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ABSTRACT
In this paper, we describe an approach for identifying
‘pathways’ from gene expression and protein interaction
data. Our approach is based on the assumption that many
pathways exhibit two properties: their genes exhibit a
similar gene expression profile, and the protein products
of the genes often interact. Our approach is based
on a unified probabilistic model, which is learned from
the data using the EM algorithm. We present results
on two Saccharomyces cerevisiae gene expression data
sets, combined with a binary protein interaction data
set. Our results show that our approach is much more
successful than other approaches at discovering both
coherent functional groups and entire protein complexes.
Contact: eran@cs.stanford.edu
Keywords: probabilistic models, protein interaction, gene
expression.

INTRODUCTION
Cellular processes are carried out through interactions
among many genes and gene products. This activity
is often organized into pathways: sets of genes that
coordinate to achieve a specific task. Revealing this
organization is crucial to obtaining a coherent global
picture of cellular activity.

Recent technological advances enable us to extract
many different types of genomic data, including: DNA se-
quences, gene expression measurements, protein-protein
interactions, and DNA binding data. These data provide
us for the first time with the means to get at the modular
organization of the cell on a genome wide scale. Indeed,
much recent work has been devoted to the analysis of
these data for this purpose. However, most of this work
has been devoted to the analysis of a single type of data,
using other types of data only for validation. In this
paper, we propose an integrated approach that attempts
to discover pathways using both gene expression and
protein-protein interaction data.

Our approach is based on the assumption that many
pathways exhibit two properties. First, genes in the same
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pathway are activated together, and thus exhibit similar
gene expression profiles. Second, when genes coordinate
to achieve a particular task, their protein products often
interact. The asssumption that many pathways exhibit both
properties is supported by the work of Ge et al. (2001),
that showed that genes with similar expression profiles
are more likely to encode interacting proteins, and by the
study of Jansen et al. (2002), which showed that the genes
of experimentally derived protein complexes are often co-
expressed.

Based on this assumption, our approach searches for
sets of genes that have a similar expression profile, and
a significant fraction of protein-protein interactions in the
DIP binary interaction data set (Xenarios et al., 2000).
This unified approach has advantages over approaches
that use only a single type of data. For example, many
analyses use clustering to construct groups of genes that
have similar expression profiles (e.g. Alon et al., 1999;
Eisen et al., 1998). However, it is often hard to conclude
that the resulting clusters actually correspond to pathways,
both because the data is very noisy (e.g. due to cross
hybridization or low mRNA levels), and because similarity
of expression profiles is only a weak indicator for the
fact that two genes participate in the same pathway.
Conversely, we can try to detect pathways by looking for
groups of genes that contain many pairs of interacting
genes. Once again, the reliability of these methods is
low, both because the data is noisy, and because many
gene products interact even when they are not part of the
same pathway. For example, in the DIP binary interaction
database (Xenarios et al., 2000), 3527 genes form a single
huge connected component.

We propose an approach that combines both types
of data within a single probabilistic model, based on
the framework of probabilistic graphical models (Pearl,
1988). Our approach aims to detect groups of genes
that are co-expressed, and whose products interact in
the protein interaction data. Specifically, we define a
probabilistic model where genes are partitioned into
‘pathways’. The likelihood of the data is higher when
genes in the same pathway have the same expression
profile; it is also higher when genes that interact are in
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Fig. 1. Schematic flow diagram of our proposed method. The pre-processing step includes selecting the input gene expression and protein
interaction data. The model is then trained using EM until convergence, and the resulting assignments of genes to pathways are then analyzed.

the same pathway. The outline of our method is shown
in Figure 1. Starting from an input gene expression and
protein interaction data, we first cluster the expression
data, and create one cluster, or pathway, from each of
the resulting clusters. These clusters serve to initialize
the probabilistic model. The model is then trained to
maximize the likelihood of the data, using the expectation
maximization (EM) algorithm (Dempster et al., 1977).
Finally, we evaluate the biological performance of the
model using external data sources that were not given as
input to the model.

We evaluated the ability of our method to extract path-
ways from two different datasets of gene expression mea-
surements combined with one binary protein interaction
dataset. A comparison of our method to methods that use
either the expression data or the protein interaction data
alone shows that our inferred pathways correspond much
better to known functional groups and protein complexes,
both of which were not given as input to any of the meth-
ods.

PROBABILISTIC MODEL
In this section, we present our unified probabilistic model
over gene expression and protein interaction data. Our
model, which is based on the framework of relational
Markov networks (Taskar et al., 2002), defines a distri-
bution over a set of genes G = {g1, . . . , gn}. We assume
that each gene g belongs to precisely one of k pathways,
denoted g.C ∈ {1, . . . , k}. The variables gi .C are latent
(or hidden) variables, and determining their values is one

of the main goals of our algorithm. The model then has
two components: one that models the expression data, and
another that models the protein interaction data. The two
easily combine to provide a single unified model.

Gene expression model We use the simple Naive Bayes
model for the gene expression component. In this ap-
proach, the instances are divided into disjoint classes,
each of which is associated with a distribution over the
attributes of the instances. The attributes are assumed to
be conditionally independent given the class. Although
this independence assumption is often unrealistic, this
model has proven to be robust and effective for clustering
in many applications (Cheeseman and Stutz, 1995; Duda
et al., 2000).

In our setting, the instances are the genes g1, . . . , gn ,
and the class of gi is simply the pathway to which
it belongs. Each instance g has m continuous-valued
attributes g.E = {g.E1, . . . , g.Em}, where g.E j rep-
resents the mRNA expression level measured for the
gene in experiment j . The naive Bayes model defines a
distribution:

P(g.C, g.E1, . . . , g.Em) = P(g.C)

m∏
j=1

P(g.E j | g.C).

The random variable g.C is distributed as a multi-
nomial distribution, parameterized by the vector
θC = {θ1, . . . , θk}, where P(g.C = p) = θp; thus, each
0 ≤ θp ≤ 1 and

∑k
p=1 θp = 1. We model each condi-

tional probability distribution (CPD) P(g.E j | g.C = p)

i265



E.Segal et al.

g.C

g.E1 g.E2 g.E3

P(g. E | g.C)g. C

1

2

3

0

0

0
CPD 1

CPD 2 CPD 3

P
(g

.C
)

g. C
1 2 3

0

1

g2.C

g1.C

g3.C

g4.C

φφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφ(g.C,g.C)
g .C g .C

1
2
3
1
2
3
1
2
3

1
1
1
2
2
2
3
3
3

αααα1 φφφφ(g.C)
g. C

1
2
3

g1.C

g2.C

g3.C

g4.C

g1.E1 g1.E2 g1.E3

g2.E1 g2.E2 g2.E3

g3.E1 g3.E2 g3.E3

g4.E1 g4.E2 g4.E3

P(g. E | g.C)g. C

1

2

3

00

0

0

CPD 1

P
(g

.C
)

g. C
1 2 3

0

1

φφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφ(g.C,g.C )

g .C g .C
αααααααααααααααααααααααααααααααααααααα

1
2
3
1
2
3
1
2
3

1
1
1
2
2
2
3
3
3

(a) (b) (c)

Fig. 2. (a) Naive Bayes model over 3 classes, for an expression data set with 3 expression measurements for each gene. A multinomial
distribution is associated with g.C (shown as a histogram). For each class g.C , each experiment is associated with a Gaussian CPD (shown
in CPD 1). (b) Protein interaction model for a dataset with 4 genes in which the interactions are between: g1 and g2; g2 and g3; g2 and g4;
and g3 and g4. Shown is the resulting Markov network, with its two types of potentials: φi (gi .C) and φe(gi .C, g j .C). (c) Resulting unified
partially-directed model.

using the Gaussian distribution N (µpj , σ
2
pj ). An illustra-

tion of the Naive Bayes model is given in Figure 2a. In a
pure Naive Bayes model, the data consists of n instances
(genes), each of which is sampled from this distribution.

Protein interaction model Our probabilistic model for
protein interaction data is based on our assumption that
interacting proteins are more likely to be in the same
pathway. Thus, if we observe a protein-protein interaction
between the protein products of two genes, the genes
are likely to belong to the same pathway. To model this
assumption, we use the framework of Markov networks
or Markov random fields (Kindeman and Snell, 1980),
very common in statistical physics, e.g. to represent
correlations between spins of neighboring electrons.

For our purposes, it suffices to define binary Markov
networks. Let V = {V1, . . . , Vn} be a set of discrete ran-
dom variables. A binary Markov network over V defines a
joint distribution P(V) as follows. The network is defined
via an undirected graph whose nodes correspond to vari-
ables in V and whose edges E represent direct probabilis-
tic interaction between those variables. Each variable Vi
is associated with a potential φi (Vi ). Each edge [Vi —Vj ]
is associated with a non-negative compatibility potential
φi, j (Vi , Vj ). The joint distribution is then defined as

P(V1, . . . , Vn) = 1

Z

n∏
i=1

φi (Vi )
∏

[Vi —Vj ]∈E
φi, j (Vi , Vj ),

where Z is a normalizing constant defined so as to make
the distribution sum to 1. Intuitively, φi (Vi ) encodes how
likely the different values of Vi are, ignoring interactions
between the variables. For an assignment vi , v j to Vi , Vj ,
the value φi, j (vi , v j ) specifies how ‘compatible’ the

assignment vi , v j is: the higher the value, the more likely
this pair of values is to appear together.

In the protein interaction setting, as in the work
of Taskar et al. (2002), the variables are the classes of
the instances in the data, and the edges are defined by
relationships between them. Furthermore, parameters are
shared across instances, so that we only have potentials
φ1(Vi ) and φ2(Vi , Vj ). In our context, the variables
V are the pathway assignments g1.C, . . . , gn.C of the
genes in G, and the edges correspond to protein-protein
interactions observed in our data set. Intuitively, an edge
between gi and g j captures our basic intuition that, if gi
and g j interact, they are more likely to be in the same
pathway. Thus, we define the compatibility potential
φ2(gi .C = p, g j .C = q) such that the compatibility
value for p = q is greater than the value for p �= q. Since
we do not assume any patterns over the distribution of
interactions, we set all entries in which p = q to the same
value. Similarly, all entries in which p �= q are set to the
same value. Due to the normalization of the distribution,
what matters is only the relative magnitude of these two
values. Thus, we can parameterize the interaction model
using a single parameter, α, such that for all [gi —g j ] ∈ E :

φ2(gi .C = p, g j .C = q) =
{

α p = q
1 otherwise

(1)

We require that α ≥ 1. Note that when α = 1, these
potentials have no effect on the distribution defined. The
larger the value of α, the greater the induced distribution
will be peaked around assignments in which genes that
interact also belong to the same pathway. A simple
example of the protein interaction model is given in
Figure 2b.
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Given a database of protein interactions which defines
the set of edges E , and the parameterizations for φ1
and φ2, the Markov network defines a joint distribution
P(g1.C, . . . , gn.C) over assignments of genes to path-
ways. It is important to note that the assignments of
different genes to pathways are not independent in this
distribution: The model deliberately correlates the as-
signments of related genes. As a consequence, we cannot
compute separately the pathway assignment of a single
gene, and are forced to consider the distribution over
the gene set as a whole. Unfortunately, this distribution
is over an exponentially large space, so manipulating it
exactly is intractable. We address this issue in the next
section.

We note that the model we propose for protein interac-
tion cannot stand by itself, as the assignment that maxi-
mizes the joint likelihood is degenerate: all genes are as-
signed to the same pathway. However, in our unified model
that combines the protein interaction model with the ex-
pression model, this degenerate assignment is no longer
the most likely.

Unified model Our unified model integrates the models
of the two subsections above. This combination can be
performed very naturally, using the pathway variables
gi .C , that are common to both models. The distribution
P(gi .C) used in the expression model can be used as the
potential φ1(gi .C) in the interaction model. The remaining
parameters—P(gi .E j | gi .C) in the expression model and
φ2(gi .C, g j .C) in the interaction model—do not conflict
and can be placed in the same model.

The combined model is thus a partially-directed graph-
ical model, with m + 1 random variables for each gene
gi : the pathway assignment gi .C , and the expression
values gi .E1, . . . , gi .Em . The variable gi .C is associ-
ated with a multinomial distribution with parameters
θC = {θC1, . . . , θCk}. The CPD P(g.E j | g.C = p)

is a Gaussian distribution N (µpj , σ
2
pj ). Finally, each

pair of genes gi , g j that interact are connected by an
undirected edge, and associated with a compatibility
potential φ2(gi .C, g j .C), parameterized by a single α

parameter as in Equation 1.
A simple example of this combined model is given in

Figure 2c. The resulting combined model defines a joint
distribution over the entire set of random variables, as
follows:

P(G.C, G.E | E) =
1

Z

(
n∏

i=1

P(gi .C)

m∏
j=1

P(gi .E j | gi .C)

)
·


 ∏

[gi —g j ]∈E
φ2(gi .C, g j .C)


 (2)

where Z is a normalizing constant that ensures that P
sums to 1, and E represents all binary interactions that
exist between genes in our data.

LEARNING THE MODEL
In the previous section we presented our unified model for
expression and interaction data. In this section, we show
how the parameters of this model are learned from data.
Importantly, the pathway assignment variables gi .C are
hidden, and are learned from data at the same time as the
parameters.

Let G be a set of genes, and assume that we are given
a dataset D that contains: for each gene gi , an expres-
sion profile gi .E; and a set of binary interactions E be-
tween pairs of genes gi , g j . Our goal is to learn the model
parameters �, which consist of: the multinomial θ over
pathway assignments, and the means and standard devi-
ations of each of the k Gaussian distributions associated
with each of the k · m CPDs P(g.Ei | g.C = p). Recall
that the potentials over pairs of interacting genes are spec-
ified by a single α parameter. Here, we assume that α is
given and do not consider estimating its value; we discuss
the choice of α in the results section.

A standard approach is to find the maximum likelihood
(ML) parameters: the parameters �̂ that maximize the
likelihood P(D | �). If we had a complete assignment
to all the pathway variables, G.C , then the likelihood
function would have a unique global maximum, and
the ML parameters could be found easily by computing
the appropriate sufficient statistics. Specifically, for the
pathway variables, the sufficient statistics are simply the
frequencies of the different pathways: Np = the number
of genes assigned to pathway p. For the expression CPD
P(g.E j | g.C = p), the sufficient statistics are the
first and second moments of the empirical distribution:
χ1

pj = ∑n
{i : g.C=p} gi .e j and χ2

pj = ∑n
{i : g.C=p} gi .e2

j ,
where gi .e j is the expression value of gene i in experiment
j .

Unfortunately, our case, of incomplete data, is substan-
tially more complex. In this case, the likelihood function
has multiple local maxima, and no general method exists
for finding the global maximum. The Expectation Maxi-
mization (EM) algorithm (Dempster et al., 1977), provides
an approach for finding a local maximum of the likelihood
function. Starting from an initial guess �(0) for the param-
eters, EM iterates two steps: an E-step and an M-step. The
steps are iterated until convergence.

The E-step uses the current estimate of the parameters
to compute the distribution over the hidden variables
given the observed data. In our case, we compute
P(G.C | D, �(t−1)). To compute this distribution, we
must run inference over the entire partially-directed
graphical model defined in Equation 2 and illustrated in
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Fig. 3. (a,b) Performance as a function of the potential parameter α. For protein interactions: fraction of all interactions in DIP that are
between genes in the same pathway. For expression coherence: average Pearson correlation between pairs of genes in the same pathway.
α = 1 corresponds to a standard expression clustering model. (a) stress data; (b) cell cycle data. (c) Comparison of expression coherence of
MCL clusters (measured as average Pearson correlation between pairs of genes in the same cluster) to our inferred pathways, where clusters
were sorted by expression coherence.

Figure 2c. As we discussed, the interactions correlate
the random variables associated with the different genes.
When the interaction network is nontrivial, exact infer-
ence over this model is intractable. Instead, we use belief
propagation (Pearl, 1988), an approximate inference
algorithm which passes messages between neighboring
nodes in the graph. This algorithm has been shown to
perform effectively for models of this type (Segal et al.,
2001; Taskar et al., 2002).

Using this posterior distribution, the M-step re-
estimates the model parameters using the expected
sufficient statistics, where the expectation is taken relative
to this posterior. Letting q(g, p) = P(g.C = p |
D, �(t−1)), then the expected sufficient statistics for
the multinomial are simply N p = ∑

g∈G q(g, p). For
the Gaussian CPD P(g.E j | g.C = p), the expected

sufficient statistics are χ1
pj = ∑

g∈G q(g, p) · g.e j , and

χ2
pj = ∑

g∈G q(g, p) · g.e2
j . We can then re-estimate the

parameters by maximizing the likelihood with respect to
the expected sufficient statistics:

θp = N p∑k
p′=1 N p′

; µpj = χ1
pj

N p
; σ 2

pj = χ2
pj

N p
− µ2

pj .

RESULTS
Model learning We evaluated our method on two Sac-
charomyces cerevisiae gene expression datasets, one con-
sisting of 173 microarrays, measuring the responses to var-
ious stress conditions (Gasch et al., 2000), and another
consisting of 77 microarrays, measuring expression during
cell cycle (Spellman et al., 1998). For the protein interac-
tion data, we used the DIP dataset (Xenarios et al., 2000),
consisting of 10705 S. Cerevisiae binary protein interac-
tions. We selected only genes for which expression data
was available from at least one of the datasets and that

participated in binary interactions with at least one other
gene in DIP. This resulted in a gene list consisting of 3589
genes, which we use in the experiments described below.
We note that 3527 genes form a connected component in
the interaction graph induced by DIP.

We applied our method to each of the expression
datasets separately, combining each with the DIP in-
teraction dataset. We trained each model using EM, as
described in the previous section, fixing the number of
pathways to be learned to be 60. A successful application
of EM requires some reasonable initialization to the
model parameters. To initialize the model, we applied the
probabilistic hierarchical clustering algorithm of (Segal
et al., 2001) to each expression dataset, resulting in a
partition of genes into 60 clusters. We use this assignment
to provide temporary values for the pathway variables
g.C , and compute maximum likelihood estimates for the
parameters relative to that assignment. These parameters
form the starting point for EM, which was then run to
convergence.

To complete the model parameterization, we need
to specify α, the parameter used in Equation 1 to
represent the strength of the preference towards assigning
interacting genes to the same pathway. We experimented
with a range of values for α for both data sets, measuring
both the number of interactions in each pathway and the
coherence of the pathways with respect to the expression
profiles. We evaluated the expression coherence of a
pathway as the average Pearson correlation between every
pair of genes that were assigned to the pathway.†

As expected, increasing α results in a larger number

† The Pearson correlation between two vectors gi .E, g j .E is:

Pearson(gi .E, g j .E) = 1
m

∑m
l=1

(gi .El−µi )
σi

(g j .El−µ j )
σ j

, where µi , σi

are the mean and standard deviation, respectively, of the entries in gi .E.
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of interactions among genes in the same pathway (see
Fig. 3a,b). More surprisingly, for 1 ≤ α ≤ 10000 and 1 ≤
α ≤ 20 in the stress and cell cycle models, respectively,
the quality of the gene expression patterns of each pathway
were identical; this is surprising, since α = 1 is equivalent
to completely ignoring the interaction data and is thus the
same as a standard clustering model which tries only to
optimize the expression score.

Thus, when using α = 10000 and α = 20 for the
stress and cell cycle models, respectively, our method
results in an organization into pathways that are much
more consistent with the interaction data compared to
an expression clustering model, while not sacrificing the
gene expression quality. Consequently, we chose these
settings for α. We note that the significant decrease in
the expression score for higher values of α is due to
the formation of a single large pathway, resulting from
the domination of a high α value over the expression
component of the model.

For our chosen values of α, we verified that the
improved interaction consistency is not a result of a small
number of pathways with dense interactions. We counted
the number of interactions between genes in the same
pathway separately for each pathway, and compared this
to the corresponding cluster from which this pathway was
initialized (as described above). Figure 4a,b shows that the
improvement is indeed distributed among many pathways.
We also compared our results to a method that uses only
the interaction data. We used the graph clustering Markov
Cluster Algorithm (MCL) of Enright et al. (2002).

We applied MCL to the DIP data, resulting in 905 clus-
ters. To allow for a comparison with our models, we re-
duced the number of clusters to 60, by iteratively merging
the two clusters whose resulting merged cluster had the
lowest probability of observing its number of interactions
by chance (computed using a binomial distribution as the
null model), until we were left with 60 clusters. As ex-
pected, since MCL only tries to optimize the interaction
score, the total number of interactions between genes as-
signed to the same pathway was greater for MCL (5261
such interactions) compared to our method (1913 interac-
tions). However, the expression data does not support the
organization of MCL, as can be seen in Figure 3c which
compares the expression score of the MCL clusters to our
pathways.

Evaluation We evaluated our learned models relative
to a variety of external data sources, that were not used
in learning the models. The visualization and statistical
analysis of the results were performed using GeneX-
Press (available from http://GeneXPress.stanford.edu), a
generic cluster analysis and visualization software that
we developed. We evaluated the models along several
criteria: prediction of held-out interactions, coherence

of pathways according to functional annotations, and
coverage of protein complexes.

Recall that our definition of a pathway is a set of genes
whose protein products are more likely to interact. We
would like to test the quality of our pathways relative to
this criterion. However, it would not be surprising if our
pathways contained a large number of interactions that are
part of the input to our algorithm: the algorithm explicitly
tries to put interacting genes in the same pathway.
We therefore evaluated predictiveness of interactions by
hiding some interactions from the learning algorithm, and
testing how many of these were predicted based on the
remaining data. Thus, we used 5-fold cross-validation,
randomly partitioning the DIP data into 5 equally sized
partitions, and trained 5 different models, each on a
different subset of 4 of the interaction partitions. We then
tested the predictiveness of each model on the held out
data by counting the total number of held out interactions
between genes assigned to the same pathway. This number
was averaged over pathways, and over the 5 models
learned. For the stress data set, there were 222.4 ± 13.2
such interactions for our method, compared to 126 ± 4.1
for expression clustering, and 383.2 ± 29.1 for MCL. It is
not surprising that MCL performs better along this metric,
as it optimizes only for interaction density, whereas our
approach tries to capture both interactions and expression
coherence.

Both expression coherence and interaction density are
only weak indicators for a pathway. To analyze the bio-
logical coherence of the inferred pathways, we computed
their enrichment for annotations from the GO hierar-
chy (Ashburner et al., 2000). We used the S.cerevisiae
GO associations from SGD (Cherry et al., 1998) to
associate each gene with the processes it participates in,
and removed all annotations associated with less than 5
genes. This resulted in 537 categories. For each pathway
and each annotation, we calculated the fraction of genes
in the pathway associated with that annotation and used
the hypergeometric distribution to calculate a p-value
for this fraction. We performed a Bonferroni correction
for multiple independent hypotheses and took p-value
< 0.05/N (N = 537) to be significant.

The models learned spanned a wide variety of functional
categories and pathways, including energy, respiratory,
translational, transport, transcriptional regulation, cell
organization, DNA replication, and protein degradation
pathways. Furthermore, a comparison of the best p-values
learned for each category (Fig. 5a,d) shows that the
pathways learned by our model are more coherent func-
tionally than the clusters learned by standard clustering.
Not surprisingly, the highly coherent categories were
detected by both methods, although the coherence was
still marginally better using our method. More interesting,
for the less clear cases (negative log p-value < 10), a
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Fig. 4. (a),(b) Number of interactions between genes in pathways (y-axis) and in expression clustering (x-axis): (a) stress model; (b) cell cycle
model. (c) Comparison of functional coherence using GO: Negative log p-value obtained for best pathway for each GO category (y-axis)
versus negative log p-value for corresponding MCL cluster (x-axis) .
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Fig. 6. Largest connected component, consisting of 12 genes,
for one of the pathways identified. Nodes represent genes. Links
between nodes indicate interactions in DIP. Square nodes (5)
correspond to genes that were also in the pathway using standard
clustering. Oval nodes (7) are genes that were only in the pathway
using our method. Filled nodes (10) are all the 10 cytoplasmic
exosome (RNase complex) annotated genes in GO. Unfilled nodes
are either annotated differently (TRM7) or unknown (YHR081W).

large number of categories were much more significantly
enriched using our method (see zoomed plot in figures).

We did a similar comparison with the clusters resulting
from the graph clustering method, MCL, which only
optimizes the protein interaction data (see Fig. 4c). In
the less clear range (negative log p-value < 10) the
results were comparable, but there were many more highly
coherent categories (negative log p-value > 20) enriched
in our pathways (73 such categories) compared to MCL
(32 such categories). Among the functional groups much
more enriched in our pathways were categories related
to translation (e.g. ribosome), protein degradation (e.g.
proteasome), transcription (e.g. transcription from Pol I)
and DNA replication. Genes in these categories interact
with many genes from other categories in DIP and are
thus hard to isolate using MCL. However, these categories
are often co-expressed, which explains the success of our
method in isolating them.

The components of many pathways are protein com-
plexes. Thus, a good pathway model should assign the
member genes of many of these complexes to the same
pathway. We tested whether our models exhibited this
property using the recent experimental assays of Gavin
et al. (2002) and Ho et al. (2002), which assayed the
members of 590 and 493 protein complexes, respectively.

We first measured the overlap between the protein
complex data and DIP to verify that we can indeed treat
the complex data as an independent data source. To do so,
we converted the complex data into binary interactions, by
creating a binary interaction between every pair of genes
that are in a complex together, and measured the overlap
with the DIP interactions. Only 2633 are shared, out of
the 48751 and 10705 binary interactions in the complex

and DIP data, respectively. Given that the complex assays
are different in nature from the DIP binary interactions,
and given this small overlap, we concluded that we could
use the complex data as an independent measure of
performance.

To analyze whether a pathway is significantly enriched
for protein complexes, we associated each gene with the
complexes to which it belongs in the complex experi-
mental datasets. For each pathway and each complex,
we computed the enrichment p-value , similar to the
computation done for the GO annotation enrichment
(Bonferroni corrected). From a total of 640 complexes,
374 were significantly enriched in at least one of the
inferred pathways. Figure 5b,e compares the complex
enrichment between our model and standard clustering,
indicating a much higher enrichment in our models. We
also tested the degree to which entire complexes appear in
the same pathway, by counting the number of complexes
for which a fraction q or higher of their member genes
appear in the same pathway. Figure 5c,f shows the results
for varying values of q. For example, for the stress model,
there are 124 complexes for which 50% or more of their
members appeared in the same pathway, compared to
only 46 such complexes in the standard clustering model.
For the cell cycle model, there are 83 complexes at 50%
compared to only 10 in the standard clustering model.

Detailed inspection of the inferred pathways revealed
many cases in which our method isolated known pathways
from the dense web of DIP interactions, and potentially
also identified novel members of the pathway. Such
was the case for pathway 1, whose largest connected
component of DIP interactions had 12 genes, 10 of
which are members of the cytoplasmic exosome (RNase
complex), required for the 3′ processing of pre-rRNAs
to mature rRNAs. These 10 genes are all the known
members of this complex, so that our approach captured
the complex (as it is currently known) in its entirety.
One of the two remaining genes was YHR081W, an
uncharacterized protein. As YHR081W interacts with 2
proteins in the pathway, and as its expression profile
is highly similar to that of the other 11 genes in the
component, this may be a potential novel discovery of a
new member or related member of the RNase. We note
that there were 38 additional immediate neighbors of these
12 genes in the DIP interaction graph that our method did
not assign to pathway 1, since their expression profiles
were different than those of these 12 genes.

We checked whether methods that analyze only the ex-
pression data or only the interaction data were also suc-
cessful in isolating the RNase. The expression clustering
method assigned only 4 of the 10 cytoplasmic exosome to
the same cluster (see Fig. 6). As there are many interac-
tions between the 10 RNase genes, MCL also assigned all
10 to the same cluster. However, the connected component
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included 114 additional genes that are not known to be re-
lated to the cytoplasmic exosome. Interestingly, MCL also
included the same uncharacterized ORF YHR081W as our
method.

As another example, our method identified 19 of the 25
genes that are annotated in GO as nucleus import genes, as
part of a connected component of 55 genes in pathway 9.
In contrast, the expression-based clustering method only
had 4 of these genes in a cluster, and MCL grouped only
7 of these genes as part of a connected component of 97
genes.

DISCUSSION AND CONCLUSIONS
We presented a unified probabilistic model over both
gene expression and protein interaction data, that searches
for pathways—sets of genes that are both co-expressed
and whose protein products interact. We showed that our
method discovers groups of genes that correspond better to
functional groups, and contain entire protein complexes,
properties that one would expect of a pathway.

Our models currently constrain each gene to be in
exactly one pathway. This is clearly a limitation, since in
different conditions genes participate in different cellular
processes. Recently, several approaches have been pro-
posed that discover condition-specific groups from gene
expression (Ihmels et al., 2002; Segal et al., 2001). The
discovery of condition-specific groupings would have
great potential in the context of protein interactions, as
it may allow us to identify which interactions are active
under which conditions.
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