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ABSTRACT

Given a data set consisting of private information about
individuals, we consider the online query auditing problem:
given a sequence of queries that have already been posed
about the data, their corresponding answers — where each
answer is either the true answer or “denied” (in the event
that revealing the answer compromises privacy) — and given
a new query, deny the answer if privacy may be breached
or give the true answer otherwise. A related problem is
the offline auditing problem where one is given a sequence
of queries and all of their true answers and the goal is to
determine if a privacy breach has already occurred.

We uncover the fundamental issue that solutions to the of-
fline auditing problem cannot be directly used to solve the
online auditing problem since query denials may leak in-
formation. Consequently, we introduce a new model called
simulatable auditing where query denials provably do not
leak information. We demonstrate that max queries may be
audited in this simulatable paradigm under the classical def-
inition of privacy where a breach occurs if a sensitive value
is fully compromised. We also introduce a probabilistic no-
tion of (partial) compromise. Our privacy definition requires
that the a-priori probability that a sensitive value lies within
some small interval is not that different from the posterior
probability (given the query answers). We demonstrate that
sum queries can be audited in a simulatable fashion under
this privacy definition.
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1. INTRODUCTION

Let X be a data set consisting of n entries X = {z1,...,2,}
taken from some domain (for this work we will typically use
z; € R). The data sets X of interest in this paper contain
private information about specific individuals. A statistical
query ¢ = (Q, f) specifies a subset of the data set entries
Q C [n] and a function f (usually f : 2% — R). The answer
f(Q) to the statistical query is f applied to the subset of
entries {z;]i € Q}. Some typical choices for f are sum, max,
min, and median. Whenever f is known from the context,
we abuse notation and identify ¢ with Q.

We consider the online query auditing problem: Suppose
that the queries q1, . . ., ¢t—1 have already been posed and the

answers ai, . .., a;—1 have already been given, where each a;
is either the true answer to the query f;(Q;) or “denied”
for j=1,...,t — 1. Given a new query ¢, deny the answer

if privacy may be breached, and provide the true answer
otherwise.

Many data sets exhibit a competing (or even conflicting)
need to simultaneously preserve individual privacy, yet also
allow the computation of large-scale statistical patterns. One
motivation for auditing is the monitoring of access to pa-
tient medical records where hospitals have an obligation to
report large-scale statistical patterns, e.g., epidemics or flu
outbreaks, but are also obligated to hide individual patient
records, e.g., whether an individual is HIV+. Numerous
other datasets exhibit such a competing need — census bu-
reau microdata is another commonly referenced example.

One may view the online auditing problem as a game be-
tween an auditor and an attacker. The auditor monitors
an online sequence of queries, and denies queries with the
purpose of ensuring that an attacker that issues queries and
observes their answers would not be able to ‘stitch together’
this information in a manner that breaches privacy. A naive
and utterly dissatisfying solution is that the auditor would
deny the answer to every query. Hence, we modify the game
a little, and look for auditors that provide as much informa-
tion as possible (usually, this would be “large scale” infor-
mation, almost insensitive to individual information) while
preserving privacy (usually, this would refer to “small-scale”
individual information).

To argue about privacy, one should of course define what
it means. This is usually done by defining what privacy
breaches (or compromises) are (i.e., what should an attacker



achieve in order to win the privacy game). In most previous
work on auditing, a ‘classical’ notion of compromise is used,
i.e., a compromise occurs if there exists an index ¢ such that
x; is learned in full. In other words, in all datasets con-
sistent with the queries and answers, x; is the same. While
very appealing due to its combinatorial nature, we note that
this definition of privacy is usually not quite satisfying. In
particular, it does not consider cases where a lot of infor-
mation is leaked about an entry z; (and hence privacy is
intuitively breached), as long as this information does not
completely pinpoint x;. One of the goals of this work is to
extend the construction of auditing algorithms to guarantee
more realistic notions of privacy, such as excluding partial
compromise.

The first study of the auditing problem that we are aware
of is due to Dobkin, Jones, and Lipton [9]. Given a private
dataset X, a sequence of queries is said to compromise X if
there exists an index ¢ such that in all datasets consistent
with the queries and answers, x; is the same (as mentioned,
we refer to this kind of compromise as classical compromise).
The goal of this work was to design algorithms that never
allow a sequence of queries that compromises the data, re-
gardless of the actual data. Essentially, this formulation
never requires a denial. We call this type of auditing query
monitoring or, simply monitoring. In terms of utility, moni-
toring may be too restrictive as it may disallow queries that,
in the context of the underlying data set, do not breach pri-
vacy. One may try to answer this concern by constructing
auditing algorithms where every query is checked with re-
spect to the data set, and a denial occurs only when an
‘unsafe’ query occurs.

A related variant of the auditing problem is the offline au-
diting problem: given a collection of queries and true an-
swers to each query, determine if a compromise has already
happened, e.g., if some x; can be uniquely determined. Of-
fline algorithms are used in applications where the goal is to
“catch” a privacy breach ex post facto.

It is natural to ask the following question: Can an offline au-
diting algorithm directly solve the online auditing problem?
In the traditional algorithms literature, an offline algorithm
can always be used to solve the online problem — the only
penalty is in the efficiency of the resulting algorithm. To
clarify the question for the auditing context, if we want to
determine whether to answer ¢;, can we consult the dataset
for the true answer a; and then run an offline algorithm to
determine if providing a; would lead to a compromise?

Somewhat surprisingly, we answer this question negatively.
The main reason is that denials leak information. As a
simple example, suppose that the underlying data set is
real-valued and that a query is denied only if some value
is fully compromised. Suppose that the attacker poses the
first query sum(x1, z2,x3) and the auditor answers 15. Sup-
pose also that the attacker then poses the second query
max(z1,x2,23) and the auditor denies the answer. The de-
nial tells the attacker that if the true answer to the sec-
ond query were given then some value could be uniquely
determined. Note that max(z1,z2,z3) £ 5 since then the
sum could not be 15. Further, if max(z1,x2,23) > 5 then
the query would not have been denied since no value could

be uniquely determined. Consequently, max(z1, z2,z3) =5
and the attacker learns that x1 = x2 = ©3 = 5 — a privacy
breach of all three entries. The issue here is that query de-
nials reduce the space of possible consistent solutions, and
this reduction is not explicitly accounted for in existing of-
fline auditing algorithms.

In fact, denials could leak information even if we could pose
only SQL-type queries to a table containing multiple at-
tributes (i.e., not explicitly specify the subset of the rows).
For example, consider the three queries, sum, count and max
(in that order) on the ‘salary’ attribute, all conditioned on
the same predicate involving other attributes. Since the se-
lection condition is the same, all the three queries act on the
same subset of tuples. Suppose that the first two queries are
answered. Then the max query is denied whenever its value
is exactly equal to the ratio of the sum and the count values
(which happens when all the selected tuples have the same
salary value). Hence the attacker learns the salary values of
all the selected tuples when denial occurs.

To work around this problem, we introduce a new model
called simulatable auditing where query denials provably do
not leak information. Intuitively, an auditor is simulatable if
an attacker, knowing the query-answer history, could make
the same decision as the simulatable auditor regarding a
newly posed query. Hence, the decision to deny a query does
not leak any information beyond what is already known to
the attacker.

1.1 Classical vs. Probabilistic Compromise
As we already mentioned, the classical definition of compro-
mise has been extensively studied in prior work. This defini-
tion is conceptually simple, has an appealing combinatorial
structure, and can serve as a starting point for evaluating
solution ideas for privacy. However, as has been noted by
many others, e.g., [2, 15, 6, 18], this definition is inadequate
in many real contexts. For example, if an attacker can de-
duce that a private data element x; falls in a tiny interval,
then the classical definition of privacy is not violated unless
x; can be uniquely determined. While some have proposed
a privacy definition where each x; can only be deduced to
lie in a sufficiently large interval [18], note that the distri-
bution of the values in the interval matters. For example,
ensuring that age lies in an interval of length 50 when the
user can deduce that age is between [—49, 1] essentially does
not preserve privacy.

In order to extend the discussion on auditors to more re-
alistic partial compromise notions of privacy, we introduce
a new privacy definition. Our privacy definition assumes
that there exists an underlying probability distribution from
which the data is drawn. This is a fairly natural assump-
tion since most attributes like age, salary, etc. have a known
probability distribution. The essence of the definition is that
for each data element z; and small-sized interval I, the au-
ditor ensures that the prior probability that z; falls in the
interval I is about the same as the posterior probability that
x; falls in I given the queries and answers. This definition
overcomes some of the aforementioned problems with clas-
sical compromise.

With this notion of privacy, we demonstrate a simulatable



auditor for sum queries. The new auditing algorithm com-
putes posterior probabilities by utilizing existing random-
ized algorithms for estimating the volume of a convex poly-
tope, e.g., [11, 19, 16, 20]. To guarantee simulatability, we
make sure that the auditing algorithm does not access the
data set while deciding whether to allow the newly posed
query ¢+ (in particular, it does not compute the true answer
to ¢¢). Instead, the auditor draws many data sets accord-
ing to the underlying distribution, assuming the previous
queries and answers, then computes an expected answer a;
and checks whether revealing it would breach privacy for
each of the randomly generated data sets. If for most an-
swers the data set is not compromised then the query is
answered, and otherwise the query is denied.

1.2 Overview of the paper

The rest of this paper is organized as follows. In Section 2 we
discuss related work on auditing. A more general overview
can be found in [1]. In Section 3 we give several motivat-
ing examples where the application of offline auditing algo-
rithms to solve the online auditing problem leads to massive
breaches of the dataset since query denials leak informa-
tion. We then introduce simulatable auditing in Section 4
and prove that max queries can be audited under this def-
inition of auditing and the classical definition of privacy in
Section 5. Then in Section 6 we introduce our new defini-
tion of privacy and finally in Section 7 we prove that sum
queries can be audited under both this definition of privacy
and simulatable auditing.

2. RELATED WORK
2.1 Online Auditing

As the initial motivation for work on auditing involves the
online auditing problem, we begin with known online audit-
ing results. The earliest are the query monitoring results
due to Dobkin, Jones, and Lipton [9] and Reiss [21] for the
online sum auditing problem, where the answer to a query
Q is ZiEQ ;. With queries of size at least k elements, each
pair overlap in at most r elements, they showed that any
data set can be compromised in (2k — (£ + 1))/r queries by
an attacker that knows £ values a priori. For fixed k, r and ¢,
if the auditor denies answers to query (2k—(¢+1))/r and on,
then the data set is definitely not compromised. Here the
monitor logs all the queries and disallows Q; if |Q;| < k, or
for some query t < 4, |Q:NQ:| > 7, orif i > (2k—(£+1))/r.!
These results completely ignore the answers to the queries.
On the one hand, we will see later that this is desirable in
that the auditor is simulatable — the decision itself cannot
leak any information about the data set. On the other hand,
we will see that because the answers are ignored, sometimes
only short query sequences are permitted, whereas longer
ones could have been permitted without resulting in a com-
promise.

In addition, Chin [3] considered the online sum, max, and
mixed sum/max auditing problems. Both the online sum
and the online max problem were shown to have efficient

!Note that this is a fairly negative result. For example, if
k = n/c for some constant ¢ and » = 1, then the auditor
would have to shut off access to the data after only a con-
stant number of queries, since there are only about ¢ queries
where no two overlap in more than one element.

auditing algorithms. But the mixed sum/max problem was
shown to be NP-hard.

2.2 Offline Auditing

In the offfine all problem, the auditor is given an offline set
of queries q1,...,q: and true answers ai,...,a: and must
determine if a breach of privacy has occurred. In most of
the works, a privacy breach is defined to occur whenever
some element in the data set can be uniquely determined. If
only sum or only max queries are posed, then polynomial-
time auditing algorithms are known to exist [4]. However,
when sum and max queries are intermingled, then determin-
ing whether a specific value can be uniquely determined is
known to be NP-hard [3].

Kam and Ullman [15] consider auditing subcube queries
which take the form of a sequence of Os, 1s, and *s where the
*s represent “don’t cares”. For example, the query 10**1*
matches all entries with a 1 in the first position, 0 in the
second, 1 in the fifth and anything else in the remaining
positions. Assuming sum queries over the subcubes, they
demonstrate when compromise can occur depending on the
number of *s in the queries and also depending on the range
of input data values.

Kleinberg, Papadimitriou and Raghavan [17] consider the

Boolean auditing problem, where the data elements are Boolean,

and the queries are sum queries over the integers. They
showed that it is coNP-hard to decide whether a set of
queries uniquely determines one of the data elements, and
suggest an approximate auditor (that may refuse to answer a
query even when the answer would not compromise privacy)
that could be efficiently implemented. Polynomial-time max
auditors are also given.

In the offline mazimum version of the auditing problem, the
auditor is given a set of queries q1, ..., ¢:, and must identify
a maximum-sized subset of queries such that all can be an-
swered simultaneously without breaching privacy. Chin [3]
proved that the offline maximum sum query auditing prob-
lem is NP-hard, as is the offline maximum max query audit-
ing problem.

3. MOTIVATING EXAMPLES

The offline problem is fundamentally different from the on-
line problem. In particular, existing offline algorithms can-
not be used to solve the online problem because offline algo-
rithms assume that all queries were answered. If we invoke
an offline algorithm with only the previously truly answered
queries, then we next illustrate how an attacker may exploit
auditor responses to breach privacy since query denials leak
information. In all cases, breaches are with respect to the
same privacy definition for which the offline auditor was de-
signed.

We assume that the attacker knows the auditor’s algorithm
for deciding denials. This is a standard assumption em-
ployed in the cryptography community known as Kerkhoff’s
Principle — despite the fact that the actual privacy-preserving
auditing algorithm is public, an attacker should still not be
able to breach privacy.

We first demonstrate how to use a max auditor to breach



the privacy of a significant fraction of a data set. The same
attack works also for sum/max auditors. Then we demon-
strate how a Boolean auditor may be adversarially used to
learn an entire data set. The same attack works also for the
(tractable) approximate auditing version of Boolean audit-
ing in [17].

3.1 Max Auditing Breach

Here each query specifies a subset of the data set entries,
and its answer is the maximum element in the queried data
set. For simplicity of presentation, we assume the data set
consists of n distinct elements. [17, 3] gave a polynomial
time offline max auditing algorithm. We show how to use
the offline max auditor to reveal 1/8 of the entries in the
dataset when applied in an online fashion. The max audi-
tor decides, given the allowed queries in qi, ..., and their
answers whether they breach privacy or not. If privacy is
breached, the auditor denies g;.

We arrange the data in n/4 disjoint 4-tuples and consider
each 4-tuple of entries independently. In each of these 4-
tuples we will use the offline auditor to learn one of the four
entries, with success probability 1/2. Hence, on average we
will learn 1/8 of the entries. Let a,b, ¢, d be the entries in a
4-tuple. We first issue the query max(a,b, c,d). This query
is never denied, let m be its answer. For the second query,
we drop at random one of the four entries, and query the
maximum of the other three. If this query is denied, then we
learn that the dropped entry equals m. Otherwise, we let
m’ (= m) be the answer and drop another random element
and query the maximum of the remaining two. If this query
is denied, we learn that the second dropped entry equals m’.
If the query is allowed, we continue with the next 4-tuple.

Note that whenever the second or third queries are denied,
the above procedure succeeds in revealing one of the four
entries. If all the elements are distinct, then the probability
we succeed in choosing the maximum value in the two ran-
dom drops is 2/4. Consequently, on average, the procedure
reveals 1/8 of the data.

3.2 Boolean Auditing Breach

Dinur and Nissim [8] demonstrated how an offline auditing
algorithm can be used to mount an attack on a Boolean data
set. We give a (slightly modified) version of that attack, that
allows an attacker to learn the entire database.

Consider a data set of Boolean entries, with sum queries.
Let d = z1,...,z, be a random permutation of the original
data set. As in [8], we show how to use the auditor to learn
d or its complement. We then show that in a typical (‘non-
degenerate’) database one more query is enough for learning
the entire data set.

We make the queries ¢; = sum(zi, xi41) fori =1,...,n—1.
Note that z; # a1 iff the query ¢; is allowed?. After n —1
queries we learn two candidates for the data set, namely, d
itself and the bit-wise complement of d. To learn which of

2When z; # xiy1 the query is allowed as the answer x;1 +
z;+1 = 1 does not reveal which of the values is 1 and which
is 0. When z; = z;4+1 the query is denied, as its answer (0
or 2) would reveal both z; and z;41.

the candidates is the right one, we choose the last query to
consist of three distinct entries x;, z;, zx of nonequal values,
such that for each entry both queries touching it were denied.
The query sum(z;,z;,xx) is never denied®. The answer to
the last query (1 or 2) resolves which of the two candidates
for d is the right one.

To conclude the description, we note that if both the num-
ber of zeros and the number of ones in the database are, say,
w(n2/3) then indices 4, j, k as above exist with high proba-
bility. Note that a typical database would satisfy this con-
dition.

Our attack on the Boolean auditor would be typically suc-
cessful even without the initial random permutation set.
In that case, the attacker only uses ‘one-dimensional’ (or
range) queries, and hence a polynomial-time auditor exists
(see [17]).

4. SIMULATABLE AUDITING

Evidently these examples show that denials leak informa-
tion. The situation is further worsened by the failure of the
auditors to formulate this information leakage and to take it
into account along with the answers to allowed queries. In-
tuitively, denials leak because users can ask why a query was
denied, and the reason is in the data. If the decision to allow
or deny a query depends on the actual data, it reduces the
set of possible consistent solutions for the underlying data.

A naive solution to the leakage problem is to deny when-
ever the offline algorithm would, and to also randomly deny
queries that would normally be answered. While this solu-
tion seems appealing, it has its own problems. Most impor-
tantly, although it may be that denials leak less information,
leakage is not generally prevented. Furthermore, the audit-
ing algorithm would need to remember which queries were
randomly denied, since otherwise an attacker could repeat-
edly pose the same query until it was answered. A difficulty
then arises in determining whether two queries are equiva-
lent. The computational hardness of this problem depends
on the query language, and may be intractable, or even un-
decidable.

To work around the leakage problem, we make use of the
simulation paradigm which is of vast usage in cryptography
(starting with the definition of semantic security [14]). The
idea is the following: The reason that denials leak informa-
tion is because the auditor uses information not available
to the attacker (the answer to the newly posed query), fur-
thermore resulting in a computation the attacker could not
perform by himself. A successful attacker capitalizes on this
leakage to gain information. We introduce a notion of au-
diting where the attacker provably cannot gain any new in-
formation from the auditor’s decision, so that denials do not
leak information. This is formalized by requiring that the
attacker is able to simulate or mimic the auditor’s decisions.
In such a case, because the attacker can equivalently decide
if a query would be denied, denials do not leak information.

4.1 A Perspective on Auditing

3Here we use the fact that denials are not taken into account.



We cast related work on auditing based on two important
dimensions: utility and privacy. It is interesting to note the
relationship between the information an auditor uses and
its utility — the more information used, the longer query se-
quences the auditor can decide to answer. That is because
an informed auditor need not deny queries that do not ac-
tually put privacy at risk. On the other hand, as we saw in
Section 3, if the auditor uses too much information, some of
this information my be leaked, and privacy may be adversely
affected.

The oldest work on auditing includes methods that simply
consider the size of queries and the size of the intersection
between pairs of queries [9]. Subsequently, the contents of
queries was considered (such as the elementary row and col-
umn matrix operations suggested in [3, 4]). We call these
monitoring methods. Query monitoring only makes require-
ments about the queries, and is oblivious of the actual data
entries. To emphasize this, we note that to decide whether a
query q: is allowed, the monitoring algorithm takes as input
the query ¢: and the previously allowed queries q1,...,qt—1,
but ignores the answers to all these queries. This oblivious-
ness of the query answers immediately implies the safety of
the auditing algorithm, in the sense that query denials can
not leak information. In fact, a user need not even commu-
nicate with the database to check which queries would be
allowed, and hence these auditors are simulatable.

More recent work on auditing focused on offline auditing
methods. These auditors take as input the queries q1, ..., q:
and their answers ai,...,a:. While this approach yields
more utility, we saw in Section 3 that these auditors are
not generally safe for online auditing. In particular, these
auditors are not generally simulatable.

We now introduce a ‘middle point’ that we call simulatable
auditing. Simulatable auditors use all the queries g1, ..., q:
and the answers to only the previous queries a1, ...,a:+—1 to
decide whether to answer or deny the newly posed query g:.
We will construct simulatable auditors that guarantee ‘clas-
sical’ privacy. We will also consider a variant of this ‘middle
point’, where the auditing algorithm (as well as the attacker)
has access to the underlying probability distribution®. With
respect to this variant we will construct simulatable auditors
that guarantee a partial compromise notion of privacy.

4.2 A Formal Definition of Simulatable Audit-
ing
We say that an auditor is simulatable if the decision to
deny or give an answer is independent of the actual data
set {z1,...,2n} and the real answer at’.
A nice property of simulatable auditors, that may simplify
their design, is that the auditor’s response to denied queries
does not convey any new information to the attacker (be-
yond what is already known given the answers to the previ-
ous queries). Hence denied queries need not be taken into

4This model was hinted at informally in [8] and the following
work [10].

For simplicity we require total independence (given what
is already known to the attacker). This requirement could
be relaxed, e.g. to a computational notion of independence.

account in the auditor’s decision. We thus assume without
loss of generality that q1,...,q.—1 were all answered.

DEFINITION 4.1. An auditor is simulatable if the decision
to deny or give an answer to the query q: is made based
exclusively on qi,...,q¢, and a1,...,at—1 (and not a: and
not the dataset X = {z1,...,xn}) and possibly also the un-
derlying probability distribution D from which the data was
drawn.

Simulatable auditors improve upon monitoring methods in
that longer query sequences can now be answered (an ex-
ample is given in Section 5.3) and improve upon offline al-
gorithms since denials do not leak information.

4.3 Constructing Simulatable Auditors

We next propose a general approach for constructing sim-
ulatable auditors that is useful for understanding our re-
sults and may also prove valuable for studying other types
of queries.

The general approach works as follows: Choose a set of
consistent answers to the last query q:. For each of these
answers, check if privacy is compromised. If compromise
occurs for too many of the consistent answers, the query is
denied. Otherwise, it is allowed. In the case of classical
compromise for max simulatable auditing, we deterministi-
cally construct a small set of answers to the last query g:
so that if any one leads to compromise, then we deny the
answer and otherwise we give the true answer. In the case
of probabilistic compromise for sum queries, we randomly
generate many consistent answers and if sufficiently many
lead to compromise, then we deny the query and otherwise
we answer the query.

5. SIMULATABLE AUDITING ALGORITHMS,

CLASSICAL COMPROMISE

We next construct (tractable) simulatable auditors. We first
describe how sum queries can be audited under the classical
definition of privacy and then we describe how max queries
can be audited under the same definition.

5.1 Sum Queries

Observe that existing sum auditing algorithms are already
simulatable [3]. In these algorithms each query is expressed
as a row in a matrix with a 1 wherever there is an index in
the query and a 0 otherwise. If the matrix can be reduced to
a form where there is a row with one 1 and the rest Os then
some value has been compromised. Such a transformation of
the original matrix can be performed via elementary row and
column operations. The reason this auditor is simulatable is
that the answers to the queries are ignored when the matrix
is transformed.

5.2 A Max Simulatable Auditor

We provide a simulatable auditor for the problem of au-
diting MAX queries over real-valued data. The data con-
sists of a set of n values, {z1,z2,...,2,} and the queries
q1,q2,... are subsets of {1,2,...,n}. The answer corre-
sponding to the query ¢; is m; = max{z;|j € ¢}. Given



a set of queries q1,...,q:—1 and the corresponding answers
mi,...,m¢—1 and the current query ¢, the simulatable au-
ditor denies ¢ if and only if there exists an answer my,
consistent with m1,...,m¢_1, such that the answer helps to
uniquely determine some element x;.

In other words, the max simulatable auditing problem is the
following: Given previous queries, previous answers, and the
current query, q:, determine if for all answers to q; consis-
tent with the previous history, no value x; can be uniquely
determined. Since the decision to deny or answer the cur-
rent query is independent of the real answer m:, we should
decide to answer ¢: only if compromise does not occur for
all consistent answers to g;: (as the real answer could be any
of these). Conversely if compromise does not occur for all
consistent answers to ¢, it is safe to answer q;.

We now return to the max auditing breach example of Sec-
tion 3.1 and describe how a simulatable auditor would work.
The first query maz(a, b, ¢, d) is always answered since there
is no answer, m1 for which a value is uniquely determined.
Let the second query be max(a,b,d). This would be always
denied since c is determined to be equal to m; whenever the
answer ma < mi. In general, under the classical privacy
definition, the simulatable auditor has to deny the current
query even if compromise occurs for only one consistent an-
swer to g: and thus could end up denying a lot of queries.
This issue is addressed by our probabilistic definition of pri-
vacy in Section 6.

Next we will prove the following theorem.

THEOREM b5.1. There is a max simulatable auditing algo-
rithm that runs in time O(t >_;_, |q:|) where t is the number
of queries.

We now discuss how we obtain an algorithm for max sim-
ulatable auditing. Clearly, it is impossible to check for
all possible answers m: in (—oo0,+00). We show that it
is sufficient to test only a finite number of points. Let
qi,...,q be the previous queries that intersect with the
current query q:, ordered according to the corresponding an-
swers, mj < ...<mj. Let mj, =mj —1land m/, =m|+1
be the bounding values. Our algorithm checks for only 21+ 1
values: the bounding values, the above [ answers, and the
mid-points of the intervals determined by them.

Algorithm 1 MAX SIMULATABLE AUDITOR

’ / ’ ’
mi+m ;7 Mmo+m 7
L—2 m 2_—3

. ’ ’
1: for my € {mlb7m17 2 ) 2y 2 , M3, ...y

/ ’
/ mp_ytmy ro
my_q, 2 7ml7mub} do

2: if m; is consistent with the previous answers
mi,...,mg—1 AND if 31 < j < n z; is uniquely
determined {using [17]} then

3 Output “Deny” and return

4:  end if

5: end for

6: Output “Answer” and return

Next we address the following questions: How we can tell if
a value is uniquely determined? How can we tell if an answer
for the current query is consistent with previous queries and

answers? Why is it sufficient to check for just the answers
to the previous queries that intersect with ¢; and the mid-
points of the intervals determined by them?

Given a set of queries and answers, the upper bound, p; for
an element z; is defined to be the minimum over the answers
to the queries containing z;, i.e., u; = min{mg|j € ¢x}. In
other words, p; is the best possible upper bound for z; that
can be obtained from the answers to the queries. We say
that j is an extreme element for the query set qx if j € qx
and p; = my. This means that the upper bound for x; is
realized by the query set g, i.e., the answer to every other
query containing x; is greater than or equal to my. The
upper bounds of all elements as well as the extreme elements
of all the query sets can be computed in O(3"'_ |g|) time
(which is linear in the input size). In [17], it was shown that
a value x; is uniquely determined if and only if there exists a
query set g for which j is the only extreme element. Hence,
for a given value of m¢, we can check if 31 < j < n z; is
uniquely determined.

LEMMA 5.1. For a given value of my, inconsistency oc-
curs if and only if some query set has no extreme element.

PROOF. Suppose that some query set g has no extreme
element. This means that the upper bound of every element
in g is less than myg. This cannot happen since some ele-
ment has to equal my. Formally, Vj € qr, x; < pj < myg
which is a contradiction.

Conversely, if every query set has at least one extreme ele-
ment, setting z; = p; for 1 < j < n is consistent with all
the answers. This is because, for any set gr with s as an
extreme element, s = my and Vj € qr, z; <my. O

In fact, it is enough to check the condition in the lemma for
g+ and the query sets intersecting it (instead of all the query
sets).

LEMMA 5.2. Forl < j <n, z; is uniquely determined for
some value of my in (my, miy1) if and only if z; is uniquely
determined when my = %

PROOF. Observe that revealing m; can only affect ele-
ments in g: and the queries intersecting it. This is because
revealing m: can possibly lower the upper bounds of ele-
ments in ¢, thereby possibly making some element in ¢; or
the queries intersecting it the only extreme element of that
query set. Revealing m; does not change the upper bound
of any element in a query set disjoint with ¢; and hence does
not affect elements in such sets.

Hence it is enough to consider j € ¢ Uqi U...Ugq. We
consider the following cases:

e ¢ = {j}: Clearly z; is breached irrespective of the
value of mq.

e j is the only extreme element of ¢; and |g:| > 1: Sup-
pose that z; is uniquely determined for some value



of m¢ in (m},m4,1). This means that each element
indexed in ¢; \ {j} had an upper bound < m; and
hence < m/ (since an upper bound can only be one
of the answers given so far). Since this holds even for
me = w7 j is still the only extreme element of
¢+ and hence z; is still uniquely determined. A similar
argument applies for the converse.

e j is the only extreme element of ¢, for some k: Sup-
pose that z; is uniquely determined for some value of
my in (m5,msy1). This means that m: < mj (and
hence m/,; < m},) and revealing m; reduced the up-
per bound of some element indexed in g, \ {j}. This

m,\+m’
would be the case even when m; = ——=*+. The

converse can be argued similarly.

To complete the proof, we will show that values of m: in
(mj,m, 1) are either all consistent or all inconsistent (so
that our algorithm preserves consistency when considering
only the mid-point value). Suppose that some value of m; in
(mf, m;, ) results in inconsistency. Then, by Lemma 5.1,
some query set g, has no extreme element. We consider two
cases:

® go = q:: This means that the upper bound of every
element in ¢; was < m; and hence < m/. This would
be the case even for any value of my in (m}, m, ;).

® (. intersects with ¢:;: This means that m; < m, and
the extreme element(s) of go became no longer extreme
for go by obtaining a lower upper bound due to my.
This would be the case even for any value of m; in
(miw m;+1)‘

O

’ ’
Mmgt+mg g

Thus it suffices to check for m; = Vi< s <l
together with m; = m/, V1 < s <1 and also representative
points, (m] —1) in (—oo,m}) and (m;+1) in (m}, o). Note
that inconsistency for a representative point is equivalent to
inconsistency for the corresponding interval.

As noted earlier, the upper bounds of all elements as well as
the extreme elements of all the query sets and hence each
iteration of the for loop in Algorithm 1 can be computed in
O(X_!_, |gi|) time (which is linear in the input size). As the
number of iterations is 21 + 1 < 2¢, the running time of the
algorithm is O(t Y_'_ |gi|), proving Theorem 5.1.

We remark that both conditions in step 2 of Algorithm 1
exhibit monotonicity with respect to the value of m;. For
example, if m; = « results in inconsistency, so does any
m¢ < . By exploiting this observation, the running time of
the algorithm can be improved to O((logt) 3°_ |¢:|). The
details can be found in the full version of the paper.

5.3 Utility of Max Simulatable Auditor vs. Mon-

itoring

While both simulatable auditors and monitoring methods
are safe, simulatable auditors potentially have greater util-
ity, as shown by the following example.

Consider the problem of auditing max queries on a database
containing 5 elements. We will consider three queries and
two possible sets of answers to the queries. We will demon-
strate that the simulatable auditor answers the third query
in the first case and denies it in the second case while a query
monitor (which makes the decisions based only on the query
sets) has to deny the third query in both cases. Let the query
sets be ¢1 = {1,2,3,4,5}, ¢2 = {1, 2,3}, g3 = {3,4} in that
order. Suppose that the first query is answered as mi = 10.
We consider two scenarios based on meo. (1) If me = 10,
then every query set has at least two extreme elements, ir-
respective of the value of m3s. Hence the simulatable auditor
will answer the third query. (2) Suppose m2 = 8. When-
ever ms < 10, 5 is the only extreme element for S; so that
x5 = 10 is determined. Hence it is not safe to answer the
third query.

While the simulatable auditor provides an answer g3 in the
first scenario, a monitor would have to deny g3 in both, as its
decision is oblivious of the answers to the first two queries.

Figure 1: Max simulatable auditor more useful than
max query restriction auditor. The values within
the boxes correspond to the second scenario.

6. PROBABILISTIC COMPROMISE

We next describe a definition of privacy that arises from
some of the previously noted limitations of classical com-
promise. On the one hand, classical compromise is a weak
definition since if a private value can be deduced to lie in a
tiny interval — or even a large interval where the distribu-
tion is heavily skewed towards a particular value — it is not
considered a privacy breach. On the other hand, classical
compromise is a strong definition since there are situations
where no query would ever be answered. This problem has
been previously noted [17]. For example, if the dataset con-
tains items known to fall in a bounded range, e.g., Age, then
no sum query would ever be answered. For instance, the
query sum(z1,...,%n), would not be answered since there
exists a dataset, e.g., z; = 0 for all ¢ where a value, in fact
all values, can be uniquely determined.

To work around these issues, we propose a definition of pri-
vacy that bounds the change in the ratio of the posterior
probability that a value z; lies in an interval I given the
queries and answers to the prior probability that z; € I.
This definition is related to definitions suggested in the out-
put perturbation literature including [13, 10].

For an arbitrary data set X = {z1,...,2z,} € [0,1]" and



queries ¢; = (Qj, fj), for j = 1,...¢t, let a; be the answers to
g; according to X. Define a Boolean predicate that evaluates
to 1 if the data entry z; is safe with respect to an interval
I C [0,1] (i.e., whether given the answers one’s confidence
in x; € I changes significantly):

SA,i,I(q17 ceesQty Aty .. 70‘75) =
rp(x; L fi i)=a;
1 (1- ) < ZREEa i @IZ) < /(1 - )
0 otherwise

Let Z be the set of intervals [£=2, ] for j = 1,...,a. Define

a )«

Sx(qr, .-, q,a1,...,a¢) =

/\ S)\,i,I(q17...7Qt7a17...7at)«
i€[n],I€T
ie, Sx(qi,---,q,0a1,...,a¢) = 1 iff q1,...,q¢,a01,...,0a¢ is

M-safe for all entries, for all intervals in Z.

We now turn to our privacy definition. Let X = {z1,...,2,}
be drawn according to a distribution D on [0, 1]", and con-
sider the following (A, a, T')-privacy game between an at-
tacker and an auditor, where in each round ¢ (for up to 7'
rounds):

1. The attacker (adaptively) poses a query g = (Qv, ft).

2. The auditor decides whether to allow ¢; (and then re-
ply with a: = f:(Q¢)), or ar = “denied”.

3. The attacker wins if Sx(q1,...,q¢,a1,...,a:) =0.

DEFINITION 6.1. We say that an auditor is (X, 6, a,T)-
private if for any attacker A

Pr[A wins the (A, o, T)-privacy game] < 6 .

The probability is taken over the randomness in the distri-
bution D and the coin tosses of the auditor and attacker.

Combining Definitions 4.1 and 6.1, we have our new model
of simulatable auditing. In other words, we seek auditors
that are simulatable and (X, d, o, T')-private.

Note that, on the one hand, the simulatable definition pre-
vents the auditor from using a: in deciding whether to an-
swer or deny the query. On the other hand, the privacy
definition requires that regardless of what a: was, with high
probability, each data value x; is still safe (as defined by S;).
Consequently, it is important that the current query q; be
used in deciding whether to deny or answer. Upon making a
decision, our auditors ignores the true value a: and instead
make guesses about the value of a; obtained by randomly
sampling data sets according to the distribution.

7. SIMULATABLE FRACTIONAL SUM AU-
DITING

In this section we consider the problem of auditing sum
queries, i.e., where each query is of the form sum(Q@;) and Q;
is a subset of dimensions. We assume that the data falls in
the unit cube [0, 1]", although the techniques can be applied
to any bounded real-valued domain. We also assume that
the data is drawn from a uniform distribution over [0, 1]™.

7.1 Estimating the Predicate 5()

We begin by considering the situation when we have the
answer to the last query a;. Our auditors cannot use a¢,
and we will show how to get around this assumption. Given
a+ and all previous queries and answers, Algorithm 2 checks
whether privacy has been breached. The idea here is to
express the ratio of probabilities in Sx,;,; as the ratio of
the volumes of two convex polytopes. We then make use
of randomized, polynomial-time algorithms for estimating
the volume of a convex body (see for example [11, 19, 16,
20]). Given a convex polytope P with volume Vol(P), these
algorithms output a value V such that (1 —¢)Vol(P) <V <
Vol(P)/(1 — €) with probability at least 1 — 7. The running
time of the algorithm is polynomial in n, %7 and log(1/n).
We call such an algorithm Vol ,, — this algorithm is employed
in steps 5 and 7 of Algorithm 2. Note that Vol(P) without
any subscripts is the true volume of P.

Algorithm 2 SAFE
1: Input: Queries and Answers ¢; and a; for j =1,...,¢,
and parameters A\, n, a, n.
2: Let safe=true, ¢ = \/6.
3: for each z; and for each interval I in Z do
4:  Let P be the (possibly less than n-dimensional) poly-
tope defined by (N’—; (sum(Q;) = a;)) N[0, 1]"

5.V = Vol ,(P)

6:  Let P;; be the polytope defined by PN (z; € I)

T ‘/i,I = VOls,n(Pi,I)

8 if (”Tf <(1- 46)) OR (”Tf >1/(1 —46))
then

9: Let safe=false

10:  end if

11: end for

12: Return safe.

LEMMA 7.1. 1. If Sx(q1,-..,q¢,a1,...,a:) =0 then Al-
gorithm SAFE returns 0 with probability at least 1 —2n.

2. If Says(q, .., qt, a1, ..., a:) = 1 then Algorithm SAFE
returns 1 with probability at least 1 — 2nan.

PrOOF. We first note that
Prp(zi € I| Ajoy (sum(Q;) = a;))
Prp(z; € I)
Pro(z; € I AN, (sum(Q;) = aj))
Pro(z: € 1) Pro(A_ (sum(Qy) = a5))
Vol(P; 1)

Vol(P)

where P and P;; are as defined in steps 4 and 6 of Al-
gorithm SAFE, and where Vol(P) denotes the true volume
of the polytope P in the subspace whose dimension equals
the dimension of P. (The last equality is due to D being
uniform.)

Using the guarantee on the volume estimation algorithm, we
get that with probability at least 1 — 27,
Vir VOI(PZ'VJ) 1 VOI(PZ'VJ) 1
< . . )
V. = Vol(P) (1-¢2~ Vol(P) 1-—2¢




The last inequality follows noting that (1—¢)? = 1—2¢+¢? >
Vi,I VOI(Pi,I) . (1—26)

1 — 2e. Slmllarly, v = VT(P)

We now prove the two parts of the claim:

1. Ifa-% < 1—Xthen a-vé,‘l < (1-X)/(1—2¢), and
by our choice of e = \/6 we get a - V‘i/’l < 1—4e, hence

Algorithm SAFE returns 0. The case « - %};};f)

1/(1 — ) is treated similarly.

>

Vol(P; 1)
" TVoI(P)

1 — 4e. The case « -

> 1-X/3 then a- %L > (1-A/3)(1-2¢) >

% < 1/(1 = \/3) is treated
similarly. Using the union bound on all ¢ € [n] and
I € 7 yields the proof.

2. Ifa

O

The choice of A/3 above is arbitrary, and (by picking € to be
small enough), one may prove the second part of the claim
with any value A’ < A. Furthermore, taking n < 1/6na,
and using standard methods (repetition and majority vote)
one can lower the error guarantees of Lemma 7.1 to be
exponentially small. Neglecting this small error, we as-
sume below that algorithm SAFE always returns 0 when
Sx(q1,...,qt,a1,...,a¢) = 0 and always returns 1 when
S (qiy---5qe,a1,...,a;) = 1, for some X' < A. From now
on we also assume that algorithm SAFE has an additional
parameter \'.

7.2 Constructing the Simulatable Auditor

Our construction follows a paradigm that may prove useful
in the construction of other simulatable auditors. We make
use of randomized, polynomial-time algorithms for sampling
from a conditional distribution. Such a sampling approach
has previously been suggested as a useful tool for privacy [7,
12, 5]. In our case, we utilize algorithms for nearly uniformly
sampling from a convex body, such as in [11]. Given the his-
tory of queries and answers qi,...,qi—1,01,...,at—1, and a
new query ¢, the sampling procedure allows us to estimate
the probability that answering ¢: would breach privacy (the
probability is taken over the distribution D conditioned on
the queries and answers qi,...,Gt—1,a1,...,a¢-1). To es-
timate this probability, we sample a random database X’
that is consistent with the answers already given, compute
an answer a; according to X’ and evaluate Algorithm SAFE
on qi,...,q:,ai,...,at-1,a;. The sampling is repeated to
get a good enough estimate that the SAFE algorithm re-
turns false. If the probability is less than ~ §/7T", then, via
the union bound, our privacy definition is satisfied.

Without loss of generality, we assume that the input q1,...,
qt—1,0a1,...,a:—1 contains only queries allowed by the audi-
tor. As the auditor is simulatable, denials do not leak any
information (and hence do not change the conditional prob-
ability on databases) beyond what the previously allowed
queries already leak. For clarity of presentation in this ex-
tended abstract, we assume that the sampling is exactly
uniform. For a data set X and query @, let sumx(Q) =

Licq X (@)

Algorithm 3 FRACTIONAL SUM SIMULATABLE AUDITOR

1: Input: Data Set X, (allowed) queries and answers ¢; and
aj for j =1,...,t —1, a new query ¢;, and parameters
NN, a,n, d,T.

2: Let P be the (possibly less than n-dimensional) polytope
defined by (ﬂ;;i (sum(Q;) = a;)) N[0, 1]"

3: for O(£ log L) times do

4:  Sample a data set X' from P { using [11]}

5. Let a’ = sumx/(Q:)

6: Evaluate algorithm SAFE on input
qi,---,qt,01,...,0t—1,a and parameters \, N, a,n

7: end for

8: if the fraction of sampled data sets for which algorithm
SAFE returned false is more than §/27" then
9:  Return “denied”
10: else
11:  Return a¢, the true answer to g+ = sumx (Q+)
12: end if

THEOREM 7.1. Algorithm 3 is a (A, 6, «, T)-private.

Proof Sketch: By Definition 6.1, the attacker wins the
game in round t if he poses a query ¢; for which
Sx(q1,...,qt,a1,...,a¢) = 0 and the auditor does not deny

qt-

Consider first an auditor that allows every query. Given an-
swers to the first t—1 queries, the true data set is distributed
according to the distribution D, conditioned on these an-
swers. Given ¢ (but not a¢), the probability the attacker
wins hence equals

q17"'7qt7
pt:%r S)\ a1,...,0¢t-1, :0‘Z17'-'7Qt—17a17~«7at—1
sumxr(ge)

where X’ is a data set drawn uniformly from D condi-
tioned on q1,...,qi—1,a1,...,a;—1. Note that since a’ =
sumyx-(Q:) is precisely what the algorithm computes, the
algorithm essentially estimates p; via multiple draws of ran-
dom data sets X’ from D, i.e., it estimates the true proba-
bility p: by the sampled probability.

Our auditor, however, may deny answering ¢;. In particular,
when p; > 0/T then by the Chernoff bound, the fraction
computed in step 8 is expected to be higher than § /27T, with
probability at least 1 —6/T". Hence, if p: > /T the attacker
wins with probability at most /7. When p; < §/T, the
attacker wins only if the query is allowed, and even then
only with probability p:. We get that in both cases the
attacker wins with probability at most 6/7. By the union
bound, the probability that the attacker wins any one of the
T rounds is at most ¢, as desired. [

While the auditor could prevent an attacker from winning
the privacy game with probability 1 by simply denying ev-
ery query, our auditing algorithm is actually more useful in
that if a query is very safe then, with high probability, the
auditor will provide the true answer to the query (part 2 of
Lemma 7.1).



We remark that our simulatable auditing algorithm for frac-
tional sum queries can be extended to any linear combina-
tion queries. This is because, as in the case of fractional sum
auditing, (N5 (X7, @iz = a;)) N [0,1]" defines a convex
polytope where g¢j1,...,q;n are the coefficients of the linear
combination query g;.

8. CONCLUSIONS AND FUTURE DIREC-
TIONS

We uncovered the fundamental issue that query denials leak
information. While existing online auditing algorithms do
not explicitly account for query denials, we believe that fu-
ture research must account for such leakage if privacy is to
be ensured. We suggest one natural way to get around the
leakage that is inspired by the simulation paradigm in cryp-
tography — where the decision to deny can be equivalently
decided by either the attacker or the auditor.

Next we introduced a new definition of privacy. While we
believe that this definition overcomes some of the limitations
discussed, there is certainly room for future work. The cur-
rent definition does not ensure that the privacy of a group of
individuals or any function of a group of individuals is kept
private. Also, our model assumes that the dataset is static,
but in practice data is inserted and deleted over time.

Our sum simulatable auditing algorithm demonstrates that
a polynomial-time solution exists. But the volume compu-
tation algorithms that we invoke are still not practical —
although they have been steadily improving over the years.
In addition, it would be desirable to generalize the result
from just the uniform distribution. Simulatable sum queries
over Boolean data is an interesting avenue for further work,
as is the study of other classes of queries like the k' ranked
element, variance, clusters and combinations of these.
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