
Achieving Anonymity via Clustering

Gagan Aggarwal1
Google Inc.

Mountain View, CA 94043

gagan@cs.stanford.edu

Tomás Feder2

Comp. Sc. Dept.
Stanford University
Stanford, CA 94305

tomas@cs.stanford.edu

Krishnaram Kenthapadi2
Comp. Sc. Dept.

Stanford University
Stanford, CA 94305

kngk@cs.stanford.edu

Samir Khuller3

Comp. Sc. Dept.
University of Maryland

College Park, MD 20742

samir@cs.umd.edu

Rina Panigrahy2,4

Comp. Sc. Dept.
Stanford University
Stanford, CA 94305

rinap@cs.stanford.edu

Dilys Thomas2

Comp. Sc. Dept.
Stanford University
Stanford, CA 94305

dilys@cs.stanford.edu

An Zhu1

Google Inc.
Mountain View, CA 94043

anzhu@cs.stanford.edu

ABSTRACT
Publishing data for analysis from a table containing personal
records, while maintaining individual privacy, is a problem
of increasing importance today. The traditional approach of
de-identifying records is to remove identifying fields such as
social security number, name etc. However, recent research
has shown that a large fraction of the US population can be
identified using non-key attributes (called quasi-identifiers)
such as date of birth, gender, and zip code [15]. Sweeney [16]
proposed the k-anonymity model for privacy where non-key
attributes that leak information are suppressed or general-
ized so that, for every record in the modified table, there are
at least k−1 other records having exactly the same values for
quasi-identifiers. We propose a new method for anonymiz-
ing data records, where quasi-identifiers of data records are
first clustered and then cluster centers are published. To
ensure privacy of the data records, we impose the constraint

1This work was done when the authors were Computer Sci-
ence PhD students at Stanford University.
2Supported in part by NSF Grant ITR-0331640. This
work was also supported in part by TRUST (The Team
for Research in Ubiquitous Secure Technology), which re-
ceives support from the National Science Foundation (NSF
award number CCF-0424422) and the following organiza-
tions: Cisco, ESCHER, HP, IBM, Intel, Microsoft, ORNL,
Qualcomm, Pirelli, Sun and Symantec.
3Supported by NSF Award CCF-0430650.
4Supported in part by Stanford Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0003 ...$5.00.

that each cluster must contain no fewer than a pre-specified
number of data records. This technique is more general
since we have a much larger choice for cluster centers than
k-Anonymity. In many cases, it lets us release a lot more
information without compromising privacy. We also pro-
vide constant-factor approximation algorithms to come up
with such a clustering. This is the first set of algorithms for
the anonymization problem where the performance is inde-
pendent of the anonymity parameter k. We further observe
that a few outlier points can significantly increase the cost of
anonymization. Hence, we extend our algorithms to allow
an ε fraction of points to remain unclustered, i.e., deleted
from the anonymized publication. Thus, by not releasing a
small fraction of the database records, we can ensure that
the data published for analysis has less distortion and hence
is more useful. Our approximation algorithms for new clus-
tering objectives are of independent interest and could be
applicable in other clustering scenarios as well.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining;
H.3.3 [Information Search and Retrieval]: Clustering

General Terms
Algorithms

Keywords
Privacy, Anonymity, Clustering, Approximation Algorithms

1. INTRODUCTION
With the rapid growth in database, networking, and com-
puting technologies, a large amount of personal data can be
integrated and analyzed digitally, leading to an increased
use of data-mining tools to infer trends and patterns. This
has raised universal concerns about protecting the privacy
of individuals [17].

Age Location Disease
α β Flu

α + 2 β Flu
δ γ + 3 Hypertension
δ γ Flu
δ γ -3 Cold

(a) Original table

Age Location NumPoints Disease
α +1 β 2 Flu

Flu
Hypertension

δ γ 3 Flu
Cold

(c) 2-gather clustering, with maximum radius 3

Age Location Disease
* β Flu
* β Flu
δ * Hypertension
δ * Flu
δ * Cold

(b) 2-anonymized version

Age Location NumPoints Radius Disease
α +1 β 2 1 Flu

Flu
Hypertension

δ γ 3 3 Flu
Cold

(d) 2-cellular clustering, with total cost 11

Figure 1: Original table and three different ways of achieving anonymity

Combining data tables from multiple data sources allows
us to draw inferences which are not possible from a single
source. For example, combining patient data from multiple
hospitals is useful to predict the outbreak of an epidemic.
The traditional approach of releasing the data tables with-
out breaching the privacy of individuals in the table is to
de-identify records by removing the identifying fields such as
name, address, and social security number. However, join-
ing this de-identified table with a publicly available database
(like the voters database) on columns like race, age, and
zip code can be used to identify individuals. Recent re-
search [15] has shown that for 87% of the population in the
United States, the combination of non-key fields like date of
birth, gender, and zip code corresponds to a unique person.
Such non-key fields are called quasi-identifiers. In what fol-
lows we assume that the identifying fields have been removed
and that the table has two types of attributes: (1) the quasi-
identifying attributes explained above and (2) the sensitive
attributes (such as disease) that need to be protected.

In order to protect privacy, Sweeney [16] proposed the k-
Anonymity model, where some of the quasi-identifier fields
are suppressed or generalized so that, for each record in
the modified table, there are at least k − 1 other records in
the modified table that are identical to it along the quasi-
identifying attributes. For the table in Figure 1(a), Fig-
ure 1(b) shows a 2-anonymized table corresponding to it.
The columns corresponding to sensitive attributes, like dis-
ease in this example, are retained without change. The aim
is to provide a k-anonymized version of the table with the
minimum amount of suppression or generalization of the
table entries. There has been a lot of recent work on k-
anonymizing a given database table [3, 12]. An O(k log k)
approximation algorithm was first proposed for the problem
of k-Anonymity with suppressions only [14]. This was re-
cently improved to an O(k) approximation for the general
version of the problem [1].

In this paper, instead of generalization and suppression, we
propose a new technique for anonymizing tables before their
release. We first use the quasi-identifying attributes to de-

fine a metric space (i.e., pairwise distances satisfying the tri-
angle inequality) over the database records, which are then
viewed as points in this space. This is similar to the ap-
proach taken in [5], except that we do not restrict ourselves
to points in Rd; instead, we allow our points to be in an arbi-
trary metric space. We then cluster the points and publish
only the final cluster centers along with some cluster size
and radius information. Our privacy requirement is simi-
lar to the k-Anonymity framework – we require each cluster
to have at least r points1. Publishing the cluster centers
instead of the individual records, where each cluster repre-
sents at least r records, gives privacy to individual records,
but at the same time allows data-mining tools to infer macro
trends from the database.

In the rest of the paper we will assume that a metric space
has been defined over the records, using the quasi-identifying
attributes. For this, the quasi-identifying attributes may
need to be remapped. For example, zip codes could first
be converted to longitude and latitude coordinates to give
a meaningful distance between locations. A categorical at-
tribute, i.e., an attribute that takes n discrete values, can
be represented by n equidistant points in a metric space.
Furthermore, since the values of different quasi-identifying
attributes may differ by orders of magnitude, we need to
weigh the attributes appropriately while defining the dis-
tance metric. For example, the attribute location may have
values that differ in orders of 10 miles with a maximum of
1000 miles, while the attribute age may differ by a single
year with a maximum of 100 years. In this case we assume
that the attribute location is divided by 10 and the attribute
age retained without change if both attributes are needed
to have the same relative importance in the distance metric.
For the example we provide in Figure 1, we assume that the
quasi-identifying attributes have already been scaled. As we
see above, it is quite complicated to algorithmically derive a
metric space over quasi-identifying attributes of records; we
do not pursue it any further in this paper and leave it for
future work.

1We use r instead of k, as k is traditionally used in clustering
to denote the number of clusters.

50 points

���
�

���
�

���
�

8 points

20 points

Maximum Cluster Radius = 10

���
�

��	
	

�
�

8 points
radius 3

20 points
radius 550 points

radius 10

(a) Original points (b) r-gather clustering (c) r-cellular clustering

Figure 2: Publishing anonymized data

To publish the clustered database, we publish three types of
features for each cluster: (1) the quasi-identifying attribute
values for the cluster center (age and location in our exam-
ple), (2) the number of points within the cluster, and (3) a
set of values taken by the sensitive attributes (disease in our
example). We’ll also publish a measure of the quality of the
clusters. This will give a bound on the error introduced by
the clustering.

In this paper we consider two cluster-quality measures. The
first one is the maximum cluster radius. For this we define
the r-Gather problem, which aims to minimize the max-
imum radius among the clusters, while ensuring that each
cluster has at least r members. As an example, r-Gather

clustering with minimum cluster size r = 2, applied to the
table in Figure 1(a) gives the table in Figure 1(c). In this
example, the maximum radius over all clusters is 3. As an-
other example, Figure 2(b) gives the output of the r-Gather

algorithm applied to the quasi-identifiers, shown as points
in a metric space in Figure 2(a). Our formulation of the r-
Gather problem is related to, but not to be confused with,
the classic k-Center problem [8]. The k-Center problem
has the same objective of minimizing the maximum radius
among the clusters, however, the constraint is that we can
have no more than k clusters in total. The r-Gather prob-
lem is different from k-Center problem in that instead of
specifying an upper bound on the number of clusters, we
specify a lower bound on the number of points per cluster
as part of the input. It’s also worth noting that the con-
straint of at least r points per cluster implies that we can
have no more than n/r number of clusters, where n is the
total number of points in our data set.

We also consider a second (more verbose) candidate for in-
dicating cluster-quality, whereby we publish the radius of
each cluster, rather than just the maximum radius among
all clusters. For each point within a cluster, the radius of the
cluster gives an upper bound on the distortion error intro-
duced. Minimizing this distortion error over all points leads
to the cellular clustering measurement that we introduce in
this paper. More formally, the cellular clustering measure-
ment over a set of clusters, is the sum, over all clusters,
of the products of the number of points in the cluster and
the radius of the cluster. Using this as a measurement for
anonymizing tables, we define the r-Cellular Clustering

problem as follows: Given points in a metric space, the goal
is to partition the points into cells, a.k.a. clusters, each of
size at least r, and the cellular clustering measurement is
minimized. Consider again the data in Figure 1(a). Fig-
ure 1(d) shows a r-cellular cluster solution with minimum
cluster size r = 2. The total cost is 2× 1+3× 3 = 11. Also,

Figure 2(c) gives the output of the r-Cellular Clustering

algorithm applied to the quasi-identifiers shown as points in
a metric space in Figure 2(a). The total cost of the solution
in Figure 2(c) is: 50× 10+20× 5+8× 3 = 624. As this cel-
lular clustering objective could be relevant even in contexts
other than anonymity, we study a slightly different version
of the problem: similar to the Facility Location prob-
lem [9], we add an additional setup cost for each potential
cluster center, associated with opening a cluster centered at
that point, but we don’t have the lower bound on number of
points per cluster. We call this the Cellular Clustering

problem. In fact, we will use the setup costs in the Cellu-

lar Clustering problem formulation to help us devise an
algorithm that solves r-Cellular Clustering.

Comparison with k-Anonymity. While k-Anonymity
forces one to suppress or generalize an attribute value even
if all but one of the records in a cluster have the same value,
the above clustering-based anonymization technique allows
us to pick a cluster center whose value along this attribute
dimension is the same as the common value, thus enabling
us to release more information without losing privacy. For
example, consider the table in Figure 3 with the Hamming
distance metric on the row vectors. If we wanted to achieve
5-Anonymity, we will have to hide all the entries in the table,
resulting in a total distortion of 20. On the other hand, a
5-Cellular Clustering solution could use (1, 1, 1, 1) as
the cluster center with a cluster radius of 1. This will give a
total distortion bound of 5 (the actual distortion is only 4).

Attr1 Attr2 Attr3 Attr4
Record 0 1 1 1 1
Record 1 0 1 1 1
Record 2 1 0 1 1
Record 3 1 1 0 1
Record 4 1 1 1 0

Figure 3: A sample table where there is no common
attribute among all entries.

Just like k-Anonymity, r-Gather and r-Cellular Clus-

tering is sensitive to outlier points, with just a few outliers
capable of increasing the cost of the clustering significantly.
To deal with this problem, we generalize the above algo-
rithms to allow an ε fraction of the points to be deleted
before publication. By not releasing a small fraction of the
database records, we can ensure that the data published for
analysis has less distortion and hence is more useful. This
can be done as long as our aim is to infer macro trends from
the published data. On the other hand, if the goal is to find

out anomalies, then we should not ignore the outlier points.
There has been no previous work for k-Anonymity with this
generalization.

We note that, as in k-Anonymity, the objective function is
oblivious to the sensitive attribute labels. Extensions to the
k-Anonymity model, like the notion of l-diversity [13], can
be applied independently to our clustering formulation.

We provide constant-factor approximation algorithms for
both the r-Gather and r-Cellular Clustering prob-
lems. In particular, we first show that the it is NP-hard
to approximate the r-Gather problem better than 2 and
provide a matching upper bound. We then provide exten-
sions of both these algorithms to allow for an ε fraction
of unclustered points, which we call the (r, ε)-Gather and
(r, ε)-Cellular Clustering, respectively. These are the
first constant-factor approximation algorithms for publish-
ing an anonymized database. The best known algorithms [1,
14] for previous problem formulations had an approximation
ratio linear in the anonymity parameter r.

The rest of the paper is organized as follows. First, in Sec-
tion 2, we present a tight 2-approximation algorithm for the
r-Gather problem and its extension to the (r, ε)-Gather

problem. In Section 3, motivated by the desire to reduce the
sum of the distortions experienced by the points, we intro-
duce the problem of Cellular Clustering. We present a
primal-dual algorithm for the problem without any cluster-
size constraints that achieves an approximation ratio of 4.
We then study the additional constraint of having a min-
imum cluster size of r. Finally, we relax the problem by
allowing the solution to leave at most an ε fraction of the
points unclustered. We conclude in Section 4.

2. r-GATHER CLUSTERING
To publish the clustered database, we publish three types of
features for each cluster: (1) the quasi-identifying attribute
values for the cluster center, (2) the number of points within
the cluster, and (3) a set of values taken by the sensitive at-
tributes. The maximum cluster radius is also published to
give a bound on the error introduced by clustering. This
is similar to the traditionally studied k-Center clustering.
In order to ensure r-Anonymity, we don’t restrict the total
number of clusters, instead, we pose the alternative restric-
tion that each cluster should have at least r records assigned
to it. We call this problem r-Gather, which we formally
define below.

Definition 2.1. The r-Gather problem is to cluster n
points in a metric space into a set of clusters, such that each

cluster has at least r points. The objective is to minimize the

maximum radius among the clusters.

We note that the minimum cluster size constraint has been
considered earlier in the context of facility location [10].

We first show the reduction for NP-completeness and hard-
ness proofs.

2.1 Lower Bound
We show that this problem is NP -complete by a reduction
from the 3-Satisfiability problem, where each literal belongs
to at most 3 clauses [6].

Suppose that we have a boolean formula F in 3-CNF form
with m clauses and n variables. Let F = C1 ∧ . . . ∧ Cm,
be a formula composed of variables xi, i = 1 . . . n and their
complements xi.

From the boolean formula, we create a graph G = (V, E)
with the following property: There is a solution to the r-
Gather problem with a cluster radius of 1, with respect to
the shortest distance metric on the graph G, if and only if
F has a satisfying assignment.

We create the graph as follows: For each variable xi, create
two vertices vT

i and vF
i , and create an edge (vT

i , vF
i) between

the two vertices; in addition create a set Si of (r − 2) nodes
and add edges from each node in Si to both vT

i and vF
i .

Picking vT
i (vF

i) as a center corresponds to setting xi = T
(F). (Note that we cannot choose both vT

i and vF
i since

there are not enough nodes in Si.) For each clause Cj , create
a new node uj that is adjacent to the nodes corresponding
to the literals in the clause. For example, if C1 = (x1 ∨ x2)
then we add edges from u1 to vT

1 and vF
2 .

If the formula is indeed satisfiable, then there is a clustering
by picking vT

i as a center if xi = T and picking vF
i otherwise.

Each clause is true, and must have a neighbor chosen as a
center. Moreover by assigning Si to the chosen center, we
ensure that each center has at least r nodes in its cluster.

Now suppose there is an r-gather clustering. If r > 6 then
both vT

i and vF
i cannot be chosen as centers. In addition,

the clause nodes uj have degree at most 3 and cannot be
chosen as centers. If exactly one of vT

i or vF
i is chosen as a

center, then we can use this to find the satisfying assignment.
The assignment is satisfying as each clause node has some
neighbor at distance 1 that is a chosen center, and makes
the clause true.

This completes the NP-completeness proof. Note that this
reduction also gives us a hardness of 2. We just showed that
there is a solution to the r-Gather problem with a cluster
radius of 1 if and only if F had a satisfying assignment. The
next available cluster radius is 2 in the metric defined by the
graph G.

2.2 Upper Bound
We first use the threshold method used for k-Center clus-
tering to guess R, the optimal radius for r-Gather. The
choices for R are defined as follows. We will try all values
1

2
dij where dij is the distance between points i and j. Note

that this defines a set of O(n2) distance values. We find the
smallest R for which the following two conditions hold:

Condition (1) Each point p in the database should have
at least r − 1 other points within distance 2R of p.

Condition (2) Let all nodes be unmarked initially. Con-
sider the following procedure: Select an arbitrary un-
marked point p as a center. Select all unmarked points

within distance 2R of p (including p) to form a cluster
and mark these points. Repeat this as long as possi-
ble, until all points are marked. Now we try to reassign
points to clusters to meet the requirement that each
cluster has size at least r. This is done as follows. Cre-
ate a flow network as follows. Create a source s and
sink t. Let C be the set of centers that were chosen.
Add edges with capacity r from s to each node in C.
Add an edge of unit capacity from a node c ∈ C to a
node v ∈ V if their distance is at most 2R. Add edges
of unit capacity from nodes in V to t and check to see
if a flow of value r|C| can be found (saturating all the
edges out of s). If so, then we can obtain the clusters
by choosing the nodes to which r units of flow are sent
by a node c ∈ C. All remaining nodes of V can be
assigned to any node of C that is within distance 2R.
If no such flow exists, we exit with failure.

The following lemma guarantees that the smallest R that
satisfies these conditions is a lower bound on the value of
the optimal solution for r-Gather. Suppose we have an
optimal clustering S1, . . . , S` with ` clusters. Let the maxi-
mum diameter of any of these clusters be d∗ (defined as the
maximum distance between any pair of points in the same
cluster).

Lemma 2.1. When we try R = d∗

2
, then the above two

conditions are met.

Proof. By the definition of r-Gather, every point has
at least r− 1 other points within the optimal diameter, and
hence within distance 2R. Consider an optimal r-Gather

clustering. For each point i, all points belonging to the same
optimal cluster c as the point i are within a distance 2R of i.
Thus, in the procedure of Condition (2), as soon as any point
in c is selected to open a new cluster, all unmarked points
belonging to c get assigned to this new cluster. So at most
one point from each optimal cluster is chosen as a center
and forms a new cluster. We would now like to argue that
the reassignment phase works correctly as well. Let S be
the set of chosen centers. Now consider an optimal solution
with clusters, each of size at least r. We can assign each
point of a cluster to the center that belongs to that cluster,
if a center was chosen in the cluster. Otherwise, since the
point was marked by the algorithm, some center was chosen
that is within distance 2R. We can assign this point to the
center that had marked it. Each chosen center will have at
least r points assigned to it (including itself).

Since we find the smallest R, we will ensure that R ≤ d∗/2 ≤
R∗ where R∗ is the radius of the optimal clustering. In
addition, our solution has radius 2R. This gives us a 2-
approximation.

Theorem 2.2. There exists a polynomial time algorithm

that produces a 2-approximation to the r-Gather problem.

2.3 (r, ε)-Gather Clustering
A few outlier points can significantly increase the clustering
cost under the minimum cluster size constraint. We consider

a relaxation whereby the clustering solution is allowed to
leave an ε fraction of the points unclustered, i.e., to delete an
ε fraction of points from the published k-anonymized table.
Charikar et al. [4] studied various facility location problems
with this relaxation and gave constant-factor approximation
algorithms for them.

For the (r, ε)-Gather problem, where each cluster is con-
strained to have at least r points and an ε fraction of the
points are allowed to remain unclustered, we modify our
r-Gather algorithm to achieve a 4-approximation. We re-
define the condition to find R. We find the smallest R that
satisfies the following condition: There should be a subset
S of points containing at least 1 − ε fraction of the points,
such that each point in S has at least r−1 neighbors within
distance 2R in S.

This condition can be checked in O(n2) time by repeatedly
removing any point in S that has fewer than r − 1 other
points in S within distance 2R of itself, with S initially
being the entire vertex set. It is clear that the smallest R
we found is no more than R∗, the optimal radius.

Let R be the value that we found. Let N(v) denote the set
of points in G within distance 2R of v, including v itself. We
know then N(v) ≥ r. We then consider the following proce-
dure: Select an arbitrary point v from G. If there are at least
r − 1 other points within distance 2R of p, then form a new
cluster and assign p and all points within distance 2R of p to
this cluster. Remove all these points from further consider-
ation and repeat this process until all remaining points have
fewer than r − 1 other points within distance 2R of them.
Let U be the set of points left unclustered at the end of this
process. For each u ∈ U , there exists a point p ∈ N(u)
such that p is assigned to some cluster c in the procedure
of forming clusters. We can see this as follows. Since u was
left unassigned at the end of the procedure, there are fewer
than r unassigned points remaining in N(u). This implies
that there is at least one point p in N(u) which is already
assigned to some cluster c. We assign u to c, which already
has at least r points.

Thus, we have assigned all points to clusters, such that each
cluster has at least r points. Note that the radius of each
cluster is no more than 4R. This gives us the following
theorem.

Theorem 2.3. There exists a polynomial time algorithm

that produces a 4-approximation to the (r, ε)-Gather prob-

lem.

We note that in the problem formulation of (r, ε)-Gather,
if we require the cluster centers to be input points, instead
of arbitrary points in the metric, then we can improve the
approximation factor to 3. We defer the details to the full
version of the paper.

2.4 Combining r-Gather with k-Center
We can combine the r-Gather problem with the k-Center

problem and have the two constraints present at the same
time. That is, we minimize the maximum radius, with the
constraint that we have no more than k clusters, each must
have at least r members. We call this the (k, r)-Center

problem.

It is worth mentioning that a similar problem has been stud-
ied before in the k-Center literature. That is, instead of
having a lower bound r on the cluster size as an additional
constraint to the original k-Center formulation, an upper
bound on the cluster size is specified. This is called the Ca-

pacitated k-Center problem [11]. Bar-Ilan, Kortsarz, and
Peleg [2] gave the first constant approximation factor of 10
for this problem. The bound was improved subsequently to
5 by Khuller and Sussmann [11]. In this subsection though
we only concentrate on the (k, r)-Center problem defined
above.

We note here that the algorithm developed for r-Gather in
Subsection 2.2 can be extended to provide a 2-approximation
for the (k, r)-Center problem. We just have to add to Con-
dition (2) the extra criteria that if the number of centers
chosen exceeds k then exit with failure, i.e., try a different
value for R. We can show that Lemma 2.1 holds for the
modified conditions, hence an approximation factor of 2.

We also consider the outlier version of this problem, namely,
the (k, r, ε)-Center problem. Combining the techniques
presented in this paper and the techniques for the (k, ε)-
Center problem by Charikar et. al [4], one can devise a
4-approximation algorithm. We defer the details to the full
version of the paper.

3. CELLULAR CLUSTERING
As mentioned in the introduction, a second approach is to
publish the radius of each cluster in addition to its center
and the number of points within it. In this case, for each
point within a cluster, the radius of the cluster gives an up-
per bound on the distortion error introduced. The Cellu-

lar Clustering problem aims to minimize the overall dis-
tortion error, i.e., it partitions the points in a metric space
into cells, each having a cell center, such that the sum, over
all cells, of the products of the number of points in the cell
and the radius of the cell is minimized. We even allow each
potential cluster center to have a facility (setup) cost f(v)
associated with opening a cluster centered at it. This will
later allow us to solve the problem in the case when each
cluster is required to have at least r points within it.

Definition 3.1. A cluster consists of a center along with

a set of points assigned to it. The radius of the cluster is

the maximum distance between a point assigned to the cluster

and the cluster center. To open a cluster with cluster center

v and radius r incurs a facility cost f(v). In addition, each

open cluster incurs a service cost equal to the number of

points in the cluster times the cluster radius. The sum of

these two costs is called the cellular cost of the cluster. The

Cellular Clustering problem is to partition n points in

a metric space into clusters with the minimum total cellular

cost.

The Cellular Clustering problem is NP-complete via re-
duction from dominating set. We present a primal-dual algo-
rithm for the Cellular Clustering problem that achieves
an approximation factor of 4.

Let c = (vc, dc) denote a cluster c whose cluster center is
the node vc and whose radius is dc. By definition, the setup
cost f(c) for a cluster c = (vc, dc) depends only on its center
vc; thus f(c) = f(vc). For each possible choice of cluster
center and radius c = (vc, dc), define a variable yc, a 0/1
indicator of whether or not the cluster c is open. There are
O(n2) such variables. For a cluster c = (vc, dc), any point
pi within a distance of dc of its center vc is said to be a
potential member of the cluster c. For all potential members
pi of a cluster c, let xic be a 0/1 indicator of whether or not
point pi joins cluster c. Note that the pair (i, c) uniquely
identifies an edge between pi and the center of cluster c. We
relax the integer program formulation to get the following
linear program:

Minimize:
P

c
(
P

i
xicdc + fcyc)

Subject to:
P

c
xic ≥ 1 ∀i

xic ≤ yc ∀i, c
0 ≤ xic ≤ 1 ∀i, c
0 ≤ yc ≤ 1 ∀c

And the dual program is:

Maximize:
P

i
αi

Subject to:
P

i
βic ≤ fc ∀c

αi − βic ≤ dc ∀i, c
αi ≥ 0 ∀i
βic ≥ 0 ∀i, c

The above formulation is similar to the primal-dual formu-
lation of facility location [9]. However, since the assignment
of additional points to clusters increases the service cost in-
curred by existing members of the cluster, we need a differ-
ent approach to assign points to clusters.

Procedure 1 describes the details of the growth of dual vari-
ables and the assignment of points to clusters. We say an
edge (i, c) is tight if αi ≥ dc. When an edge (i, c) becomes
tight, the corresponding cluster c becomes partially open
and pi contributes an amount of (αi − dc) to the fixed fa-
cility cost of f(c). At any step of the procedure, a point
is labeled unassigned, idle or dead. Initially, all points are
unassigned. As some cluster becomes tight, all unassigned

or idle points having tight edges to it become dead. In addi-
tion, some of the unassigned points become idle as described
in the procedure.

We now show that the primal solution constructed has a cost
of at most 4 times the value of the dual solution found using
Procedure 1. For this, we note the following properties:

(1) At any instant, the value of αi for all unassigned points
i is the same. Moreover, this value is no less than the
value of αj for any dead or idle point j.

Procedure 1 A Primal Dual Method

1: repeat
2: Grow the unfrozen dual variables αi uniformly.
3: if αi ≥ dc for some cluster c and its potential member

pi, i.e., edge (i, c) is tight, and c has not been shut
down then

4: Open the cluster c partially, and grow the dual vari-
able βic at the same rate as αi.

5: end if
6: if

P

i βic = fc for some cluster c then
7: Freeze all variables αi for which the edge (i, c) is

tight.
8: All unassigned points with a tight edge to c are

assigned to c. Call this set V U
c .

9: Let V I
c be the set of all idle points that have a tight

edge to c.
10: Permanently shut down any cluster c′ 6= c for which

a point pi in V U
c ∪V I

c has a tight edge (i, c′). Assign
to c all unassigned points pj with a tight edge to c′.
Call this newly-assigned set of points V IU

c .
11: All points in V IU

c are labeled idle and their dual
variables are frozen.

12: All points in V U
c and V I

c are labeled dead.
13: end if
14: until All points become dead or idle.

(2) Once a point has a tight edge to a particular cluster c
(i.e., a cluster is partially open), all unassigned poten-
tial members of that cluster (i.e.points within a dis-
tance dc of the cluster center vc) have tight edges to
it.

(3) When a cluster opens, all its unassigned potential mem-
bers are assigned to it and become dead.

(4) When a point pi becomes dead, all but one facility par-
tially supported by pi is shut down.

(5) When a cluster shuts down, all its unassigned poten-
tial members are assigned to some open cluster and
become idle.

Property (1) follows from the definition of our procedure.
Property (2) follows from property (1) and the fact that the
edge (i, c) becomes tight when the dual variable αi equals
dc. Property (3) then follows from (2). Property (4) again
follows from the definition of the the procedure. Property
(5) can be seen as follows: we shut down a cluster c only
when one of its unassigned or idle members has a tight edge
to the cluster c′ currently being opened, and also has a tight
edge to c. By property (2), all unassigned members of c have
tight edges to c. Hence in Steps 10 and 11 of the procedure,
these members will be assigned to c′ and become idle.

Lemma 3.1. The service cost for each point,
P

c
xicdc, is

no more than 3αi.

Proof. Consider the cluster c to which point i is as-
signed. When cluster c opens, points in V U

c and V IU
c are

assigned to c. We need to bound the radius of the clus-
ter consisting of V U

c ∪ V IU
c . By property (1), all points in

V U
c and V IU

c have the same dual variable value, say α. Let
p be the cluster center of c. Clearly, for a point q ∈ V U

c ,
d(q, p) ≤ dc ≤ α. For a point r ∈ V IU

c , let c′ be its cluster
that was shut down (in Step 10) when r was assigned to
c. Let p′ be the cluster center of c′, and let q′ ∈ V U

c be
the point that was partially supporting c′. Clearly, α ≥ dc′

since q′ is partially supporting c′. Combined with the fact
that r and q′ are potential members of c′, we get that
d(r, p) ≤ d(r, p′) + d(p′, q′) + d(q′, p) ≤ 2dc′ + dc ≤ 3α.
Thus, the cluster made of V U

c and V IU
c has overall radius

no more than 3α = 3αi.

Lemma 3.2. The cost of opening the clusters,
P

c
ycfc, is

no more than
P

i
αi.

Proof. A cluster c is opened when
P

i
βic equals fc.

Thus, for each open cluster c, we need to find Vc ⊆ V ,
s.t.

P

i βic can be charged to
P

i∈Vc

αi. To avoid charging
any point i more than once, we need to make sure that the
Vc’s are disjoint. We begin by noting that when a cluster
c opens, only points i with a tight edge to c can contribute
to

P

i
βic. When a point is labeled dead, by Property 4, all

the clusters to which it has a tight edge are shut down and
are not opened in future. This implies that clusters which
are opened do not have tight edges to dead points. Thus,
when a cluster c is opened, V U

c and V I
c are the only points

which have tight edges to c. If we let Vc = V U
c ∪ V I

c , then
P

i∈Vc

αi ≥
P

i
βic. Also, since the points in V U

c ∪V I
c are la-

beled dead in this iteration, they will not appear in V U
c′ ∪V I

c′

for any other cluster c′.

We thus obtain the following theorem.

Theorem 3.3. The primal-dual method in Procedure 1

produces a 4-approximation solution to the Cellular Clus-

tering problem.

3.1 r-Cellular Clustering
We now extend the above primal-dual algorithm to get an
approximation algorithm for the r-Cellular Clustering

problem which has the additional constraint that each clus-
ter is required to have at least r members. The notation
(r, C) is used to denote a solution having a total cost of C,
and having at least r members in each cluster.

Comparison with prior clustering work. Since our
algorithm can be viewed as an extension of facility location,
we briefly discuss related results. The facility location (and
k-median) problems have been studied with the minimum
cluster size constraint [10], as well as in the context of leav-
ing an ε fraction of the points unclustered [4]. Let OPTr be
the optimal facility location cost with minimum cluster size
r. If as stated before (r,C) denotes a solution with minimum
cluster size r and solution cost C, bi-criteria approximation
for the facility location problem of (r/2, 5.184OPTr) was
achieved independently by Guha, Meyerson and Munagala
and by Karger and Minkoff [7, 10]. It is not known whether
it is possible to achieve a one-sided approximation on fa-
cility location cost alone. In contrast, for the r-Cellular

Clustering problem, we provide an one-sided approxima-
tion algorithm, specifically we obtain a (r, 80OPTr) solution,
where OPTr is the cost of the optimal solution with cluster
size at least r,

To achieve this, we first study a sharing variant of this prob-
lem, where a point is allowed to belong to multiple clusters,
thus making it easier to satisfy the minimum cluster size
constraint. Interestingly, allowing sharing changes the value
of the optimal solution by at most a constant factor. We
note that this observation does not hold for facility location,
where a shared solution might be arbitrarily better than an
unshared one. The algorithm consists of three main steps:

1. Augmenting with Setup Costs. Given an instance
of r-Cellular Clustering, we first construct an instance
of Cellular Clustering as follows: augment the cluster
cost fc of a cluster c by r × dc. In addition, if a cluster
c = (vc, dc) has fewer than r points within distance dc of its
center vc, this cluster is eliminated from the instance. If the
original r-Cellular Clustering instance has an optimal
solution with cost OPTr, it is not hard to see that the same
solution works for the Cellular Clustering instance con-
structed above with a total cost of at most 2OPTr. We
invoke the 4-approximation algorithm for Cellular Clus-

tering on this new instance to find a solution with cost at
most 8OPTr .

2. Sharing Points between Clusters. We now describe
the notion of a shared solution for r-Cellular Cluster-

ing. In a shared solution, points are allowed to be assigned
to multiple clusters, as long as they pay the service cost
for each cluster they are assigned to. A shared solution is
feasible if all clusters have at least r (potentially shared)
members. We modify the solution obtained above to get
a feasible shared solution for r-Cellular Clustering as
follows: for each open cluster c with center P , assign the
r closest neighbors of P to c as well, regardless of where
they are initially assigned. The extra service cost of at most
r × dc for these r points can be accounted for by the ex-
tra facility cost of r × dc being paid by the open cluster c
in the Cellular Clustering solution. Thus, we have ob-
tained an (r, 8OPTr) shared solution for the r-Cellular

Clustering instance.

3. Making the Clusters Disjoint. Finally we show how
to convert a shared solution to a valid solution where each
point is assigned to only one cluster, with only a constant
blowup in cost. We note that for the corresponding facility
location problem, it is not feasible to do this “unsharing”
without a large blowup in cost in the worst case.

Initially, all points are labeled unassigned. We consider the
clusters in order of increasing cluster radius dc. If a cluster
c has at least r unassigned members, then it is opened and
all its unassigned members are assigned to c and labeled as-

signed. We stop this process when all the remaining clusters
have fewer than r unassigned members each. The remaining
clusters are called leftover clusters. We temporarily assign
each of the unassigned points arbitrarily to one of the left-
over clusters it belongs to. Since each cluster had at least
r members in the shared solution, each leftover cluster c′

must have a member in the shared solution, which is now
assigned to an open cluster o, s.t. dc′ ≥ do. We thus have
the situation illustrated in Figure 4.

Member

Leftover Cluster

Center

Assigned members
Shared members

m ≥ r

VmV2V1

m′ < r
U1

U2
Um′

(weight m′)

Open Cluster o

Figure 4: Structures of open and leftover clusters

The points are organized in a forest structure, where each
tree has two “levels”. We can regroup points into clusters,
on a per tree basis. It is obvious that each tree has at least
r points, since it contains at least one open cluster o. We
further simplify the structure into a true two-level structure
as in Figure 4, by collapsing each leftover cluster into a single
node with weight equal to the number of points temporarily
assigned to it. Nodes in the first level of the tree have weight
1. We apply the following greedy grouping procedure: first
consider only the nodes at the second level of the tree and
collect nodes until the total weight exceeds r for the first
time. We group these nodes (belonging to leftover clusters)
into a cluster, and repeat the process. Notice that since
we did not touch the first-level nodes, the total weight of
remaining nodes in the tree is at least r. If the total weight
of remaining nodes in the second level, Ws, is less than r,
then we extend the grouping into the first level nodes. Let
m denote the total weight of nodes in the first level. If
Ws + m ≥ 2r, then we group the nodes in the second level
with r − Ws first level nodes together into a cluster; the
remaining nodes in the first level form a cluster. Otherwise,
all the remaining nodes (both the first and second level) are
grouped into a cluster. If we break up the tree using the
procedure above, each resulting cluster has size at least r.

Lemma 3.4. For a cluster that contains any second-level

nodes, the total number of points in the cluster is no more

than 2r − 1.

Proof. Since a single second-level node has weight less
than r, a cluster containing only second-level nodes has at
most 2r − 1 members. If the cluster contains both the first
and second-level nodes, then we must have reached the case
where the total weight of remaining nodes in the second level
is less than r. In that case, by definition, the cluster formed
containing these second-level nodes has size either r or less
than 2r − 1.

There could be a cluster that only contains the first level
nodes, and its entire cost (both the service and cluster cost)
can be accounted for by its cost in the original (r, 8OPTr)
shared solution. We now bound the cost of clusters contain-
ing the second-level nodes.

Lemma 3.5. For each cluster c formed that contains sec-

ond level nodes, there exists a leftover cluster c′ unique to

c, such that the following holds: let p be the center of c′,
if we center the cluster c at p, then the radius of cluster c,
radius(c) ≤ 5dc′ .

Proof. Among all the leftover clusters that contributed
to c, let c′ be the one with the maximum radius. By defi-
nition, all nodes assigned to a leftover cluster get assigned
to a single cluster, guaranteeing the uniqueness of c′. Let
do be the radius of the open cluster at level 1 of this tree.
Consider a point q ∈ c. If q is a first-level node, then
d(q, p) ≤ 2do + dc′ ≤ 3dc′ . If q is a second-level node, then
let c′′ be the leftover cluster that q was assigned to, then
d(q, p) ≤ 2dc′′ + 2do + dc′ ≤ 5dc′ .

The above lemma implies that by choosing p as the cluster
center, the service cost of each point in c is no more than
5dc′ and the total facility cost incurred within our solution
is no more than that of the shared solution. Together with
Lemma 3.4, we conclude that the service cost of points in c
is no more than 10r×dc′ . Notice that in the shared solution,
points in cluster c′ are paying a total service cost of at least
r × dc′ . We thus have the following theorem.

Theorem 3.6. The above procedure produces a solution

with minimum cluster size r and total cost no more than

80OPTr, i.e., a (r, 80OPTr) solution, where OPTr is the

value of the optimal solution with a minimum cluster size of

r.

We note that the above algorithm and analysis can be com-
bined with the technique developed in [4] to give an constant
approximation to the (r, ε)-Cellular Clustering prob-
lem. The above algorithm can also be adapted to provide
a constant-factor approximation for the problem where the
diameter of any cluster is not allowed to exceed a certain
pre-specified threshold. Details are deferred to the full ver-
sion of the paper.

4. CONCLUSIONS
Publishing data about individuals without revealing sensi-
tive information is an important problem. The notion of
privacy called k-Anonymity has attracted a lot of research
attention recently. In a k-anonymized database, values of
quasi-identifying attributes are suppressed or generalized so
that for each record there are at least k − 1 records in
the modified table that have exactly the same values for
the quasi-identifiers. However, the performance of the best
known approximation algorithms for k-Anonymity depends
linearly on the anonymity parameter k. In this paper, we
introduced clustering as a technique to anonymize quasi-
identifiers before publishing them. We studied r-Gather

as well as a newly introduced clustering metric called r-
Cellular Clustering and provided the first constant-
factor approximation algorithms for publishing an anony-
mized database table. Moreover, we generalized these algo-
rithms to allow an ε fraction of points to remain unclustered.

5. REFERENCES
[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani,

R. Panigrahy, D. Thomas, and A. Zhu. Approximation
Algorithms for k-Anonymity. Journal of Privacy

Technology, Paper number: 20051120001, 2005.

[2] J. Bar-Ilan, G. Kortsarz, and D. Peleg. How to
allocate network centers. Journal of Algorithms, 15,
pages 385–415, 1993.

[3] R. J. Bayardo and R. Agrawal. Data Privacy through
Optimal k-Anonymization. In Proceedings of the

International Conference on Data Engineering, pages
217–228, 2005.

[4] M. Charikar, S. Khuller, D. Mount and
G. Narasimhan. Algorithms for Facility Location with
Outliers. In Proceedings of the ACM-SIAM Symposium

on Discrete Algorithms, pages 642–651, 2001.

[5] S. Chawla, C. Dwork, F. McSherry, A. Smith, and
H. Wee. Toward Privacy in Public Databases. In
Proceedings of the Theory of Cryptography Conference,
pages 363–385, 2005.

[6] M. R. Garey and D. S. Johnson. Computers and

intractability, a guide to the theory of

NP-completeness. W. H. Freeman and Company, New
York, Nov. 1990.

[7] S. Guha, A. Meyerson, and K. Munagala. Hierarchical
Placement and Network Design Problems. In
Proceedings of the IEEE Symposium on Foundations

of Computer Science, pages 603–612, 2000.

[8] D. Hochbaum and D. Shmoys. A best possible
approximation algorithm for the k-center problem.
Mathematics of Operations Research, 10(2), pages
180–184, 1985.

[9] K. Jain and V. V. Vazirani. Primal-Dual
Approximation Algorithms for Metric Facility
Location and k-Median Problems. In Proceedings of

the IEEE Symposium on Foundations of Computer

Science, pages 2–13, 1999.

[10] D. Karger and M. Minkoff. Building Steiner Trees
with Incomplete Global Knowledge. In Proceedings of

the IEEE Symposium on Foundations of Computer

Science, pages 613–623, 2000.

[11] S. Khuller and Y. Sussmann. The Capacitated
K-Center Problem. SIAM Journal on Discrete

Mathematics, 13(3), pages 403–418, 2000.

[12] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Incognito: Efficient Full-Domain K-Anonymity. In
Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 49–60,
2005.

[13] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. l-Diversity: Privacy Beyond
k-Anonymity. In Proceedings of the International

Conference on Data Engineering, 2006.

[14] A. Meyerson and R. Williams. On the Complexity of
Optimal k-Anonymity. In Proceedings of the

Symposium on Principles of Database Systems, pages
223–228, 2004.

[15] L. Sweeney. Uniqueness of Simple Demographics in
the U.S. Population. LIDAP-WP4. Carnegie Mellon

University, Laboratory for International Data Privacy,

Pittsburgh, PA, 2000.

[16] L. Sweeney. k-Anonymity: A Model for Protecting
Privacy. International Journal on Uncertainty

Fuzziness Knowledge-based Systems, 10(5), pages
557–570, 2002.

[17] Time. The Death of Privacy, August 1997.

