
Completely Verifying Memory Consistency of Test Program Executions

Chaiyasit Manovit
Sun Microsystems / Stanford University, CA, USA

chaiyasit.manovit@sun.com

Sudheendra Hangal
Magic Lamp Software, Bangalore, India†

hangal@magiclampsoftware.com

Abstract

An important means of validating the design of
commercial-grade shared memory multiprocessors is to
run a large number of pseudo-random test programs on
them. However, when intentional data races are placed
in a test program, there may be many correct results
according to the memory consistency model supported by
the system. For popular memory models like SC and
TSO, the problem of verifying correctness of an
execution is known to be NP-complete. As a result,
analysis techniques implemented in the past have been
incomplete: violations of the memory model are flagged
if provable, otherwise the result is inconclusive and it is
assumed optimistically that the machine's results are
correct.

In this paper, we describe for the first time a
practical, new algorithm which can solve this problem
with certainty, thus ensuring that incorrect behavior of a
large, complex multiprocessor cannot escape. We present
results of our analysis algorithm on test programs run on
a newly designed multiprocessor system built by Sun
Microsystems. We show that our algorithm performs very
well, typically analyzing a program with 512K memory
operations distributed across 60 processors within a few
minutes. Our algorithm runs in less than 2.6 times the
time taken by an incomplete baseline algorithm which
may miss errors. Our approach greatly increases the
confidence in the correctness of the results generated by
the multiprocessor, and allows us to potentially uncover
more bugs in the design than was previously possible.

1. Introduction

This paper deals with the problem of verifying
whether the outcome generated by a shared memory
multiprocessor on executing a test program with data
races is correct. Correctness of the result is defined by the
memory consistency model [1]. Examples of common
memory consistency models (also referred to as memory
models in the rest of this paper) are Sequential
Consistency (SC), Total Store Order (TSO), Relaxed
Memory Order (RMO) [16] and Release Consistency
(RC) [7]. While the focus of our discussion in this paper
is the TSO memory model, our general methodology can
be extended relatively easy to other memory models as
well.

Our work is motivated by the challenges we have
encountered in verifying large, complex multiprocessor
systems. While pseudo-random testing is the backbone of
microprocessor design validation efforts, it is difficult to
employ this methodology effectively for multiprocessors,
since a simple “golden reference model” cannot be used
to check the result of a test program unless it is free of
data races [13]. This is a severe limitation because tests
with aggressive data races tend to expose multiprocessor
bugs much faster. This is proved by the fact that
verification teams often run such tests “blind”, even if
they are unable to check correctness of program results.
They hope to expose bugs by hitting obvious problems
such as a machine hang, system panic, or an unexpected
program crash. However, such testing cannot hope to
expose subtle multiprocessor issues such as illegal
instruction ordering or atomicity violations. Even if an
analysis methodology does exist to check for such
violations, its efficiency is an important consideration,
since test throughput is an important factor in pseudo-
random testing. The more test cycles run, the higher the
confidence in the design, and it is not uncommon for
verification teams to be required to run several trillions of
pseudo-randomly generated test instructions correctly
before shipping a new processor or system [2].

Our overall multiprocessor validation flow is like this:
1. Random generator creates programs with data races
2. Each test program is run on a multiprocessor
3. Analysis algorithm verifies if program results are legal

In step 1, a multiprocessor test program is generated,
which may also include instructions to store programmer
visible results of its load instructions for further analysis,
depending on the available observability (if the system
under test is simulated, for example, we may be able to
directly observe the results of load instructions). In step
2, the program is run on a test platform and the results are
collected. This paper assumes the dynamic program
description and its results are available, and focuses on
efficient algorithms to be used in step 3. Any testing-
based approach has the limitation that it is only as good
as the tests employed. (Of course, we continuously tune
our test-program generator to better expose corner-cases
in the design). However, it has the advantage that it can
be employed on a real system and not just on an abstract
model. Checking end-to-end correctness on real systems
is very important given the disparate elements involved –

 † This work was carried out while the author was affiliated with
Sun Microsystems India Private Limited.

e.g. multi-core, multi-threaded processors, various caches
in the memory hierarchy, the coherency protocol, the
system interconnect, software emulation routines in the
kernel, etc. – and the complexities and corner cases in
their interaction. In addition, our test methodology has
the advantage that it runs on commercial multiprocessor
hardware, running stock operating systems, and can even
be run as a user-mode process at a customer site, since it
requires no additional probes into the system, such as
logic analyzers and oscilloscopes. The analysis
algorithms rely only on programmer-visible results of the
program and do not inherently need additional
information from the system; of course, any additional
ordering information is used if it is available.

Not requiring extra observability is a key attribute
affecting overall test throughput, since maintaining
observability often involves slowing down the system
and reducing test throughput. Even in pre-silicon
validation environments, hardware accelerators can
simulate designs orders of magnitude faster if
observability is sacrificed.

Unlike previous work [8][11], our goal in this paper is
to develop a soundand complete algorithm (i.e. no false
errors reported and no consistency errors left undetected)
which is practically applicable. Instead of assuming a
machine innocent unless proved guilty, we aim to
determine exactly whether or not the system obeys the
memory model guarantees available to the programmer,
for a given test execution result.

Our paper makes the two following important
contributions:
1. We describe a set of efficient algorithms for verifying

TSO compliance of a test program execution. We also
introduce an efficient way to perform backtracking in
order to make the analysis complete.

2. We implement these algorithms and report results of
applying them on large multiprocessor server systems
currently under test. We show that a complete analysis
incorporating edges inference with backtracking,
while being theoretically exponential in the number of
processors, actually runs in very reasonable time and
requires minimal backtracking. Our algorithm also
suggests a potential technique to solve the view
serializability problem in databases, which is
reducible to the VSC-read problem (see definition in
Section 2.)
Paper Outline:Section 2 discusses related work and

existing approaches to verifying compliance of a test
execution with the memory consistency model. Section 3
presents a formal specification for TSO, and the
equivalence of two variants which are necessary for
correctness of the analysis algorithms. Section 4 presents
a baseline algorithm, and then describes three
increasingly precise extensions. Section 5 describes our
results on running these analysis algorithms on large

multiprocessor configurations of up to 60 processors.
Section 6 concludes the paper.

2. Related work

The problem of verifying whether a multiprocessor
test program execution complies with a memory
consistency model was first studied by Gibbons and
Korach for the SC memory model [6]. They called the
problem VSC (Verifying Sequential Consistency) and
proved that the basic VSC problem is NP-complete with
respect to the number of operations in the program, as are
several variations of the problem, when the number of
processors is unbounded. In particular, the VSC-read
problem, which assumes the presence of a mapping
function of every read to the operation which wrote the
value it read, is also NP-complete. The VSC and VSC-
read problems were originally proven NP-complete by a
reduction from the 3SAT and the database view
serializability problem respectively [14]. The VSC-
conflict problem, which is the VSC-read problem
augmented with the total write order per-location,
however, is in P (and similarly, so is the conflict
serializability problem in databases). Similar results have
been shown for the corresponding problems for the TSO
memory model; VTSO and VTSO-read are NP-complete,
while the VTSO-conflict problem can be solved in linear
time [8][11]. The Verifying Memory Coherence (VMC)
problem, which is like VSC, but involves only one
memory location, is also NP-complete; however, VMC-
read is in P [4]. The most interesting variants of the
problem for our purpose are the VTSO and VTSO-read
(or VSC and VSC-read), since pseudo-randomly
generated tests can easily be mapped to these problems
and the analysis is performed on architectural results
visible to the program. The VSC-conflict problem,
though easier to solve, is not very useful on real systems,
since write ordering per location is not easily observable
in general. Gibbons and Korach also propose an
algorithm for VSC-read based on searching a frontier
graph which has a worst case running time of O(np) for n
operations and a fixed number of processorsp [5];
however, this algorithm is impractical for realistic values
of p.

Our previous work describes an incomplete algorithm
which makes a best effort to determine if there is a valid
ordering of operations which can justify the results of the
test program [8]. We also developed a simple heuristic to
determine if an order satisfying all the axioms of the
memory model exist [11]. However, in the many cases
(up to 80% of 16 processor program runs) that the
heuristic failed to determine this, we had to optimistically
assume an order exists though it had not been found. This
runs the risk of letting illegal results go undetected. In
contrast, our new algorithm finds out exactly whether an
order satisfying all the axioms of the memory model
exists, and if it does, it finds the valid order as well.

Cain and Lipasti have proposed a distributed
algorithm to verify correctness of program execution with
respect to SC [3]; however, their techniques employs
online vector clocks for each processor and at each
shared memory location and assumes additional hardware
logic is available for keeping these clocks updated. In our
technique, in contrast, vector clocks are offline, imposing
no overhead on the test program or hardware
implementation. Plakal et al statically verify that a
directory-based protocol implements Sequential
Consistency [15], while Meixner and Sorin use their
proofs to propose addition of verification hardware to the
processor, cache and memory controller which can
dynamically verify Sequential Consistency [12].

Microprocessor design verification teams often use the
additional observability present in simulation to reason
about ordering and correctness [9]. However, these
techniques are heavily microarchitecture dependent, and
are not usable when additional observability is absent.
Taylor et al use a set of informal rules to reason about
ordering of events in test execution [17]; however the
completeness or efficiency of their algorithm is not
described.

Finally, the generic notion of embedding memory
ordering relations in a graph (and performing cycle
detection on the graph to flag inconsistencies) has been
used often and is originally attributed to Landin et al [10].

3. TSO specification

The axioms of the TSO memory model have been
formally described by Sindhu et al [16]. We briefly
discuss the notation and the axioms below. The notation
used is as follows:

La
i a Load to location a by processor i

Sa
i a Store to location a by processor i

�La
i ; Sa

i � a Swap to location a by processor i

Val �La
i � the value read byLa

i

Val �Sa
i � the value written by Sa

i

Opa
i either a load or a store

 M a memory barrier

 ; a per processor program order

� the global memory order

An order is defined as a relation that is reflexive, anti-
symmetric and transitive. The per processor program
order is denoted by the character ; and the global memory
order is denoted by the character�. The following are the
TSO axioms per Sindhu et al, augmented with an
additional axiom for Memory barriers.

Order : There is a total order over all stores.
�Sa

i , Sb
j : �Sa

i �Sb
j ���Sb

j�Sa
i �

Atomicity : No stores can intervene between the load and
store components of an atomic swap.
�La

i ; Sa
i ���La

i �Sa
i �	��Sb

j : Sb
j�La

i �Sa
i �Sb

j �

Termination : If one processor does a store and another
processor repeatedly does loads to the same location,
there will eventually be a load that succeeds S � in .

Sa
i 	�La

j ; �
��La
j��La

j ; �
such that Sa
i �La

j

LoadOp and StoreStore: The only reordering allowed
between operations on the same processor is that loads
can overtake preceding stores.

La
i ;Opb

i � La
i �Opb

i

Sa
i ; Sb

i �Sa
i �Sb

i

Value: The value returned by a load is the value written
to it by the last store in global order, amongst the set of
stores preceding it in either global order or program
order.

Val �La
i �Val �Max

<
��Sa

k�Sa
k�La

i ���Sa
i�Sa

i ; La
i ���

Membar: Membars order operations on the issuing
processor.

Op1 ; M ;Op2�Op1�Op2

Note that the definition of the value axiom permits
implementations with store buffers to locally bypass data
from a store to a load, before the store is globally visible.
For the SC memory model, the only difference from TSO
is that this is disallowed; all relations in program order
must also appear in global order.

The TSO memory model as defined in SPARC V9
[18] is slightly different from the above axioms in 2
points:
1. Memory order is total on all memory operations. (The

Order axiom above only defines it to be total on all
stores.)

2. Atomic swaps do not allow any other memory
operation to intervene the load and the store
components at all. (The Atomicity axiom above only
prevents intervening stores.)
Formally:

Order : There is a total order over all operations.
�Opa

i ,Opb
j : �Opa

i �Opb
j ���Opb

j�Opa
i �

Atomicity : No operations can intervene between the load
and store components of an atomic swap.
�La

i ; Sa
i ���La

i �Sa
i �	��Opb

j :Opb
j�La

i �Sa
i �Opb

j �

It can be shown, however, that these 2 seemingly
different definitions of the TSO model are essentially
equivalent for verification purposes, i.e. any execution
trace which satisfies the axioms of either system also
satisfies the other. For ease of understanding and
designing analysis algorithms, we will use the stricter
versions of the Order and Atomicity axioms.

4. Algorithms for verifying TSO

Our main focus in this section is algorithms for the
VTSO-read problem. We impose the constraint on test
programs that each store in a test program writes a
different value. This allows us to map each load to the
store which created the value it read, and thus gives us
the read-mapping function.

The following features are common to all algorithms
described in this section. A program and its execution
result are represented by a directed graph, whose nodes
represent dynamic operations (loads or stores) in the
program. Edges represent ordering relations in the global
memory order�. Since� is transitive, any path in the
graph implies the existence of the� relation between the
source and destination of the path. We ignore reflexivity
of � by not explicitly adding an edge from each node to
itself. A legal outcome should not cause cycles in the
graph, since this would violate the anti-symmetry

�property of .
A synthetic node at the root of the graph acts like a set

of stores writing initial values to all memory locations. A
set of atomic operations is modeled in the graph by
forcing incoming edges incident to any node in the set to
point to its first node; similarly, outgoing edges from any
node in the set are redirected to leave from its last node.
This automatically ensures that the (stronger version of
the) Atomicity axiom holds for all relations embedded in
the graph at all times. A read-mapping functionw(L)
maps each load to the store which wrote that value. A
failure is directly signaled if there exists a load reading a
value never written to that memory location. An inverse
of the read-mapping is also computed and cached in each
store node; it represents the set of all loads that read the
value written by that store.

4.1. Baseline algorithm for VTSO-read

The baseline algorithm (reproduced from our previous
work [11]) adds edges to the graph using following rules:

Static Edges: Program order edges are added to the
graph according to the following 3 rules. These edges are
independent of execution results:

R1: L;Op ⇒ L ≤ Op (LoadOp axiom)
R2: S;S' ⇒ S ≤ S' (StoreStore axiom)
R3: S;M;L ⇒ S ≤ L (Membar axiom)
Note that we can redirect our verification from TSO to

the SC memory model just by changing the above rules
to ensure that program order between two operations also
implies global order between them. The rest of the rules
for all the algorithms in this section can remain exactly
the same.

For the remaining rules, letS, S', andL be accesses to
the same location; where S = w(L) and S' � S.

Observed Edges: For all loads, the edges specified by
the following 2 rules are added based on the load results.

R4: ¬ S;L ⇒ S ≤ L (Value axiom)
This follows becauseSmust be in one of the two store

sets in the Value axiom for L.
R5: S';L ⇒ S' ≤ S (Value axiom)
This must be true because if bothS ≤ S' andS';L are

true, L cannot read the value written bySaccording to the
Value axiom. We only need to consider the latest storeS'
precedingL, because prior stores from the same thread
are ordered before S'.

Inferred Edges: The last 2 rules follow from the Value
axiom:

R6: S' ≤ L ⇒ S' ≤ S (Value axiom)
Assuming otherwise,S ≤ S' (and givenS' ≤ L) will

lead to a contradiction becauseL cannot read the value
written bySas it would have already been overwritten by
S'.

R7: S ≤ S' ⇒ L ≤ S' (Value axiom)
Assuming otherwise,S' ≤ L (because there is a total

order on all operations, according to the stronger version
of the Order axiom), it would be illegal forL to read the
value written by S as it would have already been
overwritten by S'.

Note that we use the order≤, which is still being
derived, to determine the condition to infer more edges in
rules R6 and R7. To solve this circular dependency, we
iterate over these two rules until no further edges can be
added to the graph and a fixed point is reached.

Intuitively, this algorithm tries to efficiently infer as
much information about ordering as possible. The rules in
this algorithm are selected such that they can be
efficiently implemented; they are not necessarily
complete. Nevertheless, if we also have available the
total write order per location for the test case, the VTSO-
read problem is transformed into an instance of the
VTSO-conflict problem, for which this algorithm is
complete [11].

A key performance enhancement for the above
algorithm is the employment of vector clocks. The use of
vector clocks is popular in the area of distributed
computing, where they are used on each processing
element to track the perceived time at other processing
elements. In a similar way, we associate offline vector
clocks with each operation in the program to reason about
what operations on other processors must succeed this
operation. These vector clocks are present only during
analysis; they do not involve any maintenance by the
hardware or the test program as it is running.

Using vector clocks, we avoid being exhaustive in
applying rules R6 and R7 to every pairS' ≤ L andS ≤ S'
in the program in each iteration. It is sufficient to start at
each store node and search only for its earliest
successors, either loads or stores, that access the same
location but with different values. For the SC model, we
only need to find the earliest such successor per thread as
program order in SC implies global order. For the TSO
model, a load can overtake preceding stores on the same

processor, and therefore, we split the instruction stream
of one TSO processor into twovirtual SCprocessors; one
contains only loads and the other contains the rest (stores,
atomics, and membars). In the TSO modelL;S also
impliesL � S, andS;M;L impliesS� M � L, and we shall
represent these ordering requirements with an edge
between such operations which are now separated in the
two virtual SCprocessors. We attach to each node a data
structure based on reverse time vector clocks to track its
earliest successors in othervirtual SC processors. This
data structure helps limit the number of edges per node to
the number ofvirtual SCprocessors. Figure 1 outlines the
algorithm for rules R6 and R7.

Time Complexity:Although the total number of edges
in the graph at a given point in time is bounded by O(pn)
wherep is the number of processors andn is the number
of nodes, the number of iterations in the worst case is
actually bounded by the total number of possible edges,
which is O(n2). This is because an edge inferred in one
iteration may be rendered redundant and removed due to
a stronger edge inferred in a later iteration. In each
iteration, there are O(n) stores whose vector clocks will
be traced with O(p) time complexity each. This totals to
O(pn3).

4.2. Completely verifying TSO

We now turn our attention to algorithms which can
completely verify TSO. The baseline algorithm presented
in the previous section is incomplete because even when
the graph is acyclic, it does not explicitly ensure that the
Order axiom is satisfied. Figure 2a illustrates a case
where an existing relation is not inferred by the
algorithm; the edges in the graph are depicted at the point
when the fixed point has been reached (edges from a
store to corresponding loads reading its value are omitted
to not overcrowd the graph). The notation here is: S[A]#1
refers to a store which writes value 1 to location A, while
L[B]=11 refers to a load to address B which reads value
11; Pn denotes operations on processorn. Notice that
S[A]#1 and S[A]#2 are left unordered by the baseline
analysis. However, we can reason that S[A]#1� S[A]#2
must be true. If not, S[A]#2� S[A]#1 by the Order
axiom; but with this order and the fact that only one of
the two values, either 11 or 12, can survive in location B
after S[A]#2, both loads from location B must read the
same value. This example illustrates a missing relation,
but not yet a missed TSO violation; simply adding a
similar, mirrored set of nodes to a different location C

Figure 2a.

Figure 2b. (Membars are omitted)

Figure 2c. (Membars are omitted)

Figure 2. Examples of incompleteness

P2

S[A]#2 L[B]=11 L[B]=12

P0 P1

S[B]#11 S[B]#12

P3

P4 P5

S[A]#1

S[B]#11

L[A]=2

P0

S[B]#12

L[A]=2

P1

S[A]#2

P2

S[A]#1

L[B]=11

P3

S[A]#3

L[B]=12

P4

S[B]#11

L[A]=2

P0

S[B]#12

L[A]=2

P1 P3

P4 P5

L[B]=11

S[A]#1

L[B]=12

S[A]#2

P2

Figure 1. High level description of the iteration over R6 &
R7 with Vector Clocks

Input: A per virtual SC processor instruction sequence consisting of
loads, stores, and membars. A swap is considered to be both a load and a
store. A function w, which maps a load to the store which created its
value:

Data Structure: An offline Reverse Time Vector Clock at each node x,
x.rtvc[i] points to the first node in virtual SC processor i such that
x≤x.rtvc[i] . Initial rtvc[] for all nodes are precomputed with backward
topological sort.

Apply rules R1-R5

[rule R6 and R7] - done in iterations

do
 for each store S whose rtvc[] has been changed
 for each virtual SC processor i
 x := S.rtvc[i]
 if x is a load (virtual SC processor i contains only loads) then
 L := first load that accesses same location as S, x;L, and w(L)�S
 [rule R6]
 add edge S→w(L) if not already S≤w(L)
 update S.rtvc[](and propagate to its predecessors recursively)
 else (virtual SC processor i contains stores, atomics and membars)
 S' := first store/atomic that accesses same location as S and x;S'
 [rule R7]
 for all loads L such that w(L)=S
 add edge L→S' if not already L≤S'
 update L.rtvc[] (and propagate to its predecessors recursively)
 end for
 end if
 end for
 end for
until no more edges can be added

(two stores to C ordered before S[A]#1, and two loads to
C ordered after S[A]#2) creates an instance of a real TSO
violation. In this case, the two stores S[A]#1 and S[A]#2
cannot be ordered, but such a violation would be missed
by the incomplete algorithm in the previous section.

One may attempt to design a rule to infer the missing
edge in this example. Consider the following hypothetical
rule:

R8: CommonPred(L, L') ≤ CommonSucc(S, S')
L and L' are loads to the same location reading

different values written byS and S' respectively.
CommonPred(L, L') is the latest node that precedes both
L andL' in the current snapshot of the global order being
derived, whileCommonSucc(S, S') is conversely defined.
While this rule will catch the missing edge in the
example shown in Figure 2a, it still misses the edge in a
slightly modified scenario shown in Figure 2b because
there is no common successor between S[B]#11 and
S[B]#12. Note that Membars between the store and the
load in the same processor are omitted from the picture
(or readers may assume the SC model). S[A]#1≤ S[A]#2
is a missing edge because, assumed the opposite order,
both L[A]=2 nodes will be ordered before S[A]#1 by rule
R7, making S[A]#1 the common successor of S[B]#11
and S[B]#12 and, hence, only one value, either 11 or 12,
can survive in location B.

Figure 2c illustrates that missing edges are not the
only form of incompleteness. One can reason that S[A]#2
cannot be ordered before both S[A]#1and S[A]#3
because that would lead to the same contradiction seen
earlier with Figure 2b (when we incorrectly order
S[A]#2 ≤ S[A]#1). However, such a constraint cannot be
captured in our graph representation where we only draw
an edge to order 2 operations when such an order is
certain. Despite knowing that S[A]#1≤ S[A]#2 or
S[A]#3 ≤ S[A]#2 (or both) in this example, we can draw
neither edge because their presence is not certain when
considered individually. To create a TSO violation that
would be missed by the baseline algorithm, we can add a
similar, mirrored set of nodes such that none of the stores
to location A can be ordered first.

To completely verify TSO compliance, we will
attempt to determine if there exists aTotal Operation
Order (TOO), which completely orders all operations
(loads and stores) in the program, that also satisfies the
rest of the TSO axioms. Recall that this TOO corresponds
to the stronger version of the Order axiom (which is
equivalent to the requirement that only stores be ordered).

A simplistic approach to determining if a valid TOO
exists would be to perform a topological sort on the
analysis graph after the completion of the baseline
algorithm, and check if all the axioms still hold (the same
baseline algorithm can be conveniently used to determine
the validity of a TOO, as earlier pointed out in Section
4.1). The topological sort effectively creates an arbitrary
“tie-break” decision between operations left unordered by

the baseline algorithm. We have found that most often,
this sort does not yield a valid order. This is because
when we arbitrarily assign an order between a pair of
previously unordered operations during topological sort,
it often has ordering implications on other unordered
operations; this creates conflicts and usually ends up
violating the Value axiom. Since a straightforward
algorithm based on topological sort does not work, we
discuss three techniques in the following sections towards
improving the chances of finding a valid TOO. In all
cases, we assume the baseline algorithm has inferred all
its edges and terminated without cycles in the graph.

4.2.1. Heuristic for topological sort (Heu). In our
previous work, we ensure that each time a store node is
picked by the topological sort, rule R7 is immediately
applied to it [11]. An alternative, but equivalent,
implementation of this heuristic is to track theactive
store (the store that was most recently picked by the
topological sort) for each memory location and allow the
topological sort to further pick only a load that reads the
value written by theactivestore or by the store preceding
the load in program order. When all loads that read the
value written by anactive store have been picked, the
store becomesinactive and new store can be picked and
made active. (For SC, this heuristic is similar to the
conditions used to determine the validity of frontiers in
the O(np) backtracking algorithm by Gibbons and Korach
[5]. However, an important difference is that their
algorithm does not have any notion of initially inferring
edges as in our baseline algorithm, and as a result will
visit many more invalid paths in the frontier graph).

Time Complexity: A typical topological sort has
O(n+e) complexity wheren is the number of nodes ande
is the number of edges, which is O(pn) in this case
(because each node only maintains a vector clock). In
addition, this heuristic spends O(p) time to evaluate the
selection for the next node. This extra effort is O(pn) and,
nevertheless, the total complexity is still O(pn). Note that
this time complexity is for a case when the algorithm
succeeds in finding a valid TOO. The heuristic may
terminate much sooner when a TOO cannot be found.

Although this heuristic is intuitive and fast, we find
that it is inadequate; it helps find a valid TOO only when
there is relatively low sharing, i.e.p/a is small (wherep is
the number of processors anda is the number of memory
locations) [11]. Section 5 provides more results.

4.2.2. Deriving edges during topological sort (Deriv).
We can extend the heuristic technique in the previous
section thus: Each time a store node is picked by the
topological sort, rules R6 and R7 are reapplied iteratively
to the whole graph until a new fixed point is reached.
Careful implementations can minimize the computation
by applying the rules only to the affected nodes. (In our
implementations, such optimizations are also applied to
the baseline algorithm during iteration.)

Time Complexity:Although this heuristic has to go
through as many fixed points as the total number of
stores which is O(n), the total number of iterations
required to apply rules R6 and R7 throughout these O(n)
fixed points is still bounded by the total number of
possible edges, O(n2). Therefore, the worst-case time
complexity remains O(pn3). Again, this time complexity
is for the case when the algorithm succeeds in finding a
valid TOO. It may terminate much sooner when this
heuristic fails.

Despite the additional effort spent in deriving more
edges, this algorithm's effectiveness in finding a valid
TOO is still limited with intense sharing. Nevertheless, in
practice, it provides significant improvement in TOO
completion rate over the previous heuristic.

4.2.3. Backtracking (Heu+Back, Deriv+Back). Since
the above heuristics are only best-effort and had
unsatisfactory rates of completion (in which case the
analysis is inconclusive and optimistically assumed
passing), we decided to implement backtracking on top of
both the heuristics described above. When the topological
sort gets stuck (no instruction can be picked without
violating any TSO axioms), instead of giving up, we
backtrack to the last arbitrary tie-break decision made
and choose a different operation to order first. Given that
a valid Total Store Order will also result in a valid TOO
(as pointed out in Section 2 regarding the equivalence of
the two different versions of the Order axiom), we can
unwind the order directly to the most recent store.

For the heuristic Heu in Section 4.2.1, adding
backtracking is relatively easy. Adding the feature to the
Deriv algorithm in Section 4.2.2 is less straightforward
because it modifies the graph by deriving additional
edges based on ordering decisions made by the
topological sort. We maintain our data structures such
that we can checkpoint and undo these updates when we
need to backtrack and cancel the decision. Edges that are
derived after a store is picked by the topological sort will
be associated with the store. When we backtrack and
undo the picking of a store, we remove all the derived
edges associated with it and recompute vector clocks for
all the affected nodes.

Time Complexity:By using a similar argument to that
which Gibbons and Korach use to explain the bounds on
their backtracking algorithm based on searching the
frontier graph [5], the worst-case complexity of our
backtracking algorithms is also O(np/pp). At each step
during backtracking, the additional cost of finding a new
fixed point is O(pn3). This results in O(np/pp×pn3) in total.
However, in practice, the number and depth of backtracks
is small, resulting in small penalty in terms of time over
the Deriv heuristic in the previous section. In return for
this increase in analysis time, we achieve a 100%
completion rate when a valid ordering exists which
justifies the results of the program.

5. Results

In this section, we present results of our extensions to
the baseline analysis algorithm on test results generated
from a new multiprocessor system which is actively
under test at Sun Microsystems. Our results show that
Deriv+Back performs very well; it completely analyzes
programs with 512K memory operations distributed
across 60 processors and finds a valid TOO for each
program within 5 minutes. On average, the analysis time
is less than 2.6 times that of the incomplete baseline
algorithm which may miss errors. Therefore we find that
Deriv+Back greatly increases our confidence in the
correctness of the results generated by the
multiprocessor, and allows us to potentially uncover
more bugs in the design than was previously possible.

On the other hand,Heu+Back (which does not
iteratively derive additional edges during the topological
sort) does not perform well at all; on all tests except the
ones with a small number of processors, it did not finish
in a reasonable amount of time. Therefore, we ignore it
from further consideration. Also recall that all of the
algorithmsHeu, Deriv, and Deriv+Back are applied on
top of the baseline algorithm, that is after it has reached a
fixed point. Applying them directly, without first running
the baseline algorithm, we found they were much less
effective: the effectiveness ofHeu andDeriv in finding a
valid TOO reduced dramatically and the time spent in
Deriv+Back exploded as the number of backtracks
increased substantially. While we studied these variations
for completeness, we do not consider them interesting
and therefore omit their detailed results from this section.

System under test: We performed the following
experiments on an actual multiprocessor system designed
and built by Sun Microsystems. The system we ran the
test programs on has 60 processor cores. Test threads are
bound to different processor cores, and run mostly
concurrently since the system is quiet except for
background operating system activity. We ran pseudo-
random multi-threaded programs with the following
instruction mix: 33.3% loads, 33.3% stores, 30% atomic
swaps, 1.7% membars, and 1.7% others. We varied the
number of threads/processors (p) and the number of
memory locations (a) used by the programs, as well as
the size of the programs (denoted asn, the total number
of memory operations across all processors). The
execution results of these programs were saved and later
analyzed on a different system based on a previous
generation 1.2 GHz Sun's UltraSPARC-III+ processor.
For each tuple (n,p,a), 16 different pseudo-random
programs were generated, executed, and analyzed. Unless
noted otherwise, the presented results are the average
over these 16 runs for each tuple. Analysis time is the
major factor determining test throughput since the test
threads are pre-generated and pre-compiled, and only
thread selection is done at runtime. Running the test itself
takes on the order of a few milliseconds on a real system.

While we have also applied our verification
methodology to the same system in a pre-silicon software
simulation environment, analysis time was not a major
concern in that case. Nevertheless having a complete
algorithm is useful. In simulation, though we can
sometimes deal with the much simpler VTSO-conflict
problem - which is in P - if total write order for each
location can be observed, in reality, such ordering is often
not readily available in the simulation test bench, as a
single point of ordering may not exist in complex
systems. Besides, software simulators usually scale up to
only a few processors and cannot handle large whole-
system simulations.

Figure 3 shows the effectiveness ofHeu andDeriv in
finding a valid TOO forn=128K. (For larger number of
operations,n, their effectiveness decreases as expected.)
Deriv provides significant improvement over Heu but it is
still incomplete when data sharing is intense. With
backtracking,Deriv+Back always finds a valid TOO in
our experiments. A key finding is that when backtracking
is necessary, the number of backtracks is at most 75,
which is small for the large problem sizes used in our
experiments, and the algorithm never backtracks more
than 1 level each time. This means that the additional
overhead due to backtracking is minimal, compared to
just runningDeriv. We also note that the analysis time
overhead incurred byHeu is virtually constant and
minimal, about 10%, while the overhead incurred by
Deriv+Back is significant and grows with all ofp, n, and
a. Analyzing the largest test programs in our experiment,
with n=512K, p=60, anda=256, takes, on the average,
118% more time than the baseline algorithm for cases
that require backtracking (whileDeriv would take 108%
more time for cases not requiring backtracking, just a
slightly smaller overhead). With a lower processor count
(16 and below), the analysis time overhead is usually less
than 80% over the baseline algorithm.

We deem the extra overhead in terms of analysis time
worth the extra assurance that the program results are
indeed correct, especially for large processor

configurations where the errors may be subtle and test
methodologies are limited.

Figure 4 shows the effect ofn, p, anda on the analysis
time. The absolute analysis time of the baseline algorithm
and Deriv+Back are plotted in Figure 4a and 4c
respectively. Figure 4b shows the ratio of the analysis
time of Deriv+Back over the baseline. Since the graphs
are plotted using log scale over the same range on Y-axis,
we can view Figure 4c as being the superposition of
Figure 4a and 4b. As can be seen, the slope in Figure 4b
is less than that in Figure 4a, which means the increasing
analysis time seen in Figure 4c are dominated by the
increasing analysis time in Figure 4a. This interpretation
suggests that our backtracking technique can scale (as
long as the baseline algorithm scales).

We also repeated the same experiments using 2 other
instruction distributions in the pseudo-random test
generator: one biased toward load instructions, with 50%
loads and 16% stores, and the other biased toward store
instruction, with 50% stores and 16% loads (percentages
of other instructions were kept the same). On the average,
as the percentage of stores increases, we find that the
analysis takes more time. Both the absolute analysis time
of the baseline and the slowdown ratio of Deriv+Back are
affected, as shown in Table 1.

We conjecture that a higher store density requires
longer analysis time forDeriv+Back because there are
potentially more values that are not observed at all, and
hence, the baseline algorithm can infer fewer relations
which would be helpful for Deriv+Back during
backtracking. With no loads at all, on the other hand, the
analysis would run very quickly because any ordering
would be acceptable under TSO axioms. Therefore, we

Figure 3. Effectiveness of Heu and Deriv in finding valid TOO's

2
4

8
16

32
60

0

20

40
50

60
70

80
90

100

4

16

64

256

% TOO Found by Deriv (n=128K)

processors

%
 T

O
O

 F
ou

nd

locations

2
4

8
16

32
60

0

20

40

60
70

80
90

100

4

16

64

256

% TOO Found by Heu (n=128K)

processors

%
 T

O
O

 F
ou

nd

locations

Table 1. Baseline analysis time and slowdown ratio of
Deriv+Back for n=256K, averaged over p and a.

LD-biased LD-ST equal ST-biased

Baseline (secs) 14.9 16.5 17.5

Slowdown ratio 1.45 1.73 2.05

expect a tipping point, as we bias the test more towards
stores, where the runtime starts to decrease.

Although Deriv+Backhas not discovered any bugs so
far in the real system that are missed by the baseline
analysis, we tested it with TSO violations based on the
examples in Figure 2, and it successfully found the
missed cycles, as expected. Being a backtracking
algorithm, however, it cannot avoid the exponential
analysis time complexity for such cases. We expect to
explore other heuristics in order to find a smaller portion
of an execution trace that contains the TSO violation.

6. Conclusions and future work

We have described a set of algorithms which can be
used to verify whether a test program execution complies
with the axioms of the memory consistency model. Our
algorithms encompass a range of accuracy and runtime.
Faster algorithms may miss errors in return for higher
throughput; slower algorithms based on backtracking will
not miss errors, but have an additional runtime overhead
of 20-160%.

Figure 4a. Analysis time of Baseline

Figure 4b. Ratio of analysis time of Deriv+Back over Baseline

Figure 4c. Analysis time of Deriv+Back

Figure 4. Analysis time of Deriv+Back vs. n (averaged over a), p (averaged over a), and a (averaged over p)

64K 128K 256K 512K

1

10

100

Effect of # nodes (n)
2

4
8

16

32
60

nodes (n)

D
er

iv
+B

ac
k

A
na

ly
si

s
T

im
e

(s
ec

s)

2 4 8 16 32 60

1

10

100

Effect of # processors (p)

64K

128K

256K
512K

processors (p)

D
er

iv
+B

ac
k

A
na

ly
si

s
T

im
e

(s
ec

s)

4 16 64 256

1

10

100

Effect of # locations (a)

64K

128K
256K

512K

locations (a)

D
er

iv
+B

ac
k

A
na

ly
si

s
T

im
e

(s
ec

s)

64K 128K 256K 512K

1

10

100

Effect of # nodes (n)
2

4
8

16
32

60

nodes (n)

D
er

iv
+B

ac
k

A
na

ly
si

s
T

im
e

(s
ec

s)

2 4 8 16 32 60

1

10

100

Effect of # processors (p)

64K
128K

256K

512K

processors (p)

D
er

iv
+B

ac
k

A
na

ly
si

s
T

im
e

(s
ec

s)

4 16 64 256

1

10

100

Effect of # locations (a)

64K

128K
256K

512K

locations (a)

D
er

iv
+B

ac
k

A
na

ly
si

s
T

im
e

(s
ec

s)

64K 128K 256K 512K

1.0X

10.0X

100.0X

1.9X 2.1X 2.2X 2.4X

Effect of # nodes (n)
2
4

8
16

32
60

nodes (n)

D
er

iv
+B

ac
k

/ B
as

el
in

e
R

at
io

2 4 8 16 32 60

1.0X

10.0X

100.0X

1.2X 1.2X 1.3X
1.5X

1.9X
2.4X

Effect of # processors (p)

64K
128K

256K
512K

processors (p)

D
er

iv
+B

ac
k

/ B
as

el
in

e
R

at
io

4 16 64 256

1.0X

10.0X

100.0X

1.6X 1.7X 1.6X 1.4X

Effect of # locations (a)

64K
128K

256K
512K

locations (a)

D
er

iv
+B

ac
k

/ B
as

el
in

e
R

at
io

Overall, our findings indicate that backtracking is
essential for a good completion rate when no violation
exists; however the actual number of backtracks needed
even in a large program is relatively small, and the
backtracking depth is shallow. Therefore, it is well worth
the trade-off to implement backtracking, since it implies
only a small overhead compared to algorithms whose
completion rate is much lower.

Although we present our algorithms and results based
on the TSO and SC memory models, the framework that
we have developed is applicable to other memory models
including Relaxed Memory Order (RMO) and
Transactional Memory.

7. Acknowledgments

We thank the anonymous reviewers for their useful
comments, Robert Cypher for many helpful discussions
regarding the VTSO problems, and Shrenik Mehta and
Durgam Vahia for managerial support.

8. References

[1] S.V. Adve and K. Gharachorloo, “Shared Memory
Consistency Models: A Tutorial”,Digital Western Research
Laboratory Technical Report, 1995.

[2] B. Bentley and R. Gray, “Validating The Intel Pentium-4
Processor”, Intel Technology Journal, 1st Quarter 2001.

[3] H.W. Cain and M.H. Lipasti, “Verifying Sequential
Consistency Using Vector Clocks”,Proceedings of the 14th

ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 2002.

[4] J.E. Cantin, M.H. Lipasti, and J.E. Smith, “The complexity
of Verifying Memory Coherence”, Proceedings of the 15th

annual ACM symposium on Parallel Algorithms and
Architectures, pp. 254-255, ACM, 2003.

[5] P.B. Gibbons and E. Korach, “On Testing Cache-Coherent
Shared Memories”,Proceedings of the 6th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), 1994.

[6] P.B. Gibbons and E. Korach, “Testing Shared Memories”,
Siam Journal on Computing, pp. 1208-1244, August 1997.

[7] K. Gharachorloo, D. Lenoski, J. Laudon et al, “Memory
Consistency and Event Ordering in Scalable Shared-Memory

Multiprocessors”, Proceedings of the 17th International
Symposium on Computer Architecture (ISCA), 1990.

[8] S. Hangal, D. Vahia, C. Manovit, J. Lu, and S. Narayanan,
“TSOtool: A Program to Verify Multiprocessor Memory
Systems Using the Memory Consistency Model”, Proceedings
of the International Symposium on Computer Architecture
(ISCA), 2004.

[9] J. Ludden, W. Roesner, G.M. Heiling et al, “Functional
Verification of the POWER4 Microprocessor and POWER4
Multiprocessor Systems”, IBM Journal of Research and
Development, Vol. 46, No. 1, 2002.

[10] A. Landin, E. Hagersten, and S. Haridi, “Race-free
Interconnection Networks and Multiprocessor Consistency”,
Proceedings of the 18th Annual International Symposium on
Computer Architecture (ISCA), 1991.

[11] C. Manovit and S. Hangal, “Efficient Algorithms for
Verifying Memory Consistency”, Proceedings of the
Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2005.

[12] A. Meixner and D.J. Sorin, “Dynamic Verification of
Sequential Consistency”, Proceedings of the 32nd Annual
International Symposium on Computer Architecture (ISCA),
2005.

[13] D. Marr, S. Thakkar, and R. Zucker, “Multiprocessor
Validation of the Pentium Pro Microprocessor”, Proceedings of
COMPCON, 1996.

[14] C. Papadimitriou, “The Serializability of Concurrent
Database Updates”,Journal of the ACM, 26 (1979), pp. 631-
653.

[15] M. Plakal, D.J. Sorin, A.E. Condon, and M. Hill,
“Lamport Clocks: Verifying a Directory Cache-Coherence
Protocol”,Proceedings of the 10th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 1998.

[16] P.S. Sindhu, J.M. Frailong, and M. Cekleov, “Formal
Specification of Memory Models”,Xerox PARC Technical
Report, December 1991.

[17] S. Taylor, C. Ramey, C. Barner, and D. Asher, “A
Simulation-Based Method for the Verification of Shared
Memory in Multiprocessor Systems”,Proceedings of
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2001.

[18] D.L. Weaver, T. Germond, Editors,The SPARC
Architecture Version 9, Prentice Hall, 1994.

