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2 · Aggarwal et al.

Publishing data for analysis from a table containing personal records, while maintaining individual

privacy, is a problem of increasing importance today. The traditional approach of de-identifying
records is to remove identifying fields such as social security number, name etc. However, recent
research has shown that a large fraction of the US population can be identified using non-key
attributes (called quasi-identifiers) such as date of birth, gender, and zip code. The k-anonymity
model protects privacy via requiring that non-key attributes that leak information are suppressed
or generalized so that, for every record in the modified table, there are at least k−1 other records
having exactly the same values for quasi-identifiers. We propose a new method for anonymizing
data records, where quasi-identifiers of data records are first clustered and then cluster centers
are published. To ensure privacy of the data records, we impose the constraint that each cluster
must contain no fewer than a pre-specified number of data records. This technique is more general
since we have a much larger choice for cluster centers than k-Anonymity. In many cases, it lets
us release a lot more information without compromising privacy. We also provide constant factor
approximation algorithms to come up with such a clustering. This is the first set of algorithms for
the anonymization problem where the performance is independent of the anonymity parameter k.
We further observe that a few outlier points can significantly increase the cost of anonymization.
Hence, we extend our algorithms to allow an ǫ fraction of points to remain unclustered, i.e., deleted
from the anonymized publication. Thus, by not releasing a small fraction of the database records,
we can ensure that the data published for analysis has less distortion and hence is more useful.
Our approximation algorithms for new clustering objectives are of independent interest and could
be applicable in other clustering scenarios as well.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data mining; H.3.3 [In-

formation Search and Retrieval]: Clustering

General Terms: Approximation Algorithms

Additional Key Words and Phrases: Privacy, Anonymity, Clustering, Approximation Algorithms

1. INTRODUCTION

With the rapid growth in database, networking, and computing technologies, a
large amount of personal data can be integrated and analyzed digitally, leading to
an increased use of data-mining tools to infer trends and patterns. This has raised
universal concerns about protecting the privacy of individuals [Time 1997].

Age Place Disease
α β Flu

α + 2 β Flu
δ γ + 3 Hypertension
δ γ Flu
δ γ -3 Cold

(a) Original table

Age Place Points Disease
α +1 β 2 Flu

Flu
Hypertension

δ γ 3 Flu
Cold

(c) 2-gather clustering, with maximum radius 3

Age Place Disease
* β Flu
* β Flu
δ * Hypertension
δ * Flu
δ * Cold

(b) 2-anonymized version

Age Place Points Radius Disease
α +1 β 2 1 Flu

Flu
Hypertension

δ γ 3 3 Flu
Cold

(d) 2-cellular clustering, with total cost 11

Fig. 1. Original table and three different ways of achieving anonymity
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(a) Original points (b) r-gather clustering (c) r-cellular clustering

Fig. 2. Publishing anonymized data

Combining data tables from multiple data sources allows us to draw inferences
which are not possible from a single source. For example, combining patient data
from multiple hospitals is useful to predict the outbreak of an epidemic. The
traditional approach of releasing the data tables without breaching the privacy
of individuals in the table is to de-identify records by removing the identifying
fields such as name, address, and social security number. However, joining this
de-identified table with a publicly available database (like the voters database) on
columns like race, age, and zip code can be used to identify individuals. Recent
research [Sweeney 2000] has shown that for 87% of the population in the United
States, the combination of non-key fields like date of birth, gender, and zip code
corresponds to a unique person. Such non-key fields are called quasi-identifiers.
In what follows we assume that the identifying fields have been removed and that
the table has two types of attributes: (1) the quasi-identifying attributes explained
above and (2) the sensitive attributes (such as disease) that need to be protected.

In order to protect privacy, Samarati [Samarati 2001] proposed the k-Anonymity
model, where some of the quasi-identifier fields are suppressed or generalized so
that, for each record in the modified table, there are at least k − 1 other records
in the modified table that are identical to it along the quasi-identifying attributes.
For the table in Figure 1(a), Figure 1(b) shows a 2-anonymized table correspond-
ing to it. The columns corresponding to sensitive attributes, like disease in this
example, are retained without change. The aim is to provide a k-anonymized ver-
sion of the table with the minimum amount of suppression or generalization of
the table entries. There has been a lot of recent work on k-anonymizing a given
database table [Bayardo and Agrawal 2005; LeFevre et al. 2005]. An O(k log k)
approximation algorithm was first proposed for the problem of k-Anonymity with
suppressions only [Meyerson and Williams 2004]. This was recently improved to an
O(k) approximation for the general version of the problem [Aggarwal et al. 2005].

In this paper, instead of generalization and suppression, we propose a new tech-
nique for anonymizing tables before their release. We first use the quasi-identifying
attributes to define a metric space (i.e., pairwise distances satisfying the triangle
inequality) over the database records, which are then viewed as points in this space.
This is similar to the approach taken in [Chawla et al. 2005], except that we do not
restrict ourselves to points in Rd; instead, we allow our points to be in an arbitrary
metric space. We then cluster the points and publish only the final cluster centers
along with some cluster size and radius information. Our privacy requirement is
similar to the k-Anonymity framework – we require each cluster to have at least
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r points1. Publishing the cluster centers instead of the individual records, where
each cluster represents at least r records, gives privacy to individual records, but
at the same time allows data-mining tools to infer macro trends from the database.

In the rest of the paper we will assume that a metric space has been defined over
the records, using the quasi-identifying attributes. For this, the quasi-identifying
attributes may need to be remapped. For example, zip codes could first be con-
verted to longitude and latitude coordinates to give a meaningful distance between
locations. A categorical attribute, i.e., an attribute that takes n discrete values, can
be represented by n equidistant points in a metric space. Furthermore, since the
values of different quasi-identifying attributes may differ by orders of magnitude,
we need to weigh the attributes appropriately while defining the distance metric.
For example, the attribute location may have values that differ in orders of 10 miles
with a maximum of 1000 miles, while the attribute age may differ by a single year
with a maximum of 100 years. In this case we assume that the attribute location
is divided by 10 and the attribute age retained without change if both attributes
are needed to have the same relative importance in the distance metric. For the
example we provide in Figure 1, we assume that the quasi-identifying attributes
have already been scaled. We assume that appropriate steps have been taken to
map the data so that a metric is defined by choosing the scale factors carefully.

To publish the clustered database, we publish three types of features for each
cluster: (1) the quasi-identifying attribute values for the cluster center (age and
location in our example), (2) the number of points within the cluster, and (3) a
set of values taken by the sensitive attributes (disease in our example). We’ll also
publish a measure of the quality of the clusters. This will give a bound on the error
introduced by the clustering.

In this paper we consider two cluster-quality measures. The first one is the
maximum cluster radius. For this we define the r-Gather problem, which aims to
minimize the maximum radius among the clusters, while ensuring that each cluster
has at least r members. As an example, r-Gather clustering with minimum cluster
size r = 2, applied to the table in Figure 1(a) gives the table in Figure 1(c). In
this example, the maximum radius over all clusters is 3. As another example,
Figure 2(b) gives the output of the r-Gather algorithm applied to the quasi-
identifiers, shown as points in a metric space in Figure 2(a). Our formulation of
the r-Gather problem is related to, but not to be confused with, the classic k-
Center problem [Hochbaum and Shmoys 1985]. The k-Center problem has the
same objective of minimizing the maximum radius among the clusters, however,
the constraint is that we can have no more than k clusters in total. The r-Gather

problem is different from k-Center problem in that instead of specifying an upper
bound on the number of clusters, we specify a lower bound on the number of points
per cluster as part of the input. It’s also worth noting that the constraint of at
least r points per cluster implies that we can have no more than n/r number of
clusters, where n is the total number of points in our data set.

We also consider a second (more verbose) candidate for indicating cluster-quality,
whereby we publish the radius of each cluster, rather than just the maximum radius
among all clusters. For each point within a cluster, the radius of the cluster gives

1We use r instead of k, as k is traditionally used in clustering to denote the number of clusters.
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an upper bound on the distortion error introduced. Minimizing this distortion error
over all points leads to the cellular clustering measurement that we introduce in this
paper. More formally, the cellular clustering measurement over a set of clusters, is
the sum, over all clusters, of the products of the number of points in the cluster and
the radius of the cluster. Using this as a measurement for anonymizing tables, we
define the r-Cellular Clustering problem as follows: Given points in a metric
space, the goal is to partition the points into cells, a.k.a. clusters, each of size at
least r, and the cellular clustering measurement is minimized. Consider again the
data in Figure 1(a). Figure 1(d) shows a r-cellular cluster solution with minimum
cluster size r = 2. The total cost is 2 × 1 + 3 × 3 = 11. Also, Figure 2(c) gives the
output of the r-Cellular Clustering algorithm applied to the quasi-identifiers
shown as points in a metric space in Figure 2(a). The total cost of the solution in
Figure 2(c) is: 50× 10 + 20× 5 +8× 3 = 624. We study a more generalized version
of the problem: similar to the Facility Location problem [Jain and Vazirani
1999], we add an additional setup cost for each potential cluster center, associated
with opening a cluster centered at that point, but we don’t have the lower bound on
number of points per cluster. We call this the Cellular Clustering problem. In
fact, we will use the setup costs in the Cellular Clustering problem formulation
to help us devise an algorithm that solves r-Cellular Clustering.

Comparison with k-Anonymity. While k-Anonymity forces one to suppress
or generalize an attribute value even if all but one of the records in a cluster have
the same value, the above clustering-based anonymization technique allows us to
pick a cluster center whose value along this attribute dimension is the same as the
common value, thus enabling us to release more information without losing privacy.
For example, consider the table in Figure 3 with the Hamming distance metric on
the row vectors. If we wanted to achieve 5-Anonymity, we will have to hide all
the entries in the table, resulting in a total distortion of 20. On the other hand, a
5-Cellular Clustering solution could use (1, 1, 1, 1) as the cluster center with a
cluster radius of 1. This will give a total distortion bound of 5 (the actual distortion
is only 4).

Attr1 Attr2 Attr3 Attr4

Record 0 1 1 1 1

Record 1 0 1 1 1

Record 2 1 0 1 1

Record 3 1 1 0 1

Record 4 1 1 1 0

Fig. 3. A sample table where there is no common attribute among all entries.

Just like k-Anonymity, r-Gather and r-Cellular Clustering is sensitive to
outlier points, with just a few outliers capable of increasing the cost of the clustering
significantly. To deal with this problem, we generalize the above algorithms to allow
an ǫ fraction of the points to be deleted before publication. By not releasing a small
fraction of the database records, we can ensure that the data published for analysis
has less distortion and hence is more useful. This can be done as long as our aim is
to infer macro trends from the published data. On the other hand, if the goal is to

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · Aggarwal et al.

find out anomalies, then we should not ignore the outlier points. There has been
no previous work for k-Anonymity with this generalization.

We note that, as in k-Anonymity, the objective function is oblivious to the sen-
sitive attribute labels. Extensions to the k-Anonymity model, like the notion of
l-diversity [Machanavajjhala et al. 2006], can be applied independently to our clus-
tering formulation.

We provide constant factor approximation algorithms for both the r-Gather and
r-Cellular Clustering problems. In particular, we first show that it is NP -
hard to approximate the r-Gather problem better than 2 and provide a matching
upper bound. We then provide extensions of both these algorithms to allow for an ǫ
fraction of unclustered points, which we call the (r, ǫ)-Gather and (r, ǫ)-Cellular

Clustering, respectively. These are the first constant factor approximation algo-
rithms for publishing an anonymized database. The best known algorithms [Ag-
garwal et al. 2005; Meyerson and Williams 2004] for previous problem formulations
had an approximation ratio linear in the anonymity parameter r.

The rest of the paper is organized as follows. First, in Section 2, we present a
tight 2-approximation algorithm for the r-Gather problem and its extension to
the (r, ǫ)-Gather problem, giving a 4-approximation for this case. We also present
a 4-approximation for the (k, r, ǫ)-CENTER problem.

In Section 3, motivated by the desire to reduce the sum of the distortions expe-
rienced by the points, we introduce the problem of Cellular Clustering. We
present a primal-dual algorithm for the problem without any cluster-size constraints
that achieves an approximation ratio of 3. We then study the additional constraint
of having a minimum cluster size of r, and for this case the approximation ratio is
at most 36. Finally, we relax the problem by allowing the solution to leave at most
an ǫ fraction of the points unclustered. We conclude in Section 4.

2. R-GATHER CLUSTERING

To publish the clustered database, we publish three types of features for each clus-
ter: (1) the quasi-identifying attribute values for the cluster center, (2) the number
of points within the cluster, and (3) a set of values taken by the sensitive attributes.
The maximum cluster radius is also published to give a bound on the error intro-
duced by clustering. This is similar to the traditionally studied k-Center cluster-
ing. In order to ensure r-Anonymity, we don’t restrict the total number of clusters,
instead, we pose the alternative restriction that each cluster should have at least r
records assigned to it. We call this problem r-Gather, which we formally define
below.

Definition 2.1. The r-Gather problem is to cluster n points in a metric space
into a set of clusters, such that each cluster has at least r points. The objective is
to minimize the maximum radius among the clusters.

We note that the minimum cluster size constraint has been considered earlier in
the context of facility location [Karger and Minkoff 2000].

We first show the reduction for NP -completeness and hardness proofs.
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2.1 Lower Bound

We show that this problem is NP -complete by a reduction from the 3-Satisfiability
problem, where each literal belongs to at most 3 clauses [Garey and Johnson 1990].

Suppose that we have a boolean formula F in 3-CNF form with m clauses and n
variables. Let F = C1 ∧ . . .∧Cm, be a formula composed of variables xi, i = 1 . . . n
and their complements xi.

From the boolean formula, we create a graph G = (V, E) with the following
property: There is a solution to the r-Gather problem with a cluster radius of 1,
with respect to the shortest distance metric on the graph G, if and only if F has a
satisfying assignment.

We create the graph as follows: For each variable xi, create two vertices vT
i and

vF
i , and create an edge (vT

i , vF
i ) between the two vertices; in addition create a set

Si of (r−2) nodes and add edges from each node in Si to both vT
i and vF

i . Picking
vT

i (vF
i ) as a center corresponds to setting xi = T (F ). For each clause Cj , create

a new node uj that is adjacent to the nodes corresponding to the literals in the
clause. For example, if C1 = (x1 ∨ x2) then we add edges from u1 to vT

1 and vF
2 .

(Note that we cannot choose both vT
i and vF

i since there are not enough nodes in
Si.)

If the formula is indeed satisfiable, then there is a clustering by picking vT
i as

a center if xi = T and picking vF
i otherwise. Each clause is true, and must have

a neighbor chosen as a center. Moreover by assigning Si to the chosen center, we
ensure that each center has at least r nodes in its cluster.

Now suppose there is an r-gather clustering. If r > 6 then both vT
i and vF

i

cannot be chosen as centers. In addition, the clause nodes uj have degree at most
3 and cannot be chosen as centers. If exactly one of vT

i or vF
i is chosen as a center,

then we can use this to find the satisfying assignment. The assignment is satisfying
as each clause node has some neighbor at distance 1 that is a chosen center, and
makes the clause true.

This completes the NP -completeness proof. Note that this reduction also gives
us a hardness of 2. We just showed that there is a solution to the r-Gather

problem with a cluster radius of 1 if and only if F had a satisfying assignment. The
next available cluster radius is 2 in the metric defined by the graph G.

2.2 Upper Bound

We first use the threshold method used for k-Center clustering to guess R, the
optimal radius for r-Gather. The choices for R are defined as follows. We will
try all values 1

2dij where dij is the distance between points i and j. Note that
this defines a set of O(n2) distance values. We find the smallest R for which the
following two conditions hold:

Condition (1). Each point p in the database should have at least r − 1 other
points within distance 2R of p.

Condition (2). Let all nodes be unmarked initially. Consider the following proce-
dure: Select an arbitrary unmarked point p as a center. Select all unmarked points
within distance 2R of p (including p) to form a cluster and mark these points.
Repeat this as long as possible, until all points are marked. Now we try to reassign
points to clusters to meet the requirement that each cluster has size at least r. This
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is done as follows. Create a flow network as follows. Create a source s and sink t.
Let C be the set of centers that were chosen. Add edges with capacity r from s to
each node in C. Add an edge of unit capacity from a node c ∈ C to a node v ∈ V
if their distance is at most 2R. Add edges of unit capacity from nodes in V to t
and check to see if a flow of value r|C| can be found (saturating all the edges out
of s). If so, then we can obtain the clusters by choosing the nodes to which r units
of flow are sent by a node c ∈ C. All remaining nodes of V can be assigned to any
node of C that is within distance 2R. If no such flow exists, we exit with failure.

The following lemma guarantees that the smallest R that satisfies these conditions
is a lower bound on the value of the optimal solution for r-Gather. Suppose we
have an optimal clustering S1, . . . , Sℓ with ℓ clusters. Let the maximum diameter
of any of these clusters be d∗ (defined as the maximum distance between any pair
of points in the same cluster).

Lemma 2.2. When we try R = d∗

2 , then the above two conditions are met.

Proof. By the definition of r-Gather, every point has at least r − 1 other
points within the optimal diameter, and hence within distance 2R. Consider an
optimal r-Gather clustering. For each point i, all points belonging to the same
optimal cluster c as the point i are within a distance 2R of i. Thus, in the procedure
of Condition (2), as soon as any point in c is selected to open a new cluster, all
unmarked points belonging to c get assigned to this new cluster. So at most one
point from each optimal cluster is chosen as a center and forms a new cluster. We
would now like to argue that the reassignment phase works correctly as well. Let S
be the set of chosen centers. Now consider an optimal solution with clusters, each
of size at least r. We can assign each point of a cluster to the center that belongs
to that cluster, if a center was chosen in the cluster. Otherwise, since the point
was marked by the algorithm, some center was chosen that is within distance 2R.
We can assign this point to the center that had marked it. Each chosen center will
have at least r points assigned to it (including itself).

Since we find the smallest R, we will ensure that R ≤ d∗/2 ≤ R∗ where R∗ is
the radius of the optimal clustering. In addition, our solution has radius 2R. This
gives us a 2-approximation.

Theorem 2.3. There exists a polynomial time algorithm that produces a 2-
approximation to the r-Gather problem.

2.3 (r, ǫ)-Gather Clustering

A few outlier points can significantly increase the clustering cost under the minimum
cluster size constraint. We consider a relaxation whereby the clustering solution is
allowed to leave an ǫ fraction of the points unclustered, i.e., to delete an ǫ fraction of
points from the published k-anonymized table. Charikar et al. [Charikar et al. 2001]
studied various facility location problems with this relaxation and gave constant
factor approximation algorithms for them.

For the (r, ǫ)-Gather problem, where each cluster is constrained to have at least
r points and an ǫ fraction of the points are allowed to remain unclustered, we
modify our r-Gather algorithm to achieve a 4-approximation. We redefine the
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condition to find R. We find the smallest R that satisfies the following condition:
There should be a subset S of points containing at least 1− ǫ fraction of the points,
such that each point in S has at least r − 1 neighbors within distance 2R in S.

This condition can be checked in O(n2) time by repeatedly removing any point
in S that has fewer than r − 1 other points in S within distance 2R of itself, with
S initially being the entire vertex set. It is clear that the smallest R we found is
no more than R∗, the optimal radius.

Let R be the value that we found. Let N(v) denote the set of points in S within
distance 2R of v, including v itself. We know then N(v) ≥ r. We then consider
the following procedure: Select an arbitrary point p from S. If there are at least
r − 1 other points within distance 2R of p, then form a new cluster and assign p
and all points within distance 2R of p to this cluster. Remove all these points from
further consideration and repeat this process until all remaining points have fewer
than r − 1 other points within distance 2R of them. Let U be the set of points
left unclustered at the end of this process. For each u ∈ U , there exists a point
p ∈ N(u) such that p is assigned to some cluster c in the procedure of forming
clusters. We can see this as follows. Since u was left unassigned at the end of
the procedure, there are fewer than r unassigned points remaining in N(u). This
implies that there is at least one point p in N(u) which is already assigned to some
cluster c. We assign u to c, which already has at least r points.

Thus, we have assigned all points to clusters, such that each cluster has at least
r points. Note that the radius of each cluster is no more than 4R. This gives us
the following theorem.

Theorem 2.4. There exists a polynomial time algorithm that produces a 4-
approximation to the (r, ǫ)-Gather problem.

We note that in the problem formulation of (r, ǫ)-Gather, if we require the
cluster centers to be input points, instead of arbitrary points in the metric, then
we can improve the approximation factor to 3 as follows. In the filtering step we
define “candidates” as the set of points that have at least r points within radius R.
The total number of points within distance R of the candidates should contain at
least 1− ǫ fraction of the points. Call this set S. Each point in S has at least r− 1
neighbors within distance 2R in S. In the initial phase we greedily pick clusters of
radius R (instead of 2R) that have at least r points and mark those points covered.
If a point in S is now uncovered, it must have a candidate within distance R that
was unable to form a cluster. This is because some of the points within distance
R of the candidate were covered in the first phase by disks of radius R. Hence
each point in S can reach such a cluster center within distance 3R (through the
candidate).

2.4 Combining r-Gather with k-Center

We can combine the r-Gather problem with the k-Center problem and have
the two constraints present at the same time. That is, we minimize the maximum
radius, with the constraint that we have no more than k clusters, each must have
at least r members. We call this the (k, r)-Center problem.

It is worth mentioning that a similar problem has been studied before in the
k-Center literature. That is, instead of having a lower bound r on the cluster
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size as an additional constraint to the original k-Center formulation, an upper
bound on the cluster size is specified. This is called the Capacitated k-Center

problem [Khuller and Sussmann 2000]. Bar-Ilan, Kortsarz, and Peleg [Bar-Ilan
et al. 1993] gave the first constant approximation factor of 10 for this problem.
The bound was improved subsequently to 5 by Khuller and Sussmann [Khuller
and Sussmann 2000]. In this subsection though we only concentrate on the (k, r)-
Center problem defined above.

We note here that the algorithm developed for r-Gather in Subsection 2.2 can
be extended to provide a 2-approximation for the (k, r)-Center problem. We just
have to add to Condition (2) the extra criteria that if the number of centers chosen
exceeds k then exit with failure, i.e., try a different value for R. We can show that
Lemma 2.2 holds for the modified conditions, hence an approximation factor of 2.

We also consider the outlier version of this problem, namely, the (k, r, ǫ)-Center

problem.

We show that the following algorithm is a 4-approximation algorithm for the
(k, r, ǫ)-Center problem.

Fix a guess for the optimal radius R (choose the smallest R that succeeds). For
each such guess, we apply the following algorithm. Let D(v, δ) be the set of points
within distance δ of v (including v).

Algorithm:

(Filtering Step) Let S be the set of points v such that |D(v, 2R)| ≥ r. Check to
see if |S| ≥ (1 − ǫ)n, otherwise exit with failure. From now on we only consider
points in S.

(Greedy Step) We now choose up to k centers. We put the centers in the set Q.
Initially Q is empty. All points are uncovered to start with. Let N(v, δ) be the
set of uncovered points within distance δ of v (including v itself). Points are either
uncovered, or covered. Once a point is covered it is removed from consideration.
At each step i, we choose a center ci that satisfies the following criteria:
(a) ci is uncovered.
(b) |N(ci, 2R)| is maximum.
All uncovered points in N(ci, 4R) are then marked as covered.

After Q is completely decided, check that the total points covered is at least
(1 − ǫ)n, otherwise exit with failure.

(Assignment step): Form clusters as follows. For each ci ∈ Q, form a cluster Ci

centered at ci. Each covered point is assigned to its closest cluster center.

For each ci, we denote Gi = N(ci, 2R) and Ei = N(ci, 4R), which are uncovered
points within distance 2R and 4R of ci, when ci is chosen.

In Figure 4 we illustrate this algorithm via an example. Let’s start from the
Greedy Step and assume for a moment that R is indeed the optimal radius just
for illustration purposes. Let the optimal solution have clusters O1, . . . , Ok. In the
figure, we only show cluster centers to be picked and omit the rest of the points.
The left side illustrates the situation when we are picking c1. Note that G1 includes
O1 completely, and overlaps with O2. Because of this, all points in O1 and O2 are
in E1 and marked covered and cannot be chosen as a center later. Note that E1

in fact will cover points in other optimal clusters as well. For example, when we
choose c1 and cover all points in E1, we also cover some points in O3. However, we
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Fig. 4. Optimal Clusters and the Greedy Step

may still pick a remaining point in O3 as the next cluster center c2, as shown in
the right side. Note that in the Greedy Step, we completely ignore the constraint
of r, as we are not forming any clusters but only picking cluster centers. In fact,
G2 now could have fewer than r uncovered points. The key is that the Gi’s are far
apart. Hence in the Assignment Step, all the points in D(c2, 2R) that were initially
covered by E1 will eventually be assigned to the center c2, giving the whole cluster
C2 at least r points. Detailed proofs are below.

Lemma 2.5. After the assignment step, each cluster formed has at least r points,
and radius at most 4R.

Proof. Every time a center ci is selected, we only cover points within distance
4R, thus the maximum radius is at most 4R. In the end, each point is assigned
to its closest chosen center in Q. Observe that the cluster centers are more than
4R apart. Thus for each center ci and its corresponding cluster Ci, all the points
within distance 2R of ci are assigned to the same cluster Ci. By the filtering step,
we know that |Ci| ≥ |D(ci, 2R)| ≥ r.

Lemma 2.6. The optimal solution on set S is the same as the optimal solution
on set V .

Proof. This is simply true by the filtering step, since every point in the optimal
solution belongs to S.

Lemma 2.7. Consider the guess R = d∗

2 , where d∗ is the maximum distance
between any two points in the same optimal cluster, our algorithm covers no less
points than the optimal solution on set S.

Proof. We are going to prove a stronger statement, we’ll show that our algo-
rithm covers no less points than the following optimal solution OPT on set S: it
has at most k clusters, and the maximum distance between any two points in the
same optimal cluster is at most d∗, but there is no requirement on the number of
points per cluster. Let O1, O2, . . . , Ok denote the set of optimal clusters in OPT .
We claim that:

|E1 ∪ . . . ∪ Ek| ≥ |O1 ∪ . . . ∪ Ok| (1)
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The proof is by induction on k. The claim is true for k = 1, since |E1| ≥ |G1| ≥
|O1|. Assume that k > 1. Clearly,

k⋃

i=1

(E1 ∩ Oi) ⊆ E1.

Assume that G1 intersects one of the disks O1, . . . , Ok (say, O1). Then O1 ⊆ E1

and the following inequality is satisfied.

|E1| ≥ |O1| +

k∑

i=2

|E1 ∩ Oi|. (2)

The above inequality is satisfied even if G1 does not intersect any of the disks
O1, . . . , Ok, since then

k⋃

i=1

(E1 ∩ Oi) ∪ G1 ⊆ E1.

Now since |G1| ≥ max{|O1|, |O2|, . . . , |Ok|} ≥ |O1|, we have

|E1| ≥ |G1| +

k∑

i=1

|E1 ∩ Oi| ≥ |O1| +

k∑

i=2

|E1 ∩ Oi|.

In either case, inequality (2) is satisfied.
Now consider the (k − 1)-center problem on the set S − E1. On this set, our

algorithm could have picked the sets E2, E3, . . . , Ek. Also, for S − E1, it is clear
that O2 − E1, O3 − E1, . . . , Ok − E1 is a solution, although it is not necessarily an
optimal one. By induction, we know that

|E2 ∪ . . . ∪ Ek| ≥ |

k⋃

i=2

(Oi − E1)| (3)

Combining inequalities (2) and (3) proves (1).

Combining the above three lemmas we have the following theorem.

Theorem 2.8. Our algorithm gives a 4-approximation for the (k, r, ǫ)-Center

problem.

3. CELLULAR CLUSTERING

As mentioned in the introduction, a second approach is to publish the radius of
each cluster in addition to its center and the number of points within it. In this
case, for each point within a cluster, the radius of the cluster gives an upper bound
on the distortion error introduced. The Cellular Clustering problem aims to
minimize the overall distortion error, i.e., it partitions the points in a metric space
into cells, each having a cell center, such that the sum, over all cells, of the products
of the number of points in the cell and the radius of the cell is minimized. We even
allow each potential cluster center to have a facility (setup) cost fc associated with
opening a cluster centered at c. This will later allow us to solve the problem in the
case when each cluster is required to have at least r points within it.
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Definition 3.1. A cluster consists of a center along with a set of points assigned
to it. The radius of the cluster is the maximum distance between a point assigned
to the cluster and the cluster center. To open a cluster with cluster center c and
radius r incurs a facility cost fc. In addition, each open cluster incurs a service
cost equal to the number of points in the cluster times the cluster radius. The
sum of these two costs is called the cellular cost of the cluster. The Cellular

Clustering problem is to partition n points in a metric space into clusters with
the minimum total cellular cost.

We first show that the problem is NP -complete via a reduction from set cover.

Theorem 3.2. The Cellular Clustering problem is NP -complete.

Proof. We can view the set cover problem as a bipartite graph (S, X, E) where
S contains a vertex corresponding to each set, X contains a vertex corresponding to
each element, and E is the set of (set,element) pairs denoting membership. We then
set up a Cellular Clustering problem as follows: Each vertex in the bipartite
graph corresponds to a point in the metric space. The distance between the points
is defined as follows: the points are adjacent to each other according to the edges
defined by E. In addition, the points in the set S form a clique, i.e., they are
adjacent to each other. All points adjacent to each other have distance 1. We can
assume that the distance between any set si and a vertex xj ∈ X is 2 if xj /∈ si.
The facility cost for each point in S is 1, and the facility cost for each point in X
is very high.

We observe that there is a collection of k sets covering all the elements, if and
only if there is a cellular clustering with cost k + |X |+ |S|. If a collection of k sets
chosen from S exist that cover all elements in X , then those k sets are chosen as
clusters of radius 1, with each element belonging to such a cluster. We pay a total
of k for the facility cost, and every point also incurs a radius cost of 1 since every
point belongs to a cluster of radius 1.

We now show that a cellular clustering cost of |X | + |S| + k also corresponds to
a set cover of size k. From the setup, it is obvious that cluster centers can only
reside on the points in S. Assume that in the solution, k′ such clusters centers are
chosen. Without loss of generality, we can assume that each of the k′ clusters have
radius at least 1, thus each point has to pay a radius cost of at least 1. Otherwise
we can perform the following modification for each cluster of radius 0. Such a
cluster has a single member, which corresponds to a point in S. We close down
this cluster, saving a facility cost of 1. And assign this point to a cluster of radius
1, encountering a radius cost of 1. A cluster of radius 1 has to exist. Otherwise the
total cost of the solution would be at least 2|X |+ k′ +2(|S|− k′), where each point
in X has to pay a radius of cost 2, and each point in S has to either pay a facility
cost of 1 or a radius cost of 2. We can rewrite it as |X | + |S| + |X | + (|S| − k′) to
see that obviously this can’t happen.

Obviously if k′ > k, then the total cluster cost will be at least k′ + |X | + |S|.
Assume k′ < k. We’ll modify the solution without increasing the cost so that each
cluster has a radius of 1, which will yield a set cover solution. Consider any cluster
of radius 2, centered at si. Let Xi denote the set of points in X that belong to
this cluster and are of distance 2 from si. For each point xj ∈ Xi, we simply find
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a set sij such that xj ∈ sij , and assign xj to the cluster centered at sij . If sij was
already chosen as a cluster center, then xj only has to pay a radius cost of 1, and
we don’t incur any additional facility cost. Otherwise, we save 1 on the radius cost
for xj , and pay for an additional facility cost of 1 for sij .

We present a primal-dual algorithm for the Cellular Clustering problem
that achieves an approximation factor of 3.

Let c = (vc, dc) denote a cluster c whose cluster center is the node vc and whose
radius is dc. By definition, the setup cost fc for a cluster c = (vc, dc) depends only
on its center vc; thus f(c) = f(vc). For each possible choice of cluster center and
radius c = (vc, dc), define a variable yc, a 0/1 indicator of whether or not the cluster
c is open. There are O(n2) such variables. For a cluster c = (vc, dc), any point pi

within a distance of dc of its center vc is said to be a potential member of the cluster
c. For all potential members pi of a cluster c, let xic be a 0/1 indicator of whether
or not point pi joins cluster c. Note that the pair (i, c) uniquely identifies an edge
between pi and the center of cluster c. We relax the integer program formulation
to get the following linear program:

Minimize:
∑

c(
∑

i xicdc + fcyc)
Subject to:

∑
c xic ≥ 1 ∀i

xic ≤ yc ∀i, c
0 ≤ xic ≤ 1 ∀i, c
0 ≤ yc ≤ 1 ∀c

And the dual program is:

Maximize:
∑

i αi

Subject to:
∑

i βic ≤ fc ∀c
αi − βic ≤ dc ∀i, c
αi ≥ 0 ∀i
βic ≥ 0 ∀i, c

The above formulation is similar to the approach used for facility location [Jain
and Vazirani 1999]. However, since the assignment of additional points to clusters
increases the service cost incurred by existing members of the cluster, we need a
slightly different strategy to form clusters and assign points to clusters.

The procedure of raising the dual variables until we find a feasible dual solution is
identical to the procedure for facility location given by Jain and Vazirani [Jain and
Vazirani 1999]. For completeness we present the procedure here. In this procedure,
each point will raise its dual variable αi until it is connected to an open cluster.

Initially, each point is unconnected, and its dual variables αi and βic’s are set
at zero. The algorithm will raise the dual variable αi for all unconnected points
uniformly. For convenience, we introduce the notion of time, the dual variables
increase by 1 per time unit. When αi = dc for some edge (i, c), the edge (i, c) is
declared to be tight. At this point, the dual variable βic is raised at the uniform
rate with the rest of the α’s. βic goes towards paying for fc.

Cluster c is said to be paid for when
∑

i βic = fc. The algorithm then checks to
see if there are any unconnected points that have a tight edge to c. If so, then c
is declared temporarily open and all unconnected points with a tight edge to c are
declared connected. Cluster c is said to be the connecting witness for each of these
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points. Notice that the dual variables αi and βic’s for points with tight edges to c
are no longer growing.

We now show how to construct a primal solution with cost at most 3 times the
value of the dual solution found above. For this, we note the following properties:

. (1) At any time, the value of αi for all unconnected points i is the same. More-
over, this value is no less than the value of αj for any connected point j.

. (2) Once a point has a tight edge to a particular cluster c, all unconnected
potential members of that cluster (i.e., points within a distance dc of the cluster
center vc) have tight edges to it.

. (3) Examine any temporarily opened cluster c. All points for which c is a
connecting witness have the largest α values among all points that have tight edges
to c.

Property (1) follows from the definition of our procedure. Property (2) follows
from property (1) and the fact that the edge (i, vc) becomes tight when the dual
variable αi equals dc. Property (3) then follows from (2).

We construct a primal solution as follows: initially all points are unassigned.
Order the temporarily open clusters in decreasing order of radius. Consider the
clusters one by one, we will permanently open a cluster c if all points with tight
edges to c are still unassigned. Once c is open, all points with tight edges to c are
directly assigned to c. On the other hand, if the cluster c being considered has a
point i, such that i is already assigned elsewhere and i has a tight edge to c, we’ll
shut down c, and consider the next cluster.

After all the clusters are considered, we might have some points still left unas-
signed. Consider any such a point i, and consider the cluster c′ that is the connecting
witness for i. If i is still unassigned, then c′ was shut down. There must exist a
point j with tight edges to c′, such that j was directly assigned to some cluster c,
which has a larger radius compared to c′. We will have i join c, and i becomes
indirectly assigned to c. Notice that after i joins c, the cluster c may now have a
new radius, since i could be potentially more than dc away from c. Rename c as c◦

instead. The radius of the new cluster c◦ can be bounded as follows:

Lemma 3.3. For a specific cluster c◦, dc◦ ≤ 3dc. Recall that dc is the original
cluster radius of cluster c = (vc, dc).

Proof. We inherit the notation of i, j, c′, and c◦ as above. we have: d(i, vc) ≤
d(i, vc′) + d(vc′ , j) + d(j, vc) ≤ 2dc′ + dc ≤ 3dc.

We now bound the cost of the primal solution. Let C be the set of open centers.
Some of the points are directly assigned, and others are indirectly assigned to a
cluster centered at c◦. We consider the set of points Pc◦ assigned to a particular
open cluster c◦.

The following lemma gives a bound on the service cost of all points assigned to
c◦ and three times its facility cost.

Lemma 3.4. (
∑

i∈P
c
◦

xic◦dc◦ + 3fc◦yc◦) ≤ 3 ×
∑

i∈P
c
◦

αi.

Proof. Consider the cluster c◦ to which point i is indirectly assigned. By prop-
erty (3), αi ≥ αj for some j with tight edges to vc and αj ≥ dc. Combined with
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Lemma 3.3, we have 3αi ≥ 3αj ≥ 3dc ≥ xic◦dc◦ . Consider the point j which is
directly assigned to c◦, 3αj = 3dc + 3βjc ≥ 3xic◦dc◦ + 3βjc◦ . Since we only per-
manently open the cluster c◦ when we have all the points with tight edges to vc

directly assigned to c◦, 3
∑

j βjc◦ = 3fc◦yc◦ .

Summing over all open clusters in C gives the bound. We thus obtain the following
theorem. Note that we are actually paying 3 times of the original cluster cost for
each of the original cluster c. And the final clusters constructed have radius at
most 3 times that of the original clusters. These facts will become important for
the r-Cellular Clustering problem discussed in Subsection 3.1.

Theorem 3.5. The primal-dual method described above produces a 3-appro-ximation
solution to the Cellular Clustering problem.

3.1 r-Cellular Clustering

We now extend the above primal-dual algorithm to get an approximation algorithm
for the r-Cellular Clustering problem which has the additional constraint that
each cluster is required to have at least r members. The notation (r, C) is used to
denote a solution having a total cost of C, and having at least r members in each
cluster.

Comparison with prior clustering work. Since our algorithm can be viewed
as an extension of facility location, we briefly discuss related results. The facility
location (and k-median) problems have been studied with the minimum cluster
size constraint [Karger and Minkoff 2000], as well as in the context of leaving an ǫ
fraction of the points unclustered [Charikar et al. 2001]. Let OPTr be the optimal
facility location cost with minimum cluster size r. Recall that (r, C) denotes a so-
lution with minimum cluster size r and solution cost C. Bi-criteria approximations
for the facility location problem of the form (α · r, 1+α

1−α
β · OPTr) were achieved in-

dependently by Guha, Meyerson and Munagala and by Karger and Minkoff [Guha
et al. 2000; Karger and Minkoff 2000]. Here, β refers to the best approximation
factor for facility location, and α is an adjustable parameter between 0 and 1. It
is not known whether it is possible to achieve a one-sided approximation on facil-
ity location cost alone. In contrast, for the r-Cellular Clustering problem, we
provide an one-sided approximation algorithm, specifically we obtain a (r, 36OPTr)
solution, where OPTr is the cost of the optimal solution with cluster size at least
r,

To achieve this, we first study a sharing variant of this problem, where a point is
allowed to belong to multiple clusters, thus making it easier to satisfy the minimum
cluster size constraint. Interestingly, allowing sharing changes the value of the
optimal solution by at most a constant factor. We note that this observation does
not hold for facility location, where a shared solution might be arbitrarily better
than an unshared one. The algorithm consists of three main steps:

1. Augmenting with Setup Costs. Given an instance of r-Cellular Clus-

tering, we first construct an instance of Cellular Clustering as follows: aug-
ment the cluster cost fc of a cluster c by r×dc. In addition, if a cluster c = (vc, dc)
has fewer than r points within distance dc of its center vc, this cluster is eliminated
from the instance. If the original r-Cellular Clustering instance has an opti-
mal solution with cost OPTr, it is not hard to see that the same solution works for
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the Cellular Clustering instance constructed above with a total cost of at most
2OPTr. We invoke the 3-approximation algorithm for Cellular Clustering on
this new instance to find a solution with cost at most 6OPTr.

2. Sharing Points between Clusters. We now describe the notion of a shared
solution for r-Cellular Clustering. In a shared solution, points are allowed
to be assigned to multiple clusters, as long as they pay the service cost for each
cluster they are assigned to. A shared solution is feasible if all clusters have at least
r (potentially shared) members. We modify the solution obtained above to get a
feasible shared solution for r-Cellular Clustering as follows: for each open
cluster c with center P , assign the r closest neighbors of P to c as well, regardless
of where they are initially assigned. The extra service cost of at most r × 3dc for
these r points can be accounted for by the extra 3 times the cluster cost of r × dc

being paid by the open cluster c in the Cellular Clustering solution. Thus,
we have obtained an (r, 6OPTr) shared solution for the r-Cellular Clustering

instance.

3. Making the Clusters Disjoint. Finally we show how to convert a shared
solution to a valid solution where each point is assigned to only one cluster, with
only a constant blowup in cost. We note that for the corresponding facility location
problem, it is not feasible to do this “unsharing” without a large blowup in cost in
the worst case.

Initially, all points are labeled unassigned. We consider the clusters in order
of increasing cluster radius dc. If a cluster c has at least r unassigned members,
then it is opened and all its unassigned members are assigned to c and labeled
assigned. We stop this process when all the remaining clusters have fewer than r
unassigned members each. The remaining clusters are called leftover clusters. We
temporarily assign each of the unassigned points arbitrarily to one of the leftover
clusters it belongs to. Since each cluster had at least r members in the shared
solution, each leftover cluster c′ must have a member in the shared solution, which
is now assigned to an open cluster o, s.t. dc′ ≥ do. We thus have the situation
illustrated in Figure 5.

Member

Leftover Cluster

Center

Assigned members
Shared members

m ≥ r

VmV2V1

m′ < r
U1

U2
Um′

(weight m′)

Open Cluster o

Fig. 5. Structures of open and leftover clusters

The points are organized in a forest structure, where each tree has two “levels”.
We can regroup points into clusters, on a per tree basis. It is obvious that each
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tree has at least r points, since it contains at least one open cluster o. We further
simplify the structure into a true two-level structure as in Figure 5, by collapsing
each leftover cluster into a single node with weight equal to the number of points
temporarily assigned to it. Nodes in the first level of the tree have weight 1. We
apply the following greedy grouping procedure: first consider only the nodes at
the second level of the tree and collect nodes until the total weight exceeds r for
the first time. We group these nodes (belonging to leftover clusters) into a cluster,
and repeat the process. Notice that since we did not touch the first-level nodes,
the total weight of remaining nodes in the tree is at least r. If the total weight of
remaining nodes in the second level, Ws, is less than r, then we extend the grouping
into the first level nodes. Let m denote the total weight of nodes in the first level.
If Ws + m ≥ 2r, then we group the nodes in the second level with r−Ws first level
nodes together into a cluster; the remaining nodes in the first level form a cluster.
Otherwise, all the remaining nodes (both the first and second level) are grouped
into a cluster. If we break up the tree using the procedure above, each resulting
cluster has size at least r.

Lemma 3.6. For a cluster that contains any second-level nodes, the total number
of points in the cluster is no more than 2r − 1.

Proof. Since a single second-level node has weight less than r, a cluster con-
taining only second-level nodes has at most 2r−1 members. If the cluster contains
both the first and second-level nodes, then we must have reached the case where
the total weight of remaining nodes in the second level is less than r. In that case,
by definition, the cluster formed containing these second-level nodes has size either
r or less than 2r − 1.

There could be a cluster that only contains the first level nodes, and its entire
cost (both the service and cluster cost) can be accounted for by its cost in the
original (r, 6OPTr) shared solution. We now bound the cost of clusters containing
the second-level nodes.

Lemma 3.7. For each cluster c formed that contains second level nodes, there
exists a leftover cluster c′ unique to c, such that the following holds: let p be the
center of the initial open cluster o at the first level, if we center the cluster c at p,
then the radius of cluster c, dc ≤ 3dc′ .

Proof. Among all the leftover clusters that contributed to c, let c′ be the one
with the maximum radius. By definition, all nodes assigned to a leftover cluster
get assigned to a single cluster, guaranteeing the uniqueness of c′. Let do be the
radius of the open cluster at level 1 of this tree. Consider a point q ∈ c. If q is a
first-level node, then d(q, p) ≤ do ≤ dc′ . If q is a second-level node, then let c′′ be
the leftover cluster that q was assigned to, then d(q, p) ≤ 2dc′′ + do ≤ 3dc′ .

The above lemma implies that by choosing p as the cluster center, the service cost
of each point in c is no more than 3dc′ and the total facility cost incurred within
our solution is no more than that of the shared solution. Together with Lemma 3.6,
we conclude that the service cost of points in c is no more than 6r × dc′ . Notice
that in the shared solution, points in cluster c′ are paying a total service cost of at
least r × dc′ . We thus have the following theorem.
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Theorem 3.8. The above procedure produces a solution with minimum cluster
size r and total cost no more than 36OPTr, i.e., a (r, 36OPTr) solution, where
OPTr is the value of the optimal solution with a minimum cluster size of r.

We note that the above algorithm and analysis can be combined with the tech-
nique developed in [Charikar et al. 2001] to give a constant approximation to the
(r, ǫ)-Cellular Clustering problem.

4. CONCLUSIONS

Publishing data about individuals without revealing sensitive information is an
important problem. The notion of privacy called k-Anonymity has attracted a lot of
research attention recently. In a k-anonymized database, values of quasi-identifying
attributes are suppressed or generalized so that for each record there are at least
k− 1 records in the modified table that have exactly the same values for the quasi-
identifiers. However, the performance of the best known approximation algorithms
for k-Anonymity depends linearly on the anonymity parameter k. In this paper, we
introduced clustering as a technique to anonymize quasi-identifiers before publishing
them. We studied r-Gather as well as a newly introduced clustering metric called
r-Cellular Clustering and provided the first constant factor approximation
algorithms for publishing an anonymized database table. Moreover, we generalized
these algorithms to allow an ǫ fraction of points to remain unclustered.
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