
State Coverage: A Structural Test Adequacy Criterion for
Behavior Checking

Ken Koster
kenk@agitar.com

David C. Kao
dvk@agitar.com

Agitar Software Laboratories
450 National Avenue

Mountain View, California 94043

ABSTRACT
We propose a new language-independent, structural test ad-
equacy criterion called state coverage. State coverage mea-
sures whether unit-level tests check the outputs and side
effects of a program.

State coverage differs in several respects from existing test
adequacy criteria, such as code coverage and mutation ade-
quacy. Unlike other coverage-based criteria, state coverage
measures the extent of checks of program behavior. And un-
like existing fault-based criteria such as mutation adequacy,
state coverage has been designed to be readily automated
and to present users with easily understood test inadequacy
reports.

An experiment showed strong positive correlations between
the number of behavior checks and both state coverage and
mutation adequacy.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging–testing tools; D.2.8
[Software Engineering]:Metrics

General Terms: Measurement, Reliability

Keywords: Coverage, fault-based, mutation testing, state
coverage, structural testing, test adequacy criteria, unit test-
ing

1. INTRODUCTION
How thoroughly tested is a program? This is the main

question that test adequacy criteria attempt to answer. Each
criterion answers this question differently according to how
it measures program “size” and how much of that size is
evaluated by a test. For instance, branch coverage measures
a program by the number of branches it contains and informs
users which of those branches were not taken during test
execution. State coverage, the test adequacy criterion we
propose in this paper, evaluates tests according to behavior
checking; it measures a program by the number of statements
that define output and side effect variables and judges tests
according to whether they check those variables.

The example JUnit1 test below, testAbsWithoutCheck

does not check program behavior automatically. Human in-
tervention is required to examine the output of the test to
verify the correctness of the behavior of the program. The
implementation of abs could be replaced by any compiling

Copyright is held by the author/owner(s).
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
ACM 978-1-59593-811-4/07/0009.

code that terminates normally without causing the test to
fail. Adding the assertion statement assertEquals(4, x)

is one possible way to have testAbsWithoutCheck check the
return value – and thus the behavior – of abs.

int abs(int n) {

if (n < 0)

return n * -1;

else

return n;

}

public void testAbsWithoutCheck() {

int x = abs(-4);

System.out.println("abs(-4):" + x);

}

State coverage detects such missing checks of behavior,
reporting which program statements set unchecked outputs
or side effects. (In the abs example, the return statements
of abs require checks.) By reporting test inadequacies in
terms of statements, statement coverage reports have been
designed to be as easy to understand and as intuitive a metric
as statement/branch coverage.

2. EXISTING ADEQUACY CRITERIA
Most of the various test adequacy criteria studied by the

research community are impractical. Recent surveys have
found that few development projects – on the order of 25%
– use even the most basic of structural test criteria, state-
ment/branch code coverage; the use of other criteria is close
to non-existent [8, 12, 14]. Although some cite cost as the
major factor preventing adoption [16], the difficulty of under-
standing and using adequacy criteria is likely of comparable
importance.

Zhu et al. categorize test adequacy criteria into three main
categories: structural, error-based, and fault-based [16]. The
criteria of these categories measure program size along dis-
tinct dimensions: structural criteria measure a program’s
size by its number of control-flow or data-flow structures
[11]; error-based criteria measure the number of functionally
equivalent subdomains of a program’s input space; fault-
based criteria (of which mutation testing is the most widely

1http://junit.org

studied and used) measure the number of “close” variants of
the program under test [4, 6].

Of these three categories of adequacy criteria, only fault-
based criteria consider whether tests check behavior; struc-
tural and error-based criteria relate only what portion of
a program’s structures or input spaces have been tested.
Structural data-flow criteria determine which variable def-
initions end up being used, and output-influencing-All-du
(OI-All-du) in particular determines which variable defini-
tions do not contribute to the output of a program; still,
this is different from checking whether tests check outputs
[11, 5].

Compared to structural criteria, mutation testing is diffi-
cult to automate and relatively difficult to use. The deter-
mination of whether a mutant is equivalent to the original
program is an undecidable problem requiring human inter-
vention. A live mutant also requires much more thought to
understand than an uncovered statement or an unevaluated
expression; each live mutant is a different program the user
must analyze to understand why a test did not fail. Mutants
may not halt, further complicating automation.

Not surprisingly, these difficulties stymie the adoption of
fault-based adequacy criteria. For the small portion of projects
that use test adequacy criteria, the consequent reliance on
structural and error-based criteria opens a behavior check-
ing test adequacy gap. State coverage is designed to fill this
gap. It aims to report inadequacies similar to those of ex-
isting fault-based criteria, but for the low cost and effort of
structural criteria.

3. STATE COVERAGE DEFINITION

3.1 Matching Checks to Definitions
A program, at its most basic, takes in inputs, processes

them, and either terminates with some output or runs indef-
initely. A test runs a program and checks that the program’s
outputs are correct if/when the program terminates.

State coverage determines which of a program’s outputs
are checked by a test and which are not. (This is different
from checking whether the tests’ checks are correct, which
is known as the oracle problem.) State coverage considers
all outputs which are available to the test as variables; it
considers the state of memory at the time that checks are
evaluated, but it does not consider outputs to files, network
sockets, or other types of I/O.

Clearly, a faulty variable definition would never be de-
tected if it was never used. This is part of the justification
for data-flow based adequacy criteria. However, we are con-
cerned not only with whether the value of the assignment is
used by the program, but whether it is checked by a test.

We first define what we mean by a program output, then
define what it means to cover the statement that defined
that output. We assume the following test structure:

1. The test code initializes state to satisfy preconditions
of the test case and the code under test (CUT).

2. The CUT is executed by the test code, “stimulating”
the test.

3. Outputs are checked by the test code.

CUT

Test Start

Test End

Figure 1: Control-Flow Graph of Test and CUT

The popular xUnit frameworks formalize these phases of the
test life-cycle, referring to them as Fixture initialization,
Test Case execution, and Checks [2]. These stages corre-
spond to the three elements of a Hoare triple {P}S{Q},
where P is a set of preconditions, S is a set of statements,
and Q is a set of predicates that should be true after S has
executed subject to P [7].

At this point, it will be useful to refer to the program
control flow graph (CFG) of the test and CUT, in which
each statement or control predicate corresponds to a node,
and each possible flow of control from one node to another is
represented by an edge. Since the test executes the CUT, the
test and CUT together form a single CFG, with the CUT
CFG a subgraph of the whole CFG (see Figure 1). With
respect to a CFG, DEF (i) is the set of variables defined at
node i, and REF (i) is the set of variables node i references.

Definition 1. Let T be a test of code under test CUT .
Let nt be the first node executed in T after the last node
executed in CUT . Let nd ∈ CUT and x ∈ DEF (nd). If
test T executes a path free of definitions of x from nd to nt,
and x is still a defined variable at nt, then x is said to be
an output of < T, CUT > and nd is said to be an output-
defining node of x.

The set of variables X that are outputs of CUT subject to
T are the outputs that state coverage will require T to check.
If T checks all of the outputs X, then T will provide full state
coverage. The requirement that x be a defined variable at
nt excludes local variables of functions, de-allocated memory,
and all other temporary state from the output set. It does
not, however, exclude variables that might not be visible
from test scope, such as the private members of an object.

State coverage presumes the use of a standard construct
to check the value of an output, such as a built-in language

assertion feature or constructs defined by an xUnit frame-
work. State coverage is, however, construct-independent; it
assumes the use of some construct for checking outputs but
does not mandate the construct itself. We shall adopt the
xUnit term for such constructs and refer to them as checks.

There are several possible ways that an output x might
be checked by a check c. The simplest way is for c to use x
directly, as in the example check of testAbsDirectly (where
c is the assertEquals call and x is the return value of abs).

public void testAbsDirectly() {

assertEquals(5, abs(-5));

}

The variable might also be checked indirectly. There might
exist, for instance, a variable y that is somehow derived from
x. Since state coverage is concerned with detecting outputs
that go completely unchecked, state coverage shall consider
a check of y to also be a check of x, as in the example
testAbsIndirectly.

public void testAbsIndirectly() {

boolean y = abs(-5) > 0;

assertTrue(y);

}

We shall consider the statement that defines a variable x
to be covered if the value of x or any variable derived from
x is used by a check. The state coverage percentage of a test
is the number of covered output-defining nodes divided by
the total number of output-defining nodes. State coverage
is not defined for programs without outputs.

3.2 Calculating State Coverage
We can determine which statements – and by implication,

which variable definitions – affected the value used by a check
in a particular test via program slicing [15]. A program slice
is the subset of a program that has affected the value of a
variable at some point in program execution. This point
is known as a slicing criterion, and consists of variables,
statements, and possibly program inputs of interest.

Program slicing was originally defined by Weiser to aid
in program debugging and comprehension [15]. Among test
adequacy criteria, slicing is used by OI-All-du to determine
which evaluated D-U pairs also influence output [5].

The numerous variations on Weiser’s original definition are
split between those that rely on compile-time information
(static program slicing) to extract slices and those that also
incorporate run-time information (dynamic program slicing)
[13]. While the slicing criterion used for static state coverage
is the tuple <variable(s), statement>, a dynamic slicing cri-
terion also includes the input used for execution and consists
of the triple <variable(s), statement, input(s)>. Since tests
specify inputs during the Fixture initialization stage, state
coverage can be based on either dynamic or static slicing.

State coverage based on dynamic slicing (dynamic state
coverage) will be more accurate than static slicing for partic-
ular program executions, especially for code that uses point-
ers, arrays, or dynamic dispatch. Because static slicing does
not consider program input, static state coverage would not
be able to report the adequacy of test checks with respect

to the inputs specified by the test. Two tests with the same
syntactic structure, differing only in the inputs provided to
the program, would always have the same static state cover-
age even though their dynamic state coverage could totally
diverge. However, static state coverage does offer one advan-
tage uncommon among test adequacy criteria: it does not
require tests to be executed.

We offer the following definition of dynamic state coverage.
The definition of static state coverage differs only in that the
slicing criterion does not consider the inputs I.

Definition 2. Let nd be the output-defining node of vari-
able x of CUT and T . Let c be a check of T , let I be the
inputs to CUT specified by T , and let X = REF (c). Let S be
the program slice of CUT with slicing criterion < X, c, I >.
The variable x and its output-defining node nd are covered
if and only if nd ∈ S.

According to the state coverage definition, it is not neces-
sary for x ∈ X for nd to be covered (i.e. the variable x may
be used indirectly by the check c). However, it follows as a
corollary that if x ∈ X, then nd ∈ S and nd is covered.

3.3 Test Suite State Coverage
As defined above, state coverage measures the extent of

behavior checking of a single test. The naive strategy to
combine state coverage percentage from multiple tests in a
suite calculates a weighted mean between all tests’ state cov-
erage percentages. This would result in a pessimistic state
coverage metric, since it would require every test to cover
every one of its output-defining nodes.

Definition 3. Let Ni be the set of output-defining nodes
of CUT subject to test ti, and Vi be the set of covered output-
defining nodes of CUT subject to test ti. The pessimistic
state coverage of test suite T isP

|Vi|P
|Ni|

Especially among test-driven developers, it is considered
good practice to write unit tests with small to medium scope
[3]. Some even advocate writing tests to have exactly one
check each [1]. Pessimistic state coverage percentages for
suites composed of many small-granularity tests would be
artificially low.

A more optimistic state coverage calculation would require
each output-defining node to be covered by at least one test.
Considering output-defining nodes per suite rather than per
test has the advantage of rendering the state coverage cal-
culation insensitive to test suite style.

Definition 4. Let Ni be the set of output-defining nodes
of CUT subject to test ti, and Vi be the set of covered output-
defining nodes of CUT subject to test ti. The optimistic
state coverage of test suite T is

| ∪ Vi|
| ∪ Ni|

4. PRELIMINARY EVALUATION
We performed an experiment comparing mutation ade-

quacy to state coverage statistics. We hypothesized that
since both mutation testing and state coverage measure the
extent of behavior checking, the two metrics would positively
correlate to the number of checks in a test suite.

4.1 Experimental Design
We used version 1.0 of the open source Apache Jakarta

Commons Lang2 library as a test subject. This library of
helper utilities for core Java classes consists of 26 top-level
classes and 1718 lines of code. Its 309 test methods provide
74.5% statement/condition code coverage and 1607 checks.

We reduced the number of checks in the library’s test suite
at each stage of the experiment by randomly and cumula-
tively deactivating 40 to 50 of the suite’s checks. After each
round, we re-calculated the suite’s optimistic state coverage
statistic and the suite’s mutation adequacy.

The Indus Java Program Slicer [10], a static slicer, was
used to calculate the slices using the remaining active checks
as slicing criteria. The line numbers of these slices were
intersected with the line numbers of output-defining nodes
to determine the state coverage score.

Mutation adequacy was calculated using muJava [9]. Ex-
cept for interfaces and abstract classes, all classes were mu-
tated with the full set of class-level and method-level mutator
operations.

0 500 1000 1500

0.
65

0.
70

0.
75

0.
80

Checks

A
de

qu
ac

y
pe

rc
en

ta
ge

State Coverage
Mutation Adequacy

Figure 2: Commons Lang State Coverage and Mu-
tation Adequacy at Varying Numbers of Checks

4.2 Experiment Results
Figure 2 shows the observed relationship between state

coverage, mutation adequacy, and the number of checks in
the Commons Lang test suite. As hypothesized, both state
coverage and mutation adequacy were strongly positively
correlated with the number of checks. For 25 to 1607 checks,
the correlation coefficient (ρ) between the number of checks
and state coverage was 0.88; between the number of checks
and mutation adequacy it was 0.97. Sensitivity to checks
was more consistent for mutation testing across the whole
range of checks. State coverage responded more consistently
to lower numbers of checks, with a 0.96 correlation coeffi-
cient to the number of checks for stages with less than 500
2http://jakarta.apache.org/commons/lang

checks. This can probably be attributed to the use of static
slicing. Numerous tests in the suite have duplicate call se-
quences differing only in input values; static state coverage
is affected only by removing the last of those tests, a more
likely scenario in the later stages of check deactivation.

5. CONCLUSIONS AND FUTURE WORK
State coverage holds promise to provide software projects

with a practical adequacy criterion for checks of behavior.
Our experiences running the experiment of Section 4 con-
firmed our beliefs that state coverage would require less hu-
man intervention than mutation testing, yet still provide
comparable feedback on the quality of test behavior checks.
Although state coverage was less sensitive to behavior checks
than mutation testing, state coverage did not report false
positives. We believe that dynamic state coverage should
improve on the results of static state coverage, approaching
the behavior checking capabilities of mutation testing. More
work is required to explore dynamic state coverage, as well as
to validate state coverage against larger, more representative
projects.

6. ACKNOWLEDGMENTS
Venkatesh Prasad Ranganath provided invaluable help with

the Indus program slicer. We also thank the numerous Agi-
tar Software colleagues who provided feedback on this work.

7. REFERENCES
[1] D. Astels. One assertion per test.

http://www.artima.com/weblogs/viewpost.jsp?thread=35578.

[2] K. Beck. Kent Beck’s Guide to Better Smalltalk. Cambridge
University Press, 1998.

[3] T. Burns. Effective unit testing. ACM Ubiquity, 1(42), 2001.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. IEEE
Computer, 11(4), April 1978.

[5] E. Duesterwald, R. Gupta, and M. L. Soffa. Rigorous data flow
testing through output influences. In Second Irvine Software
Symposium, 1992.

[6] R. G. Hamlet. Testing programs with the aid of a compiler.
IEEE Trans. Softw. Eng., 3(4), July 1977.

[7] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[8] D. Hyland-Wood and D. Carrington. 2006 software engineering
practices survey summary of results. Technical report, The
University of Queensland, 2007. http://www.itee.uq.edu.au/
˜dwood/2006SEPSurvey/2006SEPSurveyResults.html.

[9] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava : An automated
class mutation system. Software Testing, Verification and
Reliability, 15(2):97–133, June 2005.

[10] V. P. Ranganath and J. Hatcliff. Slicing concurrent Java
programs using Indus and Kaveri, 2005.
http://people.cis.ksu.edu/˜rvprasad/publications/sttt05-
submission.pdf

[11] S. Rapps and E. Weyuker. Selecting software test data using
data flow information. IEEE Trans. Softw. Eng.,
11(4):367–375, 1985.

[12] P. Runeson. A survey of unit testing practices. IEEE Software,
23(4):22–29, 2006.

[13] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3:121–189, 1995.

[14] R. Torkar and S. Mankefors. A survey on testing and reuse. In
Proceedings of the 2003 IEEE International Conference on
Software-Science, Technology & Engineering, 2003.

[15] M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering, 1981.

[16] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Computing Surveys,
29(4):366–427, 1997.

