
CaSMoS: A Framework for Learning Candidate Selection
Models over Structured Queries and Documents

Fedor Borisyuk Krishnaram Kenthapadi David Stein Bo Zhao
LinkedIn Corporation

Mountain View, CA, USA
{fborisyuk, kkenthapadi, dstein, bozhao}@linkedin.com

ABSTRACT
User experience at social media and web platforms such as LinkedIn
is heavily dependent on the performance and scalability of its prod-
ucts. Applications such as personalized search and recommen-
dations require real-time scoring of millions of structured candi-
date documents associated with each query, with strict latency con-
straints. In such applications, the query incorporates the context
of the user (in addition to search keywords if present), and hence
can become very large, comprising of thousands of Boolean clauses
over hundreds of document attributes. Consequently, candidate se-
lection techniques need to be applied since it is infeasible to re-
trieve and score all matching documents from the underlying in-
verted index. We propose CaSMoS, a machine learned candidate
selection framework that makes use of Weighted AND (WAND)
query. Our framework is designed to prune irrelevant documents
and retrieve documents that are likely to be part of the top-k results
for the query. We apply a constrained feature selection algorithm
to learn positive weights for feature combinations that are used as
part of the weighted candidate selection query. We have imple-
mented and deployed this system to be executed in real time using
LinkedIn’s Galene search platform. We perform extensive evalua-
tion with different training data approaches and parameter settings,
and investigate the scalability of the proposed candidate selection
model. Our deployment of this system as part of LinkedIn’s job rec-
ommendation engine has resulted in significant reduction in latency
(up to 25%) without sacrificing the quality of the retrieved results,
thereby paving the way for more sophisticated scoring models.

Keywords
Candidate selection; Learning query models; Personalized search
and recommendation systems

1. INTRODUCTION
Real-time large-scale personalized search and recommendation

systems play a key role at Internet companies like LinkedIn. At
scale, these systems pose unique challenges, particularly where
personalized search results or recommendations must be computed
from extremely large populations of candidate items, and where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD’16, August 13–17, 2016, San Francisco, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939718

both the items and user context data are highly dynamic. At LinkedIn,
we have multiple such large-scale applications, and have developed
methods for addressing these challenges using information retrieval
and machine learning.

To meet business requirements, some personalized search and
recommendation systems must meet tight constraints that they com-
pute results in real time, offer a high degree of data freshness, and
respond with low latency. An example of such an application at
LinkedIn is the job recommendations product, which computes per-
sonalized sets of recommended job postings for users on the site
based on the structured, context data present in the publicly avail-
able fields of their user profiles. We can train machine-learned scor-
ing functions that predict whether an item (e.g., a job posting) is a
good match for a given user, but in large-scale use cases it is not
feasible to compute the scores for all possible items in real-time
to serve a page load. Instead, we use a two-stage retrieval pro-
cess where we first invoke a computationally inexpensive model
to select a small candidate set of relevant items from the set of all
documents that match the query, and then perform a more computa-
tionally expensive second pass scoring and ranking on the obtained
candidate set.

Search engines are known to be good at retrieving a small set of
relevant documents matching a given query out of a huge document
set, so for real-time large-scale recommenders it is a natural choice
to model the recommendable items as structured documents and
define a function to construct queries for selecting candidates. But
making effective use of a search engine to produce viable candidate
sets (having good precision and recall, and a small candidate set
size) is non-trivial. One could naively construct large disjunction
queries using all the publicly available keywords in a user’s profile,
for example, but such an approach would likely match too many
items and fail to reject many of the irrelevant ones.

In some cases, ad-hoc heuristics and business rules can allow
us to reduce somewhat the size of the candidate set; for example,
for a job recommendations system, we could construct a query that
selects the jobs in the same geographic region as the user, or the
jobs that are in the same industry as the user. But these approaches
would not work well in all industries or geographic locations: in
some cases, the queries could still match too many jobs, while in
some others, more relevant jobs that did not match the ad-hoc cri-
teria could be rejected.

In this paper, we propose CaSMoS, a machine learning frame-
work for constructing effective models for candidate selection in
personalized search and recommendation systems. We present tech-
niques for learning candidate selection models expressed using
Weighted AND (WAND) Boolean predicates [9]. In our approach,
we use a constrained feature selection algorithm to learn positive
weights for feature combinations that are used as part of the weighted

441

candidate selection query. We have implemented this system to be
executed in real time using LinkedIn’s Galene search engine, and
deployed in production. We perform extensive evaluation with dif-
ferent training data approaches and parameter settings, and investi-
gate the scalability of the proposed candidate selection model. Our
online experiments demonstrate the efficacy of our framework in
achieving significant drop in latency (up to 25%) without sacrific-
ing the quality of the retrieved results, thereby paving the way for
more sophisticated scoring models. We finally present the lessons
learned from the deployment of our system as part of LinkedIn’s
job recommendation engine that serves millions of job recommen-
dations to millions of users.

2. RELATED WORK
Query optimization has been well studied in relational databases

for structured queries [10]. Information retrieval (IR) systems are
different from traditional databases in that, inverted indexes are
typically used to support keyword queries, and only top-k results
need to be returned. One well known work for query optimiza-
tion and candidate generation in IR systems is [9], in which the au-
thors proposed the formulation of queries in the format of Weighted
AND (WAND) predicates and described an efficient algorithm to
execute such queries. There has been a lot of follow-up work:
using SVM to learn WAND queries towards generation of candi-
dates for document classification was proposed in [4]; the approach
in [9] was compared with other algorithms for candidate gener-
ation in learning-to-rank systems and determined to be the most
efficient among the compared algorithms in [6]; more aggressive
pruning stategies on a per-query-basis were proposed in [16]. In
this work, we propose methods to learn WAND queries for candi-
date generation for personalized search and recommendation sys-
tems, where both query and document data are semi-structured.
The semi-structured data in our scenario is different from tradi-
tional web search engines in the sense that there are multiple fields
of text in both queries and documents, and it is more important
to learn which fields of queries and documents should match in-
stead of which keywords should match. This is the main differ-
ence between our work and previous candidate selection methods
in web search. Also, in this paper we focus on how to generate
the query instead of query execution, since conceptually the under-
lying search engine can be treated as an independent component,
where previous work on optimizing WAND query execution can
be applied.

Other types of queries have also been investigated for candidate
generation. An approach for constructing query modifications in
the web search domain using corpus-based SVM models was in-
troduced in [12]. Boolean models for obtaining the set of minimal
terms using an approximate Markov blanket feature selection tech-
nique and a decision tree to build the corresponding Boolean query
were proposed in [5]. Genetic algorithms were investigated in [3,
13] to find query alterations for faster execution in IR systems.

Candidate generation is also related to blocking methods in the
setting of record linkage and entity matching. A dynamic blocking
algorithm to choose the blocking keys based on the data charac-
teristics at run time, together with a MapReduce implementation,
was proposed in [14]. The construction of blocking functions based
on sets of blocking predicates was proposed in [8]. In that paper,
the authors formulate the problem of learning an optimal blocking
function as the task of finding a combination of blocking predi-
cates. However, for blocking in entity matching systems, high re-
call is very important, since the goal is to try to match all records in
one database with another. In personalized search and recommen-

Table 1: Structured representation of a hypothetical user pro-
file

User field Value of field
Title Software Engineer

Company LinkedIn Corporation
Industry Internet
Location San Francisco Bay Area, CA, USA

Skills C++, Java, Linux, Machine Learning

Position summary recommendation systems,
professional content

dation systems, the objective is very different, since we focus more
on retrieving top-k relevant results instead of all relevant results.

Finally, the notion of contextual information has been investi-
gated in varied disciplines such as psychology [7, 11] and com-
puter science (see [2] and the references therein, for example).
While these investigations pertain to defining and modeling differ-
ent types of user context, we focus on the orthogonal problem of
constructing effective candidate selection models in personalized
search and recommendation systems, wherein the queries incorpo-
rate user context.

3. PROBLEM SETTING
Personalized search and recommendation systems form the back-

bone of several user-facing products at Internet companies such as
LinkedIn. The underlying search / recommendation tasks can be
modeled as information retrieval problems, wherein the query con-
sists of the user context / interests expressed through user profile
and (user provided) search keywords, if present, and the document
corpus consists of millions of items of a particular type depend-
ing on the application (e.g., the set of job postings in the case of
personalized job search/recommendations). Due to the product and
business requirements, we typically need to compute the results in
real time, under strict latency constraints. While it is evident that
the results need to be generated on the fly for search systems, one
may wonder whether the results can be precomputed in the case
of recommendation systems. However, in several recommendation
scenarios, both the user context and the set of items are highly dy-
namic, necessitating the need for real time computation. On the
one hand, relevant results need to be available as soon as a new
user creates a profile, or a user changes the profile. On the other
hand, the set of valid items may change frequently over time (e.g.,
due to the arrival of new job postings or the expiration of job post-
ings), and hence the freshness of results is crucial (e.g., users would
like to see recommendations of relevant jobs as soon as they are
posted). Hereafter, we present in terms of recommendation sys-
tems, although our motivation and modeling are applicable for per-
sonalized search systems as well.

We next motivate the need for candidate selection as part of a
two-stage retrieval process, especially considering the long, com-
plex structured queries and the infeasibility of scoring millions of
matching structured documents. Consider, for example, the task
of recommending jobs to a hypothetical user who is currently em-
ployed as a Software Engineer at LinkedIn in San Francisco Bay
Area, with expertise in C++, Java, Linux, and Machine Learning,
and works on building recommendation systems for displaying pro-
fessional content. The structured representation of this user’s pro-
file is shown in Table 1. Suppose that the items (jobs) are scored
based on the following similarity features: (user_title, job_title),
(user_skills, job_skills), (user_position_summary, job_skills). Even
assuming such a simplistic scoring model and a relatively minimal
user profile context, the number of jobs that need to be scored be-

442

Figure 1: Online query processing and recommendation system.

comes very large, since any job whose structured representation in-
cludes one of {job_title: “Software Engineer”, job_skills: “C++”,
. . ., job_skills: “Machine Learning”, job_skills: “recommendation
systems”, job_skills: “professional content”} is a plausible recom-
mendation. This problem is further compounded by the fact that
the query may need to be expanded for robust match (e.g., we
can include titles similar to the user title, or locations similar to
the user location). In practice, a rich user profile may consist of
several structured attributes, and there could be hundreds of (user,
item) features. Consequently, millions of items may need to be
scored for a single user, which is not possible given the latency
constraints, thereby highlighting the need for a two-stage retrieval
process. Since our goal is to present a small set of most relevant
results to the user, we would like to prune a large subset of the
matching items that are not likely to be scored high, using a first
stage, computationally inexpensive candidate selection model. Our
problem can be stated as follows:

Given a long, complex structured query, select a small set of
matching documents that are likely candidates for the top-k results
for the query, while pruning matching documents that are not likely
to be part of the top-k results.

4. RECOMMENDATION SYSTEM DESIGN
AND ARCHITECTURE

We describe the overall design and architecture of the recom-
mendation system deployed at LinkedIn, focusing on how candi-
date selection is performed. We first give an overview of LinkedIn’s
Galene search platform, followed by the description of the online
recommendation system.

4.1 Galene Search Platform
In our deployment, we use LinkedIn’s Galene search platform [15].

Galene uses Lucene-based inverted indexes at its core, and provides
several functionalities desirable for our applications. The Galene
platform supports periodic rebuilding of the entire index data of-
fline in Hadoop, and offers a distributed service architecture with
index partitioning and shard replication. The offline-built static
base index when deployed in the online service is complemented
by an online live-index tier, which consumes from a live Kafka [1]
stream of document update events. The static base index and live
index tiers together provide a single dynamic view of the search

index to upstream callers of the service. Galene provides a rich
query language that supports Weighted AND (WAND) queries [9].
Galene also offers a flexible API that allows for individual applica-
tions to define query expansion and query rewriting operations, as
well as arbitrary scoring functions for ranking the matched docu-
ments. These APIs allow for easy integration of machine-learned
scoring and candidate selection modules into Galene deployments,
including those powering the methodologies discussed in this pa-
per.

4.2 Online Query Processing and Recommen-
dation System

Our online recommendation system uses a multi-tiered service
oriented architecture (see Figure 1), and consists of a recommenda-
tion application service tier and a distributed search service tier. In
this section, we provide an overview of the process by which these
services respond to live requests for real-time recommendations.
The description is annotated with references to the step numbers
found in Figure 1.

4.2.1 Recommendation Application Service Tier
The recommendation application service mid-tier accepts requests

from the front-end systems that are responsible for the user-facing
LinkedIn web applications (step 1). Recommendation requests in-
clude the identifier of the entity for which recommendations are to
be computed (in the example of job recommendations, this is the
ID of the user visiting the site).

The recommendation service then retrieves the structured user
fields data from a key-value store (step 2). It then obtains the ex-
perimental treatment for the user from an external A/B testing plat-
form service (step 3). The experimental treatment identifies which
machine-learned models should be used to compute the recommen-
dations for the user. The recommendation service uses this infor-
mation to retrieve the first-pass candidate selection model (step 4)
and to retrieve the second-pass ranking model (step 5) from re-
spective key-value stores. The models and the user data are then
wrapped into a request object that is issued to the search broker
service (step 6).

User field data is represented in a term-vector format, and con-
sists largely of natural-language text-based fields including weighted
uni-grams and bi-grams. Also included are non-text categorical de-

443

rived fields (e.g., which industries or geographic locations in our
fixed taxonomy is a particular user associated with; the canonical
version of user’s current position title string, wherein the canonical
version is obtained with respect to a large taxonomy of canonical
titles; the set of skills for a user) along with corresponding weights.

4.2.2 Search Service Tier
The distributed search service tier consists of the following key

components.
Search Broker: Search requests issued by the Recommendation
Application Service are handled by the search broker service. The
search broker applies the candidate selection model to the struc-
tured user fields data submitted with the request to synthesize a
candidate selection query in the Galene query language (step 7).
While the candidate selection model may be expressed in terms
of (user, item) feature definitions, the constructed Galene query
must be expressed in terms of item fields and values, possibly as
a weighted Boolean predicate. For instance, for the task of recom-
mending jobs to the hypothetical user in §3, the constructed Galene
query could be a weighted Boolean predicate over literals such as
job_title: “Software Engineer”, job_skills: “C++”, . . ., job_skills:
“Machine Learning”, job_skills: “recommendation systems”, and
job_skills: “professional content”.

The request object is then decorated with the synthesized candi-
date selection query and is issued by the broker to the distributed
set of search nodes, each of which contains one partition of the
distributed index (step 8). Upon receiving the responses from the
search nodes, the broker service merges the hits from the partitions
and returns a list of the top-k items to the recommendation applica-
tion service.

Searcher Node: A cluster of searcher node machines forms a par-
titioned and replicated distributed search index service. Each node
runs as a stand-alone service, capable of answering queries against
its own partition of the search index.

Upon receipt of the search request from the broker, the search
node executes the Galene search query against its partition of the
inverted index (step 9). In the typical example, the query is a
Weighted AND query. As the matching documents are found via
the information retrieval process, they are scored according to the
second-pass ranking model provided with the request (step 10).

During second-pass ranking, interaction features are computed
on-the-fly according to the second-pass ranking model, based on:

• the structured user fields contained in the request (e.g., based
on the user’s profile data)

• the item (document) fields obtained via Galene’s forward-
index data

Documents whose scores exceed a defined threshold are inserted
into a max-heap (step 11). When all the matching documents have
been processed, the top-k documents in the max-heap are returned
to the search broker (step 12).

The top documents returned by the searcher node (step 12) are
subsequently merged with the results from other searcher nodes by
the broker (step 13), and are passed back to the recommendation
application service for post-processing. Post-processing may in-
clude applying filters and rules required for business reasons (for
example, remove recommendations for ineligible jobs). Finally,
the recommendation application service returns the finished list of
recommended items to the front-end service for rendering on the
site (step 14).

5. CaSMoS: CANDIDATE SELECTION
MODEL LEARNING FRAMEWORK

We next present an overview of our candidate selection model,
and describe the offline framework for learning this model based
on user-item interaction log data. This offline framework is im-
plemented in a distributed computing environment using Hadoop
infrastructure, and makes use of LinkedIn’s machine learning plat-
form, based on Spark.

5.1 Candidate Selection Model Overview
We first present the intuition underlying our candidate selection

model. As discussed in §3, for each user, millions of items could
match with respect to each (user, item) feature used in the scoring
model. However, the most relevant items are very likely to match
on multiple (user, item) features. Thus, requiring an item to match
on multiple features drastically prunes the number of items to be
scored, while retaining the most relevant items. Further, it may
be desirable to give different weights to different combinations of
features: In an application scenario such as job recommendations,
a match on the combination {(user_title, job_title), (user_skills,
job_skills)} is more important than a match on the combination
{(user_industry, job_industry), (user_seniority, job_seniority)}.
Hence, we choose to represent the candidate selection model based
on the Weighted AND (WAND) query operator [9].

Let F denote the set of (user, item) feature definitions. For
1 ≤ i ≤ k, let Ci be a Boolean variable denoting whether an item
matches on a combination Fi ⊆ F of (user, item) features. Equiv-
alently, Ci can be viewed as a conjunction over Boolean version of
the corresponding features in Fi. Each clause Ci is associated with
a positive weight wi. An item is selected if the sum of weights as-
sociated with clauses that are true exceeds a threshold, θ. Thus, we
specify the candidate selection model in terms of WAND Boolean
predicate: For a given item, WAND(C1, w1, . . . , Ck, wk, θ) is
true if and only if ∑

1≤i≤k

wi · xi ≥ θ,

where ci is an indicator variable for Ci (ci = 1 if Ci is true, and 0
otherwise).

We give an illustration using a toy candidate selection model and
the hypothetical user profile in Table 1. Suppose that the model is
specified with a threshold of 0.5, and in terms of just four (clause,
weight) pairs:

1. ((user_title, job_title) ∧ (user_skills, job_skills), 0.55)

2. ((user_title, job_title)∧ (user_position_summary, job_skills),
0.35)

3. ((user_industry, job_industry) ∧ (user_position_summary,
job_skills), 0.25)

4. ((user_industry, job_industry) ∧ (user_seniority,
job_seniority), 0.05)

Here, a job posting (item) satisfies a clause if the underlying fea-
tures will all be non-zero. For instance, a job posting would satisfy
the first clause if its title matches the user’s title and there is at least
one skill in common between the job and the user. We can observe
that, for a job posting to be selected, it must either satisfy the first
clause or satisfy both the second and the third clauses. For the user
in Table 1, a job posting for “Software Engineer” (title) with “Java”
as one of the skills will satisfy the first clause, and hence will be se-
lected. Similarly, a job posting for “Software Engineer” at a com-
pany in the Internet industry that lists “recommender systems” as

444

Figure 2: Offline framework for learning candidate selection query model.

one of the skills will satisfy both the second and the third clauses,
and hence will be selected. However, a job posting for “Product
Manager” at a company in the Internet industry will not be selected
even if it lists any of the user’s skills. Note that in this example, the
fourth clause does not have any effect on whether a job posting will
be selected, given the choice of the above threshold.

We next highlight the benefit of the above representation for the
candidate selection model.

We are able to make use of WAND query operator, that is sup-
ported by LinkedIn’s Galene search platform. Galene applies vari-
ous optimization techniques as part of WAND query execution. For
example, since the weights associated with the clauses are positive
in WAND query, the retrieval system can select a document as soon
as the sum of the weights for the satisfied clauses so far evaluated
surpasses the threshold. In this case, there is no need to evaluate
the remaining query clauses. This optimization would not be pos-
sible in case negative clause weights are allowed since the retrieval
system would then need to evaluate all the clauses.

5.2 Candidate Selection Model Training using
User-Item Interaction Log Data

We next describe our offline system for learning the candidate
selection model. Given a long, complex structured query, the goal
of candidate selection can be viewed as achieving a separation be-
tween items that could be potentially in the top-k results and the
items that are very unlikely to be in the top-k results. Hence, we
adopt a supervised machine learning approach to train the candi-
date selection model. We present the components underlying our
system in Algorithm 1, and the overall architecture in Figure 2. We
elaborate on the key components below.

Generation of training data: This component assigns positive and
negative labels to (user, item) pairs, based on user-item interaction
log data, and splits this data into train/validation/test sets. The log
data contains events of user interactions with the recommendation
application. The events could correspond to an item impression

Algorithm 1 Algorithm for Learning Candidate Selection Model
Input: Set F of (user, item) feature definitions; User-item interac-
tion log data; Selection factor, T .
Output: Candidate selection query model, specified as WAND
query predicate.

1: Generate training data (labeled (user, item) pairs) from user-
item interaction log data.

2: Create the configuration set of possible conjunction clauses, by
taking combinations of up to T (user, item) feature definitions.

3: Compute Boolean feature values for the (user, item) pairs
present in the training data.

4: Generate Boolean feature vector of conjunction clauses, along
with labels.

5: Learn weights for the WAND query.

(indicating that the item was recommended to the user) as well as
different types of interaction such as clicking (indicating the user
clicked on the item snippet to view more details), saving (indicating
that the user saved the item for later reference), and other applica-
tion specific interactions (e.g., applying for a job). We can infer
positive and negative labels for (user, item) pairs in several ways,
possibly depending on the specific application. For example, for
a given user, items that were clicked by the user could be treated
as positive examples and the items that were never shown to the
user could be treated as negative examples. Our experimentation
choices are described in §6.4.

Configuration of potential clauses for WAND Query: Given the
set F of (user, item) feature definitions and the selection factor, T ,
we create the configuration set of possible clauses for WAND query
by taking combinations of up to T feature definitions (

∑
1≤t≤T

(|F |
t

)
clauses in total).

445

Consider the job recommendation example discussed in §3, and
assume that there are just three feature definitions: (user_title,
job_title), (user_skills, job_skills), (user_position_summary,
job_skills). If the selection factor equals 2, the set of potential
clauses would be: {(user_title, job_title), (user_skills, job_skills),
(user_position_summary, job_skills), (user_title, job_title) ∧
(user_skills, job_skills), (user_title, job_title)∧ (user_position_sum-
mary, job_skills), (user_skills, job_skills) ∧ (user_position_sum-
mary, job_skills)}. At first, the last three clauses containing two
features each may seem redundant since any item that matches
these clauses would have been matched by at least one of the first
three singleton clauses. However, since a conjunction of two Boo-
lean features is more selective (and usually more discriminative
at identifying relevant items) than either feature, the conjunction
could be assigned a significantly larger weight compared to the
singleton clauses, and thus could determine whether an item gets
selected or not. In our implementation, we set the selection factor,
T = 2.

Computation of Boolean feature values: Given the set of fea-
ture definitions, we next generate the Boolean version of the cor-
responding features for the (user, item) pairs present in the train-
ing data. In the job recommendation example above, the feature
(user_skills, job_skills) would evaluate to true if and only if there
is at least one skill in common between the user and the job. To
enable this computation, the system that generates the structured
field data for the users writes a copy of this data to HDFS, in ad-
dition to populating/updating the user fields store (used by the on-
line query processing recommendation system). Similarly, the sys-
tem that generates the item fields data writes a copy of the data to
HDFS, in addition to updating the corresponding search index on-
line. User fields may include publicly available parts of a user’s
LinkedIn profile such as the current job title of the user, seniority,
function, industry, skills, and key terms extracted from descriptive
fields such as the position summary of the user, current job descrip-
tion, and past job descriptions. In the case of job recommendation
application, the item (job posting) fields may include the job title,
seniority, function, industry, skills, and key terms extracted from
the job description.

Generation of Boolean feature vector of conjunction clauses:
This component generates the dataset needed for the machine learn-
ing algorithm, based on the following inputs: the training data, the
Boolean feature values, and the configuration set of conjunction
clauses. Each row corresponds to a (user, item) pair. The columns
correspond to the conjunction clauses of (user, item) features, with
the last column indicating the label. A conjunction clause is set to
1 (true) if and only if the user and the item match on all the features
present in the clause.

Learning WAND query model: We use LinkedIn’s machine learn-
ing platform to learn the weights and determine the optimal thresh-
old for the candidate selection model expressed as a Boolean WAND
query. Since the weights associated with the clauses need to be pos-
itive in the WAND query, we cannot directly use off-the-shelf ma-
chine learning techniques. Instead, we formulate our learning task
in terms of logistic regression with positive coefficient constraints.

To satisfy this requirement, we experimented with two different
algorithmic implementations of our learning task. The first algo-
rithm can be thought of as performing constrained feature selec-
tion, treating the logistic regression training procedure as a black-
box. The second algorithm modifies the internals of the training
procedure towards achieving positive coefficient weights.

Algorithm 2 Constrained Feature Selection Algorithm
Input: Dataset comprising Boolean feature vector of conjunction
clauses, along with labels.
Output: Candidate selection query model, specified as WAND
query predicate.

1: Train the logistic regression model with all features (Boolean
conjunction clauses).

2: repeat
3: Remove features whose coefficients are below a small (pos-

itive) threshold.
4: Retrain the model without the removed features.
5: until Desired number of conjunction clauses are left.

Algorithm 3 Non-negative Coefficient Constrained Boundary Al-
gorithm
Input: Dataset comprising Boolean feature vector of conjunction
clauses, along with labels.
Output: Candidate selection query model, specified as WAND
query predicate.

1: repeat
2: Perform a step of the gradient descent algorithm, and update

the coefficients of the features (Boolean conjunction clauses).
3: Assign negative coefficients to zero.
4: until The training procedure converges, or the number of iter-

ations reaches a limit.

We describe the two algorithms formally below.

Constrained Feature Selection Algorithm: Algorithm 2 first trains
the logistic regression model with all features (Boolean conjunc-
tion clauses), and then iteratively prunes features with coefficient
weights below a small positive threshold. Thus, both features with
negative coefficient weights and very small weights are removed.
This process is terminated upon reaching the desired number of
conjunction clauses. In our implementation, we tune the desired
number of clauses based on the observed latency over a set of
queries.

Non-negative Coefficient Constrained Boundary Algorithm: Algo-
rithm 3 performs modification to the gradient descent algorithm
so that the negative coefficients are set to zero after each gradient
descent step. This process is repeated until either the training pro-
cedure converges, or the number of iterations reaches a limit.

We experimentally observed that Algorithm 3 performed simi-
larly as Algorithm 2 in terms of quality metrics. Hence, consider-
ing the added complexity associated with modifying the internals
of the training procedure, we decided to use Algorithm 2 in our de-
ployed production system. We used precision-recall (PR) curve to
select the threshold parameter, θ for the learned WAND query. PR
curve can be constructed by measuring precision and recall with
respect to different choices of the threshold. We experiment with
four different choices of threshold, corresponding to recall values
of 0.85, 0.90, 0.95, and 0.99 respectively, and discuss the effect of
varying threshold on the performance of candidate selection in §6.

6. EXPERIMENTS
We next present an extensive evaluation of our candidate selec-

tion model learning framework. We evaluate both efficiency (query

446

processing time / latency) and effectiveness (quality) of the pro-
posed candidate selection method, in offline as well as online set-
tings. We also investigate the effect of varying training data and
features used on the quality of the resulting candidate selection
model, as well as the effect of varying index size and traffic loads
on the query processing time.

6.1 Experimental Setup
As described earlier, we implemented our techniques to be ex-

ecuted in real time using LinkedIn’s Galene search engine, and
deployed in production as part of LinkedIn’s job recommendation
system. Our offline learning framework is implemented in a dis-
tributed computing environment using Hadoop, and uses LinkedIn’s
machine learning platform, based on Spark.

We performed our experiments over two weeks of job recom-
mendations log data, collected during July 2015. This data is part
of the user-interaction log data, which contains events of user inter-
actions with various LinkedIn applications. The following types of
user-job interaction events were used to train the candidate selec-
tion models:

• job impression (whether a job was shown to a particular
LinkedIn user),

• job click (whether the user clicked on the job and viewed the
details of the job), and

• job application (whether the user applied for the job).

The training data was generated from this log data, and was divided
into three subsets: training set, validation set, and test set. We
trained the models using the training set, selected the best model
based on the validation set, and computed the metrics on the test set.
Our baseline model does not use candidate selection, and instead
scores all job documents that match structured attribute keywords
from the user profile. This model is implemented by constructing
a Boolean disjunction query from the structured fields in the user
profile to the relevant structured fields in the job documents.

Our online experiments were performed using LinkedIn’s A/B
testing platform [17]. LinkedIn users were partitioned randomly
into different buckets, and different random buckets of users were
presented with job recommendation results obtained using differ-
ent models, over a period of several weeks. The users in the con-
trol group were shown results obtained without using candidate
selection (our baseline model), while the treatment buckets corre-
sponded to different candidate selection models. Through these
online experiments, we compared different models (including the
one with no candidate selection) with respect to both efficiency and
effectiveness, as explained below.

6.2 Metrics
We used the following metrics for measuring the efficiency as

well as effectiveness of our system. We report these metrics rela-
tive to the baseline model (for business confidentiality reasons).

Efficiency metrics: We used LinkedIn’s internal online perfor-
mance monitoring tools to measure the query processing time (la-
tency) metric, which represents the time lag between a request to
the our system and the response back. We use 90th percentile la-
tency as the efficiency metric (the time taken to process a query is
less than this latency 90% of the time). Lower latency corresponds
to faster page load times for the users, and hence is desirable from
both business objective and user experience/engagement perspec-
tives.

Figure 3: Receiver operating characteristic (ROC) curve for
the candidate selection model.

Effectiveness metrics: We used both offline and online measures
to quantify the effectiveness (quality) of the candidate selection
models.

For offline evaluation, we computed the area under receiver oper-
ating characteristic curve (ROC AUC) and the area under precision-
recall curve (PR AUC), both of which represent the quality of the
candidate selection model (viewed as a binary classifier). The ROC
curve is obtained by plotting the true positive rate (recall) against
the false positive rate at various choices of the threshold, θ. The PR
curve is obtained by plotting the precision against the true positive
rate (recall) for various threshold choices.

For online evaluation, we computed the job application rate, which
is defined as the ratio of the number of job applications (number of
jobs applied to by users) to the number of job impressions (number
of jobs presented to users). Higher job application rate corresponds
to more relevant jobs being shown to users, and hence is desirable
from both business objective and user experience/engagement per-
spectives.

6.3 Effectiveness and Efficiency of Learned
Candidate Selection

We first present the results from offline analysis of the candidate
selection model, viewing it as a binary classifier (type 2 training
data approach is used for assigning positive and negative labels
– see §6.4). Figure 3 shows the receiver operating characteristic
(ROC) curve for the candidate selection model at various choices of
the threshold. We can observe that a recall of 0.85 can be achieved
with a false positive rate close to 0.65. Note that false positive rate
is not a significant concern since the false positives can be elimi-
nated as part of the scoring and ranking performed by the second
pass ranking model. Further, note that our goal is to retrieve the
top-k relevant results for each query, rather than to ensure high re-
call. For the online experiments, we selected four candidate selec-
tion models (varying just in the threshold) corresponding to recall
values of 0.85, 0.90, 0.95, and 0.99 respectively, along with the
baseline model with no candidate selection.

We measured the efficiency of the candidate selection models
with respect to online production traffic. To ensure fair compari-
son, we allocated the same fraction of users (randomly partitioned)

447

Figure 4: Effectiveness (recall) vs efficiency (relative 90th per-
centile latency).

to each of the five models above, so that each model is subject to
the same amount of live traffic load. Figure 4 shows the plot of
recall vs. 90th percentile latency for the four candidate selection
models, relative to those of the baseline model. The top right data
point (with relative recall and latency both equal to 1) represents
the baseline model. As we increase the threshold parameter of the
model, fewer documents are selected, thereby resulting in improved
query processing time (latency) but reduced recall. However, we
observe that the introduction of the candidate selection model with
(a threshold corresponding to) recall value of 0.99 reduces latency
by more than 20%. Choosing the models with recall values of 0.95
and 0.90 reduce latency by more than 25% and 30% respectively.
These results demonstrate the potential to significantly reduce la-
tency without sacrificing quality.

We next present the trade-off between effectiveness and effi-
ciency for the candidate selection models, focusing on the metrics
that directly impact user experience and business objectives. Fig-
ure 5 shows the plot of the job application rate vs. 90th percentile
latency for the four candidate selection models, relative to those of
the baseline model (the top right data point in the plot). We observe
that the best balance can be achieved by choosing the candidate se-
lection model that achieves more than 25% latency reduction with
less than 3% drop in the job application rate. Comparing Figures 4
and 5, we observe that a small reduction in (offline) recall does not
translate to as much drop in the (online) job application rate. On
the other hand, a more aggressive candidate selection model (with
slightly larger reduction in recall) has a disproportionately worse
job application rate when deployed online.

6.4 Effect of Varying Training Data and Choice
of Features

We experimented with two methods for generating training data
from the user-job interaction logs.

• Type 1. Jobs with clicks + random negatives

– Positive labels are assigned to (user u, job j) pairs where
user u clicked on job j.

Figure 5: Effectiveness (relative job application rate) vs effi-
ciency (relative 90th percentile latency).

– Negative labels are assigned to (user u, job j) pairs
where j is a randomly sampled job that was never shown
to u.

• Type 2. Job impressions + random negatives

– Positive labels are assigned to (user u, job j) pairs where
job j is part of the top recommendation results (referred
as “impressions”) shown to user u using the baseline
model.

– Negative labels are assigned to (user u, job j) pairs
where j is a randomly sampled job that was never shown
to u.

The intuition underlying type 1 training data is that we want to
directly optimize for retrieving jobs that users are more likely to
click. Type 2 training data is based on the premise that it is suf-
ficient to optimize for retrieving jobs that would be returned and
ranked at the top by the baseline model. The underlying assump-
tion is that this task should be easier than predicting jobs that will
get clicked, which would instead be taken care of by the more com-
plicated second pass scoring and ranking model.

Table 2 presents the effectiveness (in terms of ROC AUC and
PR AUC) of the models trained with Type 1 and Type 2 training
data respectively. We observed better performance using Type 2
training data compared to Type 1 training data (ROC AUC of 0.775
vs. 0.742). Type 2 training data approach also resulted in better
online A/B testing performance. Hence, we chose this approach
for reporting other experimental results, and also in the deployed
production system.

We also measured the impact of using only features with positive
coefficient weights in the candidate selection model. From the last
two rows in Table 2, we notice that the offline effectiveness (ROC
AUC) with this restriction is 0.775, compared to 0.812 when using
all features. However, this restriction is needed for the optimization
techniques performed by Galene as part of WAND query execution
(see §5.1).

448

Table 2: Dependence of candidate selection model performance on the training data and choice of features.
Method ROC AUC PR AUC

Type 1: Clicks + random negatives + only features with positive coefficients 0.742 0.927
Type 2: Impressions + random negatives + only features with positive coefficients 0.775 0.933

Type 2: Impressions + random negatives + all features with positive and negative coefficients 0.812 0.943

Figure 6: Efficiency (relative 90th percentile latency) vs relative
index size.

6.5 Effect of Varying Index Sizes and Traffic
Loads

We also investigated the scalability of our framework by vary-
ing index sizes and traffic loads and measuring the impact on the
efficiency (latency) in the online system. For these experiments,
we used the candidate selection model with (offline) recall value of
0.90.

Figure 6 shows the plot of relative latency vs. relative index
size. We observed roughly linear increase in latency as the index
size was increased (keeping other parameters such as the number of
machines and the traffic load fixed). Since the inverted index is dis-
tributed across multiple machines in our architecture, the problem
of growing index size can be mitigated by increasing the number of
searcher nodes.

Figure 7 presents the effect of increasing traffic load (QPS) on
latency. For both the baseline model (dashed blue line) and the can-
didate selection model (red line), we observed about 65% to 70%
increase in latency when QPS was doubled. In particular, the extent
of latency reduction for the candidate selection model compared to
the baseline remained about the same, demonstrating that the ef-
ficiency gain of our proposed framework is robust under different
traffic loads.

7. DEPLOYMENT LESSONS
We have deployed our candidate selection strategies as part of the

job recommendation system at LinkedIn. Deployment procedure
was incremental, where we rolled out the model in several steps to
a progressively larger proportion of LinkedIn users. As the amount
of traffic to our online system varies depending on the day of the
week (for example, relatively large traffic on Mondays compared to

Figure 7: Efficiency (relative 90th percentile latency) vs. rela-
tive QPS. Dashed blue line represents baseline, red line repre-
sents learned candidate selection model.

the weekends), we carefully monitored the load on the production
system upon any deployment changes and gradually increased the
traffic allocation on a weekly basis. We noticed that the freshness
of the data was very critical to the relevance quality of our system,
and hence scheduled major index updates to occur at least daily.

Our experience also highlights the crucial need to leave a certain
percent of traffic (e.g., 5%) served by the baseline model, which
has highest recall. This traffic allocation is needed to generate un-
biased training data for retraining and refreshing the candidate se-
lection model in the future. Otherwise, false negative results from
the current model will never be shown to users and hence cannot
serve as positive examples during future model training.

During deployment, we also measured the quality of retrieved re-
sults in different user segments. A large fraction of the requests for
job recommendations comes from active job seekers on LinkedIn.
Typically such users tend to have richer and more complete profiles.
As a result, the constructed Galene query associated with an active
user typically is longer, and consists of Boolean clauses over a sig-
nificantly large number of literals (item field/value pairs). As dis-
cussed in §6, our candidate selection query model favorably helped
to serve job recommendations to active users with reduced latency,
without sacrificing the quality of the results. At the same time,
there are also users on LinkedIn with relatively less rich and com-
plete profiles, for whom we need to serve job recommendations.
During initial stages of deployment, we noticed that lesser num-
ber of job documents were retrieved for users with lower profile
completion when the learned candidate selection model was used,
thereby potentially resulting in lower quality of recommendations.
Towards better understanding and quantification of this issue, we
compared the number of users that are served job recommendation

449

Figure 8: Dependency of ratio of number of users served on
profile completeness score.

results with and without learned candidate selection models as a
function of a score indicating the extent of richness/completion of
a user’s profile (‘profile completeness score’). More precisely, for
each score value, we computed the ratio of (1) the fraction of users
within a narrow range of this score that are being served job rec-
ommendations using candidate selection model to (2) the fraction
of users within a narrow range of this score that are being served
job recommendations without candidate selection model. In Fig-
ure 8, the X-axis denotes the ‘profile completeness score’ and the
Y-axis denotes the above ratio. We observe that for users with rela-
tively low profile completeness score, the candidate selection based
model resulted in a reduced chance of getting a full set of job rec-
ommendations (represented as the region where the red line is be-
low the dashed blue line). An explanation is that our initial model
was trained with data mostly from active users with relatively high
profile completeness score.

Our solution to address this problem was to target users differ-
ently depending on their profile completeness score, by using dif-
ferent candidate selection models and/or lowering threshold for the
candidate selection model, and in particular, to train a less strict
candidate selection model for users with low profile completeness
scores.

8. CONCLUSION
Motivated by the requirements of real-time personalized search

and recommendation systems at LinkedIn, we studied the problem
of building candidate selection models over structured queries and
documents. We proposed CaSMoS, a machine learned candidate
selection framework that makes use of Weighted AND (WAND)
query. We developed and deployed our framework as part of the
production system that powers LinkedIn’s job recommendation en-
gine, resulting in significant reduction in latency (up to 25%) with-
out sacrificing the quality of the retrieved results. We showed the
efficacy of the proposed framework through extensive experiments
on real datasets using offline metrics as well as online A/B test-
ing evaluation. We also presented the design decisions and trade-
offs faced while building and evaluating our framework, and high-

lighted the lessons learned through the production deployment of
our system.

9. ACKNOWLEDGMENTS
The authors would like to thank Parul Jain, Kaushik Rangadurai,

and Lance Wall for their help in the implementation and deploy-
ment of our system as part of LinkedIn’s job recommendation en-
gine, and David Hardtke and Liang Zhang for insightful feedback.

10. REFERENCES
[1] Apache Kafka. http://kafka.apache.org/.
[2] G. Adomavicius and A. Tuzhilin. Context-aware

recommender systems. In Recommender systems handbook.
Springer, 2015.

[3] E. Al Mashagba, F. Al Mashagba, and M. O. Nassar. Query
optimization using genetic algorithms in the vector space
model. International Journal of Computer Science Issues
(IJCSI), 8(5), 2011.

[4] A. Anagnostopoulos, A. Z. Broder, and K. Punera. Effective
and efficient classification on a search-engine model. In
CIKM, 2006.

[5] Y. Aphinyanaphongs and C. Aliferis. Learning Boolean
queries for article quality filtering. In MEDINFO, 2004.

[6] N. Asadi and J. Lin. Effectiveness/efficiency tradeoffs for
candidate generation in multi-stage retrieval architectures. In
SIGIR, 2013.

[7] M. Bazire and P. Brézillon. Understanding context before
using it. In CONTEXT, 2005.

[8] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive
blocking: Learning to scale up record linkage. In ICDM,
2006.

[9] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level retrieval
process. In CIKM, 2003.

[10] S. Chaudhuri. An overview of query optimization in
relational systems. In PODS, 1998.

[11] P. Dourish. What we talk about when we talk about context.
Personal and ubiquitous computing, 8(1), 2004.

[12] G. W. Flake, E. J. Glover, S. Lawrence, and C. L. Giles.
Extracting query modifications from nonlinear SVMs. In
WWW, 2002.

[13] J.-T. Horng and C.-C. Yeh. Applying genetic algorithms to
query optimization in document retrieval. Information
processing & management, 36(5), 2000.

[14] N. McNeill, H. Kardes, and A. Borthwick. Dynamic record
blocking: Efficient linking of massive databases in
MapReduce. In QDB, 2012.

[15] S. Sriram and A. Makhani. LinkedIn’s Galene Search engine,
2014. https:
//engineering.linkedin.com/search/did-you-mean-galene.

[16] N. Tonellotto, C. Macdonald, and I. Ounis. Efficient and
effective retrieval using selective pruning. In WSDM, 2013.

[17] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin.
From infrastructure to culture: A/B testing challenges in
large scale social networks. In KDD, 2015.

450

