook (such as sections in a chapter)
that best captures the content in an educational video that
is relevant to the textbook. We provided a scalable solution
that is effective across various subjects and for educational
videos in the wild.

Through this work, we have only touched the tip of the ice-
berg for effective augmentation of textbooks with videos: In
81, we discussed multiple other considerations that need to
be taken into account. Each of these dimensions is a promis-
ing direction for future work. Another important research
direction is to design rigorous evaluation methodology fac-
toring in these considerations and perform large scale user
study in classroom settings [5]. More broadly, in a blended
learning setting, a teacher may choose to combine course

materials including multimedia presentations from multiple
courses. Our work is a step towards addressing challenges
that arise in such settings.
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