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Abstract Our work is motivated by the challenges we have

encountered in verifying large, complex multiprocessor

An important means of validating the design of Systems. While pseudo-random testing is the backbbne
commercial-grade shared memory multiprocessors is to microprocessor design validation efforts, it is difficult to
run a large number of pseudo-random test programs on employ this methodology effectively for multiprocessors,
them. However, when intentional data races are placed since a simple “golden reference model” cannot be used
in a test program, there may be many correct results to check the result of a test program unless it is free of
according to the memory consistency model supported bydata races [13]. This is a severe limitation because tests
the system. For popular memory models like SC and with aggressive data races tend to expose multiprocessor
TSO, the problem of verifying correctness of an bugs much faster. This is proved by the fact that
execution is known to be NP-complete. As a result, verification teams often run such tests “blind”, even if
analysis techniques implemented in the past have beenthey are unable to check correctness of program results.
incomplete: violations of the memory model are flagged They hope to expose bugs by hitting obvious problems
if provable, otherwise the result is inconclusive and it is such as a machine hang, system panic, or an unexpected
assumed optimistically that the machine's results are program crash. However, such testing cannot hope to
correct. expose subtle multiprocessor issues such as illegal

In this paper, we describe for the first time a instruction ordering or atomicity violations. Even if an
practical, new algorithm which can solve this problem analysis methodology does exist to check for such
with certainty, thus ensuring that incorrect behavior of a violations, its efficiency is an important consideration,
large, complex multiprocessor cannot escape. We presenskince test throughput is an important factor in pseudo-
results of our analysis algorithm on test programs run on random testing. The more test cycles run, the higher the
a newly designed multiprocessor system built by Sun confidence in the design, and it is not uncommon for
Microsystems. We show that our algorithm performs very yerification teams to be required to run several trillions of
well, typically analyzing a program with 512K memory  pseydo-randomly generated test instructions correctly
operations distributed across 60 processors within a few pefore shipping a new processor or system [2].

minutes. Our algorithm runs in less than 2.6 times the oy gyerall multiprocessor validation flow is like this:

time taken by an incomplete baseline algorithm which .
may miss errors. Our approach greatly increases the 1. Random generator creates programs with data races

confidence in the correctness of the results generated by2- Each test program is run on a multiprocessor
the multiprocessor, and allows us to potentially uncover 3. Analysis algorithm verifies if program results are legal
more bugs in the design than was previously possible. In step 1, a multiprocessor test program is generated,
which may also include instructions to store programmer
visible results of its load instructions for further analysis,
1. Introduction depending on the available observability (if the system
under test is simulated, for example, we may be able to
This paper deals with the problem of verifying directly observg the results of load instructions). In step
whether the outcome generated by a shared memoryzi the program is run on a test platform and the results are
multiprocessor on executing a test program with data collected. This paper assumes the dynamic program
races is correct. Correctness of the result is defined by thedescription and its results are available, and focuses on
memory consistency model [1]. Examples of common efficient algorithms to be_u;ed. in step 3. Any testing-
memory consistency models (also referred to as memorybased approach has the limitation that it is only as good
models in the rest of this paper) are Sequential 85 the tests employed. (Of course, we continuously tune
Consistency (SC), Total Store Order (TSO), Relaxed OUr test-program generator to better expose corner-cases
Memory Order (RMO) [16] and Release Consistency I the design). However, it has the advgntage that it can
(RC) [7]. While the focus of our discussion in this paper ©€ employed on a real system and not just on an abstract
is the TSO memory model, our general methodology can _model. _Checklng efnd—to—end. correctness on re_al systems
be extended relatively easy to other memory models as!S Very important given the disparate elements involved —
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e.g. multi-core, multi-threaded processors, various cachesmultiprocessor configurations of up to 60 processors.
in the memory hierarchy, the coherency protocol, the Section 6 concludes the paper.

system interconnect, software emulation routines in the

kernel, etc. — and the complexities and corner cases in2. Related work

their interaction. In addition, our test methodology has

the advantage that it runs on commercial multiprocessor  The problem of verifying whether a multiprocessor
hardware, running stock operating systems, anq can evefest program execution complies with a memory
be run as a user-mode process at a customer site, since gonsistency model was first studied by Gibbons and
requires no additional probes into the system, such asKorach for the SC memory model [6]. They called the
logic analyzers and oscilloscopes. The analysis problem VSC (Verifying Sequential Consistency) and
algorithms rely only on programmer-visible results of the proved that the basic VSC problem is NP-complete with
program and do not inherently need additional respect to the number of operations in the program, as are
information from the system; of course, any additional several variations of the problem, when the number of
ordering information is used if it is available. . processors is unbounded. In particular, the VSC-read
Not requiring extra observability is a key attribute proplem, which assumes the presence of a mapping
affecting overall test throughput, since maintaining function of every read to the operation which wrote the
observability often involves slowing down the system ygjye it read, is also NP-complete. The VSC and VSC-
and reducing test throughput. Even in pre-silicon read problems were originally proven NP-complete by a
validation environments, hardware accelerators canreduction from the 3SAT and the database view
simulate designs orders of magnitude faster if serializability problem respectively [14]. The VSC-
observability is sacrificed. o ~ conflict problem, which is the VSC-read problem
Unlike previous work [8][11], our goal in this paper is augmented with the total write order per-location,
to developasoundndcompl_ete algorithm (i.e. no false  however, is in P (and similarly, so is the conflict
errors reported and no consistency errors left undetected)serializability problem in databases). Similar results have
which is practically applicable. Instead of assuming a peen shown for the corresponding problems for the TSO
machine innocent unless proved guilty, we aim t0 memory model; VTSO and VTSO-read are NP-complete,
determine exactly whether or not the system obeys thehile the VTSO-conflict problem can be solved in linear
memory model guarantees available to the programmer time [8][11]. The Verifying Memory Coherence (VMC)

for a given test execution result. o problem, which is like VSC, but involves only one
Our paper makes the two following important memory location, is also NP-complete; however, VMC-
contributions: read is in P [4]. The most interesting variants of the

1. We describe a set of efficient algorithms for verifying problem for our purpose are the VTSO and VTSO-read
TSO compliance of a test program execution. We also (or VSC and VSC-read), since pseudo-randomly
introduce an efficient way to perform backtracking in generated tests can easily be mapped to these problems
order to make the analysis complete. and the analysis is performed on architectural results

2. We implement these algorithms and report results of visible to the program. The VSC-conflict problem,
applying them on large multiprocessor server systemsthough easier to solve, is not very useful on real systems,
currently under test. We show that a complete analysissince write ordering per location is not easily observable
incorporating edges inference with backtracking, in general. Gibbons and Korach also propose an
while being theoretically exponential in the number of algorithm for VSC-read based on searching a frontier
processors, actually runs in very reasonable time andgraph which has a worst case running time ofnfPfor n
requires minimal backtracking. Our algorithm also operations and a fixed number of process@rg5];
suggests a potential technique to solve the view however, this algorithm is impractical for realistic values
serializability problem in databases, which is ofp.
reducible to the VSC-read problem (see definition in Our previous work describes an incomplete algorithm
Section 2.) which makes a best effort to determine if there is a valid
Paper Outline:Section 2 discusses related work and ordering of operations which can justify the results of the

existing approaches to verifying compliance of a test test program [8]. We also developed a simple heuristic to

execution with the memory consistency model. Section 3 determine if an order satisfying all the axioms of the
presents a formal specification for TSO, and the memory model exist [11]. However, in the many cases
equivalence of two variants which are necessary for (Up to 80% of 16 processor program runs) that the
correctness of the analysis algorithms. Section 4 presentdieuristic failed to determine this, we had to optimistically

a baseline algorithm, and then describes three assume an order exists though it had not been found. This

increasingly precise extensions. Section 5 describes ouruns the risk of letting illegal results go undetected. In

results on running these analysis algorithms on large contrast, our new algorithm finds out exactly whether an
order satisfying all the axioms of the memory model

exists, and if it does, it finds the valid order as well.



Cain and Lipasti have proposed a distributed Atomicity: No stores can intervene between the load and
algorithm to verify correctness of program execution with store components of an atomic swap.
respect to SC [3]; however, their techniques employs [Li:s!|=(L'<S)A(VSi:Si<L vs.<s])
online vector clocks for each processor and at each o
shared memory location and assumes additional hardwarel €mination: If one processor does a store and another
logic is available for keeping these clocks updated. In our Processor repeatedly does loads to the same location,
technique, in contrast, vector clocks are offline, imposing there will eventually be a load that succe8ds<.
no overhead on the test program or hardware S,A(L,;)o=3L,&(L,;)wosuchthat $<L,
implementation. Plakal et al statically verify that a
directory-based  protocol implements  Sequential
Consistency [15], while Meixner and Sorin use their
proofs to propose addition of verification hardware to the == == ™"~ "~
processor, cache and memory controller which can LaiOPs=L.=<Op,
dynamically verify Sequential Consistency [12]. S:s »>s.<s

Microprocessor design verification teams often use the
additional observability present in simulation to reason Value: The value returned by a load is the value written
about ordering and correctness [9]. However, theseto it by the last store in global order, amongst the set of
techniques are heavily microarchitecture dependent, andstores preceding it in either global order or program
are not usable when additional observability is absent. order.
Taylor et al use a set of informal rules to reason about Val[L!]=Val[Max|{S{|S‘<L Ju(S.|S,; L }]]
ordering of events in test execution [17]; however the =
completeness or efficiency of their algorithm is not Membar: Membars order operations on the issuing
described. processor.

Finally, the generic notion of embedding memory  Op,;M ;Op,=0p,<Op,
ordering relations in a graph (and performing cycle

detection on the graph to flag inconsistencies) has been Note that the definition of the value axiom permits
used often and is originally attributed to Landin et al [10]. Implementations with store buffers to locally bypass data

from a store to a load, before the store is globally visible.

e For the SC memory model, the only difference from TSO

3. TSO specification is that this is disallowed:; all relations in program order
_ must also appear in global order.

The axioms of the TSO memory model have been  The TSO memory model as defined in SPARC V9

formally described by Sindhu et al [16]. We briefly [1g] is slightly different from the above axioms in 2
discuss the notation and the axioms below. The notation ygjnts:

used is as follows:

LoadOp andStoreStore The only reordering allowed
between operations on the same processor is that loads
can overtake preceding stores.

1. Memory order is total on all memory operations. (The
Order axiom above only defines it to be total on all

L, a Load to locatioa by processor stores.)

S, a Store to location by processor 2. Atomic swaps do not allow any other memory

A a Swap to locatioa by processor operation to intervene the _ I_oad .and the store
i i components at all. (The Atomicity axiom above only

val[L,] | the value read byL, prevents intervening stores.)

val[S,] | the value written by s, Formally:

op, either a load or a store Order: There is a total order over all operations.

M a memory barrier v Op;,0p;: (Op,<Op;) v (Op,<Op,)

; a per processor program order Atomicity : No operations can intervene between the load

< the global memory order and store components of an atomic swap.

[Lai Sal=(Le=S,)A(VOp}:Op}<L,V S,<Op})

An order is defined as a relation that is reflexive, anti-
symmetric and transitive. The per processor program
order is denoted by the character ; and the global memory
order is denoted by the characterThe following are the
TSO axioms per Sindhu et al, augmented with an
additional axiom for Memory barriers.

It can be shown, however, that these 2 seemingly
different definitions of the TSO model are essentially
equivalent for verification purposes, i.e. any execution
trace which satisfies the axioms of either system also
satisfies the other. For ease of understanding and
] designing analysis algorithms, we will use the stricter
Order: There is a total order over all stores. versions of the Order and Atomicity axioms

VS, S (S,<S)v(Si<S,)



4. Algorithms for verifying TSO R4: = S;LO S<L (Value axiom)
This follows becaus& must be in one of the two store
Our main focus in this section is algorithms for the sets in the Value axiom far.
VTSO-read problem. We impose the constraint on test R5:S';L0O S'< S(Value axiom)
programs that each store in a test program writes @ This must be true because if bofhx S'and S';L are
different value. This allows us to map each load to the trye L cannot read the value written ISaccording to the
store which created the value it read, and thus gives Usy/alye axiom. We On|y need to consider the latest s8jre
the read-mapping function. ) precedingL, because prior stores from the same thread
The following features are common to all algorithms gre ordered beforg'
described in this section. A program and its execution  |nferred EdgesThe last 2 rules follow from the Value
result are represented by a directed graph, whose nodegxiom:
represent dynamic operations (loads or stores) in the Rg:.s'<| [ S's S(Value axiom)
program. Edges represent ordering relations in the global

memory orders. Since< is transitive, any path in the lead to a contradiction becausecannot read the value

graph implies the existence of therelation between the . . .
source and destination of the path. We ignore reflexivity wlr|tten bySas it would have already been overwritten by

of < by not explicitly adding an edge from each node to = , . .

itself. ),/A legal I[:)utcgme sh%uld nogtJ cause cycles in the R7:SsS'D L=S'(Value axiom) _

graph, since this would violate the anti-symmetry  Assuming otherwiseS'< L (because there is a total

property of< . order on all operations, accordmg to the stronger version
A synthetic node at the root of the graph acts like a set Of the Order axiom), it would be illegal fdr to read the

of stores writing initial values to all memory locations. A Vvalue written by S as it would have already been

set of atomic operations is modeled in the graph by overwritten byS'

forcing incoming edges incident to any node in the setto  Note that we use the ordes, which is still being

point to its first node; similarly, outgoing edges from any derived, to determine the condition to infer more edges in

node in the set are redirected to leave from its last node.rules R6 and R7. To solve this circular dependency, we

This automatically ensures that the (stronger version of iterate over these two rules until no further edges can be

the) Atomicity axiom holds for all relations embedded in added to the graph and a fixed point is reached.

the graph at all times. A read-mapping functiorL) Intuitively, this algorithm tries to efficiently infer as

maps each load to the store which wrote that value. A much information about ordering as possible. The rules in

failure is directly signaled if there exists a load reading a this algorithm are selected such that they can be

value never written to that memory location. An inverse efficiently implemented; they are not necessarily

of the read-mapping is also computed and cached in eactcomplete. Nevertheless, if we also have available the

store node; it represents the set of all loads that read thetotal write order per location for the test case, the VTSO-

Assuming otherwiseS < S' (and givenS' < L) will

value written by that store. read problem is transformed into an instance of the
VTSO-conflict problem, for which this algorithm is
4.1. Baseline algorithm for VTSO-read complete [11].

A key performance enhancement for the above

The baseline algorithm (reproduced from our previous algorithm is the employment of vector clocks. The use of
work [11]) adds edges to the graph using following rules: vector clocks is popular in the area of distributed

Static EdgesProgram order edges are added to the computing, where they are used on each processing

graph according to the following 3 rules. These edges are€lement to track the perceived time at other processing

independent of execution results: elements. In a similar way, we associate offline vector
R1: L;0p O L < Op(LoadOp axiom) clocks with each operation in the program to reason about
R2: S:S'0 S< S'(StoreStore axiom) what operations on other processors must succeed this

operation. These vector clocks are present only during

R3:SML O S<L (Membar axiom) analysis; they do not involve any maintenance by the

Note that we can redirect our verification from TSO to 5 qware or the test program as it is running
the SC memory model just by changing the above rules qing vector clocks, we avoid being exhaustive in
to ensure that program order between two operations also

. . i < < 1
implies global order between them. The rest of the rules ;pt?:)ém?orurlgiq?::;ghizrgigxeﬁi/igés;lrﬁfiti:rr:?t% _stirt at
for all the algorithms in this section can remain exactly prog '

each store node and search only for its earliest
the same. successors, either loads or stores, that access the same
For the remaining rules, 18 S' andL be accesses to ; r y
o _ \ location but with different values. For the SC model, we
the same location; wheg= (L) andS'+ S only need to find the earliest such successor per thread as
Observed Edged-or all loads, the edges specified by y P

the following 2 rules are added based on the load results. program order in SC implies globa_l order. For the TSO
model, a load can overtake preceding stores on the same



processor, and therefore, we split the instruction stream4.2, Completely verifying TSO
of one TSO processor into twartual SCprocessors; one
contains only loads and the other contains the rest (stores, We now turn our attention to algorithms which can
atomics, and membars). In the TSO modeb also  completely verify TSO. The baseline algorithm presented
impliesL < S, andS;M;L impliesS< M < L, and we shall in the previous section is incomplete because even when
represent these ordering requirements with an edgethe graph is acyclic, it does not explicitly ensure that the
between such operations which are now separated in theOrder axiom is satisfied. Figure 2a illustrates a case
two virtual SCprocessors. We attach to each node a datawhere an existing relation is not inferred by the
structure based on reverse time vector clocks to track itsalgorithm; the edges in the graph are depicted at the point
earliest successors in otheirtual SC processors. This  when the fixed point has been reached (edges from a
data structure helps limit the number of edges per node tostore to corresponding loads reading its value are omitted
the number o¥/irtual SCprocessors. Figure 1 outlines the to not overcrowd the graph). The notation here is: S[AJ#1
algorithm for rules R6 and R7. refers to a store which writes value 1 to location A, while
Time ComplexityAlthough the total number of edges L[B]=11 refers to a load to address B which reads value
in the graph at a given point in time is bounded by )( 11; P denotes operations on processorNotice that
wherep is the number of processors ands the number  S[AJ#1 and S[A]#2 are left unordered by the baseline
of nodes, the number of iterations in the worst case is analysis. However, we can reason that S[AB[A]#2
actually bounded by the total number of possible edges, must be true. If not, S[AJ#2< S[AJ#1 by the Order
which is Of?). This is because an edge inferred in one axiom; but with this order and the fact that only one of
iteration may be rendered redundant and removed due tathe two values, either 11 or 12, can survive in location B
a stronger edge inferred in a later iteration. In each after S[AJ#2, both loads from location B must read the
iteration, there are @ stores whose vector clocks will same value. This example illustrates a missing relation,
be traced with Qf) time complexity each. This totals to  but not yet a missed TSO violation; simply adding a
O(prP). similar, mirrored set of nodes to a different location C

PO P1 P3

Input A per virtual SC processor instruction sequence consisting of -@ .H !

loads, stores, and membars. A swap is considered to be both a load andja
store. A functiorw, which maps a load to the store which created its

value:
Data Structure An offline Reverse Time Vector Clock at each nade @ @ @

x.rtvc[i] points to the first node in virtual SC procesissuch that
x<x.rtvcli]. Initial rtve[] for all nodes are precomputed with backwand

topological sort. Figure 2a.
Apply rules R1-R5

[rule R6 and R7] - done in iterations

" (o) | | G| |G | | G

for each stor&whosertvc[] has been changed
for each virtual SC processor
x:= S.rtvc[i]
if xis a load (virtual SC processiocontains only loads) then
L := first load that accesses same locatio8,ad_, andw(L)+S

[rule R6]

add edg&- w(L) if not alreadySsw(L) P4
updatéS.rtvc[](and propagate to its predecessors recursively) . .
else (virtual SC processarontains stores, atomics and membars) Figure 2b. (Membars are omitted)
S':= first store/atomic that accesses same locati@easlx;S'
[rule R7] PO P1 P2 P3

for all loadd. such thatv(L)=S
add edgke - S'if not alreadyl <S' @ @
updaté..rtvc[] (and propagate to its predecessors recursively
end for
end if
| | |G
end for

until no more edges can be added

~|
@ ég 8@/

) Figure 2c. (Membars are omitted)
Figure 1. High level description of the iteration over R6 & . )
R7 with Vector Clocks Figure 2. Examples of incompleteness



(two stores to C ordered before S[AJ#1, and two loads to the baseline algorithm. We have found that most often,
C ordered after S[A]#2) creates an instance of a real TSOthis sort does not yield a valid order. This is because
violation. In this case, the two stores S[A]#1 and S[AJ#2 when we arbitrarily assign an order between a pair of
cannot be ordered, but such a violation would be missedpreviously unordered operations during topological sort,
by the incomplete algorithm in the previous section. it often has ordering implications on other unordered
One may attempt to design a rule to infer the missing operations; this creates conflicts and usually ends up
edge in this example. Consider the following hypothetical violating the Value axiom. Since a straightforward
rule: algorithm based on topological sort does not work, we
R8: CommonPre(L, L') < CommonSud§ S) discuss three techniques in the following sections towards
L and L' are loads to the same location reading improving the chances of finding a valid TOO. In all
different values written byS and S' respectively. cases, we assume the baseline algorithm has inferred all
CommonPre(l, L") is the latest node that precedes both its edges and terminated without cycles in the graph.
L andL'in the current snapshot of the global order being
derived, whileCommonSud8, S) is conversely defined.  4.2.1. Heuristic for topological sort Heu). In our
While this rule will catch the missing edge in the previous work, we ensure that each time a store node is
example shown in Figure 2a, it still misses the edge in a picked by the topological sort, rule R7 is immediately
slightly modified scenario shown in Figure 2b because applied to it [11]. An alternative, but equivalent,
there is no common successor between S[BJ#11 andimplementation of this heuristic is to track thative
S[BJ#12. Note that Membars between the store and thestore (the store that was most recently picked by the
load in the same processor are omitted from the picture topological sort) for each memory location and allow the
(or readers may assume the SC model). S[AH#S[A]#2 topological sort to further pick only a load that reads the
is a missing edge because, assumed the opposite ordevalue written by thectivestore or by the store preceding
both L[A]=2 nodes will be ordered before S[AJ#1 by rule the load in program order. When all loads that read the
R7, making S[AJ#1 the common successor of S[BJ#11 Value written by anactive store have been picked, the
and S[BJ#12 and, hence, only one value, either 11 or 12, Storé becomeactive and new store can be picked and
can survive in location B. made active (For SC, this heuristic is similar to the
Figure 2c illustrates that missing edges are not the conditions used to determine the validity of frontiers in
only form of incompleteness. One can reason that S[AJ#2 the O¥) backtracking algorithm by Gibbons and Korach
cannot be ordered before both S[AJ#dnd S[AJ#3 [5]. However, an important difference is that their
because that would lead to the same contradiction seerf!gorithm does not have any notion of initially inferring
earlier with Figure 2b (when we incorrectly order €dges as in our baseline algorithm, and as a result wil
S[AJ#2 < S[AJ#1). However, such a constraint cannot be ViSit many more invalid paths in the frontier graph).
captured in our graph representation where we only draw _ 11me Complexity: A typical topological sort has
an edge to order 2 operations when such an order isO(M+€) complexity wherenis the number of nodes ared

) . . is the number of edges, which is @] in this case
certain. Despite knowing that S[AJ#k S[AJ#2 or (because each node only maintains a vector clock). In

S[AJ#3 < S[A[#2 (or both) in this example, we can draw  aqgition, this heuristic spends )(time to evaluate the
neither edge because their presence is not certain wherg|ection for the next node. This extra effort isp@)and,
considered _|nd|V|duaIIy. To create a TSO violation that neyertheless, the total complexity is still@j. Note that
would be missed by the baseline algorithm, we can add aiis time complexity is for a case when the algorithm
similar, mirrored set of nodes such that none of the storesg;cceeds in finding a valid TOO. The heuristic may
to location A can be ordered first. _ _ terminate much sooner when a TOO cannot be found.
To completely verify TSO compliance, we will Although this heuristic is intuitive and fast, we find
attempt to determine if there existsTtal Operation  {na it is inadequate; it helps find a valid TOO only when
Order (TOO), which completely orders all operations {here is relatively low sharing, i.@/ais small (Wherep is

(loads and stores) in the program, that also satisfies thejne number of processors aads the number of memory
rest of the TSO axioms. Recall that this TOO corresponds locations) [11]. Section 5 provides more results.

to the stronger version of the Order axiom (which is
equwa_lent.to_the requirement that o_n[y stores be ordered), o o Deriving edges during topological sort Beriv).

A simplistic approach to determining if a valid TOO \ye can extend the heuristic technique in the previous
exists would be to perform a topological sort on the gection thus: Each time a store node is picked by the

analysis graph after the completion of the baseline (oniogical sort, rules R6 and R7 are reapplied iteratively
algorithm, and check if all the axioms still hold (the same 5 the whole graph until a new fixed point is reached.
baseline algorithm can be conveniently used to determinecgrefyl implementations can minimize the computation
the validity of a TOO, as earlier pointed out in Section by applying the rules only to the affected nodes. (In our

4._1). The topol_o_gical sort effectively creates an arbitrary implementations, such optimizations are also applied to
“tie-break” decision between operations left unordered by the paseline algorithm during iteration.)



Time Complexity:Although this heuristic has to go
through as many fixed points as the total number of
stores which is Qf), the total number of iterations
required to apply rules R6 and R7 throughout these) O(
fixed points is still bounded by the total number of
possible edges, @). Therefore, the worst-case time
complexity remains Q). Again, this time complexity

5. Results

In this section, we present results of our extensions to
the baseline analysis algorithm on test results generated
from a new multiprocessor system which is actively
under test at Sun Microsystems. Our results show that
Deriv+Back performs very well; it completely analyzes

is for the case when the algorithm succeeds in finding a programs with 512K memory operations distributed

valid TOO. It may terminate much sooner when this
heuristic fails.

Despite the additional effort spent in deriving more
edges, this algorithm's effectiveness in finding a valid
TOO is still limited with intense sharing. Nevertheless, in
practice, it provides significant improvement in TOO
completion rate over the previous heuristic.

4.2.3. Backtracking Heu+Back, Deriv+Back. Since
the above heuristics are only best-effort and had
unsatisfactory rates of completion (in which case the

across 60 processors and finds a valid TOO for each
program within 5 minutes. On average, the analysis time
is less than 2.6 times that of the incomplete baseline
algorithm which may miss errors. Therefore we find that
Deriv+Back greatly increases our confidence in the
correctness of the results generated by the
multiprocessor, and allows us to potentially uncover
more bugs in the design than was previously possible.
On the other hand,Heu+Back (which does not
iteratively derive additional edges during the topological
sort) does not perform well at all; on all tests except the

analysis is inconclusive and optimistically assumed ones with a small number of processors, it did not finish

passing), we decided to implement backtracking on top ofin a reasonable amount of time. Therefore, we ignore it
both the heuristics described above. When the topologicalfrom further consideration. Also recall that all of the

sort gets stuck (no instruction can be picked without
violating any TSO axioms), instead of giving up, we

algorithmsHeu, Deriv, and Deriv+Back are applied on
top of the baseline algorithm, that is after it has reached a

backtrack to the last arbitrary tie-break decision made fixed point. Applying them directly, without first running
and choose a different operation to order first. Given that the baseline algorithm, we found they were much less

a valid Total Store Order will also result in a valid TOO

effective: the effectiveness éfeu andDeriv in finding a

(as pointed out in Section 2 regarding the equivalence ofyalid TOO reduced dramatically and the time spent in

the two different versions of the Order axiom), we can
unwind the order directly to the most recent store.

For the heuristic Heu in Section 4.2.1, adding
backtracking is relatively easy. Adding the feature to the
Deriv algorithm in Section 4.2.2 is less straightforward
because it modifies the graph by deriving additional

Deriv+Back exploded as the number of backtracks
increased substantially. While we studied these variations
for completeness, we do not consider them interesting
and therefore omit their detailed results from this section.
System under testWe performed the following
experiments on an actual multiprocessor system designed

edges based on ordering decisions made by theand built by Sun Microsystems. The system we ran the
topological sort. We maintain our data structures such test programs on has 60 processor cores. Test threads are
that we can checkpoint and undo these updates when weyound to different processor cores, and run mostly
need to backtrack and cancel the decision. Edges that argoncurrently since the system is quiet except for

derived after astqre is pleed by the tOpOlOgical sort will background Operating System act|v|ty We ran pseudo_
be associated with the store. When we backtrack andrandom multi-threaded programs with the fo”owing

undo the picking of a store, we remove all the derived

instruction mix: 33.3% loads, 33.3% stores, 30% atomic

edges associated with it and recompute vector clocks forswaps, 1.7% membars, and 1.7% others. We varied the

all the affected nodes.
Time ComplexityBy using a similar argument to that

number of threads/processorp) (and the number of
memory locationsd) used by the programs, as well as

which Gibbons and Korach use to explain the bounds onthe size of the programs (denotedragthe total number
their bathraCklng algorlthm based on SearChlng the of memory Operations across all processors)_ The

frontier graph [5], the worst-case complexity of our
backtracking algorithms is also @(p°). At each step
during backtracking, the additional cost of finding a new
fixed point is Opr?). This results in Qf*/p’xpr?) in total.

execution results of these programs were saved and later
analyzed on a different system based on a previous
generation 1.2 GHz Sun's UltraSPARC-III+ processor.

For each tuple r(,p,d, 16 different pseudo-random

However, in practice, the number and depth of backtracks programs were generated, executed, and analyzed. Unless

is small, resulting in small penalty in terms of time over
the Deriv heuristic in the previous section. In return for

noted otherwise, the presented results are the average
over these 16 runs for each tuple. Analysis time is the

this increase in analysis time, we achieve a 100% major factor determining test throughput since the test

completion rate when a valid ordering exists which
justifies the results of the program.

threads are pre-generated and pre-compiled, and only
thread selection is done at runtime. Running the test itself
takes on the order of a few milliseconds on a real system.
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Figure 3. Effectiveness of Heu and Deriv in finding valid TOO's

While we have also applied our verification configurations where the errors may be subtle and test
methodology to the same system in a pre-silicon software methodologies are limited.
simulation environment, analysis time was not a major  Figure 4 shows the effect of p, anda on the analysis
concern in that case. Nevertheless having a completetime. The absolute analysis time of the baseline algorithm
algorithm is useful. In simulation, though we can and Deriv+Back are plotted in Figure 4a and 4c
sometimes deal with the much simpler VTSO-conflict respectively. Figure 4b shows the ratio of the analysis
problem - which is in P - if total write order for each time of Deriv+Back over the baseline. Since the graphs
location can be observed, in reality, such ordering is oftenare plotted using log scale over the same range on Y-axis,
not readily available in the simulation test bench, as a we can view Figure 4c as being the superposition of
single point of ordering may not exist in complex Figure 4a and 4b. As can be seen, the slope in Figure 4b
systems. Besides, software simulators usually scale up tas less than that in Figure 4a, which means the increasing
only a few processors and cannot handle large whole-analysis time seen in Figure 4c are dominated by the
system simulations. increasing analysis time in Figure 4a. This interpretation

Figure 3 shows the effectiveness ldéu and Deriv in suggests that our backtracking technique can scale (as
finding a valid TOO forn=128K. (For larger number of long as the baseline algorithm scales).
operations, their effectiveness decreases as expected.) We also repeated the same experiments using 2 other
Deriv provides significant improvement ovideubut it is instruction distributions in the pseudo-random test
still incomplete when data sharing is intense. With generator: one biased toward load instructions, with 50%
backtracking,Deriv+Back always finds a valid TOO in  loads and 16% stores, and the other biased toward store
our experiments. A key finding is that when backtracking instruction, with 50% stores and 16% loads (percentages
is necessary, the number of backtracks is at most 75,0f other instructions were kept the same). On the average,
which is small for the large problem sizes used in our as the percentage of stores increases, we find that the
experiments, and the algorithm never backtracks moreanalysis takes more time. Both the absolute analysis time
than 1 level each time. This means that the additional of the baseline and the slowdown ratidefriv+Backare
overhead due to backtracking is minimal, compared to affected, as shown in Table 1.
just runningDeriv. We also note that the analysis time We conjecture that a higher store density requires
overhead incurred byHeu is virtually constant and longer analysis time foDeriv+Back because there are
minimal, about 10%, while the overhead incurred by potentially more values that are not observed at all, and
Deriv+Backis significant and grows with all gb, n, and hence, the baseline algorithm can infer fewer relations
a. Analyzing the largest test programs in our experiment, which would be helpful for Deriv+Back during
with n=512K, p=60, anda=256, takes, on the average, backtracking. With no loads at all, on the other hand, the
118% more time than the baseline algorithm for casesanalysis would run very quickly because any ordering
that require backtracking (whilBeriv would take 108%  would be acceptable under TSO axioms. Therefore, we
more time for cases not requiring backtracking, just a
slightly smaller overhead). With a lower processor count Table 1. Baseline analysis time and slowdown ratio of
(16 and below), the analysis time overhead is usually lessDeriv+Back for n=256K, averaged over p and a.
than 80% over the baseline algorithm. . .

We deem the extra overhead in terms of analysis time LD-biased | LD-ST equgl  ST-biaseq
worth the extra assurance that the program results are¢ Baseline (secs) 14.9 16.5 175
indeed correct, especially for large processor Slowdown ratio 145 173 205
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Figure 4c. Analysis time of Deriv+Back

Figure 4. Analysis time of Deriv+Back vs. n (averaged over a), p (averaged over a), and a (averaged over p)

expect a tipping point, as we bias the test more towards§. Conclusions and future work
stores, where the runtime starts to decrease.

Although Deriv+Backhas not discovered any bugs so e have described a set of algorithms which can be
far in the real system that are missed by the baselineysed to verify whether a test program execution complies
analysis, we tested it with TSO violations based on the wjith the axioms of the memory consistency model. Our
examples in Figure 2, and it successfully found the gigorithms encompass a range of accuracy and runtime.
missed cycles, as expected. Being a backtrackingFaster algorithms may miss errors in return for higher
algorithm, however, it cannot avoid the exponential throughput; slower algorithms based on backtracking will

analysis time complexity for such cases. We expect to not miss errors, but have an additional runtime overhead
explore other heuristics in order to find a smaller portion of 20-160%.

of an execution trace that contains the TSO violation.



Overall, our findings indicate that backtracking is Multiprocessors”, Proceedings of the 17th International
essential for a good completion rate when no violation Symposium on Computer Architecture (ISC00.
exists; however the actual number of backtracks needed[8] S. Hangal, D. Vahia, C. Manovit, J. Lu, and S. Narayanan,
even in a large program is relatively small, and the “TSOtool: A Program to Verify Multiprocessor Memory
backtracking depth is shallow. Therefore, it is well worth Systems Using the Memory Consistency Modéoceedings
the trade-off to implement backtracking, since it implies of the International Symposium on Computer Architecture
only a small overhead compared to algorithms whose (ISCA) 2004. N .
completion rate is much lower. [9] J. Ludden, W. Roesner, G.M. Heiling et al, “Functional

Although we present our algorithms and results based Yerification of the POWER4 Microprocessor and POWERA4

Multiprocessor Systems” IBM Journal of Research and
on the TSO and SC memory models, the framework that
. . DevelopmentVol. 46, No. 1, 2002.

we have developed is applicable to other memory models

. . [10] A. Landin, E. Hagersten, and S. Haridi, “Race-free
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Transactional Memory.
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