
SiRiUS: Securing Remote 
Untrusted Storage

NDSS 2003

Eu-Jin Goh, Hovav Shacham,
Nagendra Modadugu,

and Dan Boneh
Stanford University



Introduction

Secure network file systems not 
widespread. Why?

1. Hard to deploy
• No backwards compatibility

2. File sharing not well supported
• No file sharing ability, or
• Fully trusted server handles file sharing



Insecure Network File 
Systems

Legacy network file systems

• widely used: NFS, CIFS, Yahoo!

• insecure: NFS v2
• Weak authentication: UID/GID
• Fully trusted server



SiRiUS Goals

1. No changes to remote file server
• Implies crypto techniques

2. Easy for end users to deploy
• Minimal client software, no kernel changes

3. File Sharing with fine grained access control
• Read-write separation

4. Minimize trust in file server



Existing Secure File Systems

1. CFS – Blaze
• Single user: no file sharing

2. SFS – Mazières et al.
• File sharing but uses trusted server

3. SUNDR – Mazières et al.
• File sharing by untrusted server
• Not easy to deploy: requires block servers



“Although NFS version 2 has been 
superseded in recent years by NFS 
version 3, system administrators are 
slow to upgrade … so NFS version 2 is 
not only widespread, it is still by far 
the most popular version of NFS.”

NFS v3 Designers
4½ years after NFS v3 introduced



Design Limitations

Cannot defend against DOS attacks:

• attacker breaking into file server can 

delete all files

• Solution: 
1. Keep good backups: SiRiUS easy to backup
2. Replicate files using quorum systems 

- e.g. Reiter-Mahlki (1997)



SiRiUS Usage Model

• SiRiUS is a file system layered over 
existing network file systems

• Stop-gap measure until full upgrade of 
legacy systems



Security Design

1. Confidentiality and integrity
2. Cryptographic file level read-write 

access controls
3. Simple key management
4. Simple access control revocation
5. Freshness guarantees for access 

control meta data



Architecture

SiRiUS layered over NFS

Application NFS Client

NFS Server

NFS Client

NFS Server

User

Kernel

SiRiUS Client

Client Machine

File Server

Network



Architecture

SiRiUS layered over CIFS

Application CIFS Client

NFS Server

NFS Client

CIFS Server

User

Kernel

SiRiUS Client

Client Machine

File Server

Network



Architecture

SiRiUS layered over Yahoo!

Application Yahoo! Client

NFS Server

NFS Client

Yahoo! Server

User

Kernel

SiRiUS Client

Client Machine

File Server

Network



File Data Security

• Each file has unique:
1.File Encryption Key (FEK)
2.File Signing Key (FSK)

• FEK, FSK control file read-write access

• Users keep only 2 keys for all files:
1.Master Signing Key (MSK)
2.Master Encryption Key (MEK)

• MSK, MEK control all file FEK and FSK access



File Structures

Files on remote server split in 2 parts 

1. md-file contains the file meta data. e.g. 

access control information

2. d-file contains the file data



File Structures

ENCFEK[File Data] SIGFSK
[File Data Hash]

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

SIGMSK
[Meta Data

Hash]

Enc. Key
Block

(User 1)

d-file

md-file



Encrypted Key Blocks

Username
(KeyID)

File Enc.
Key (FEK)

File Sig.
Private 

Key (FSK)

Encrypted with
username’s

MEK public key

Username
(KeyID)

File Enc.
Key (FEK)

Read-write Read only



Meta Data File Creation



Meta Data File Creation

File Enc.
Key (FEK)

File Sig.
Private

Key (FSK)

1) Generate file keys (FSK and FEK)



Meta Data File Creation

Username
(KeyID)

File Enc.
Key (FEK)

File Sig.
Private

Key (FSK)

Encrypted with
owner’s

MEK public key

1) Generate file keys (FSK and FEK)

2) Create encrypted key block.



Meta Data File Creation

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

3) Append Pub FSK, time stamp,
and file name to enc. key block



Meta Data File Creation

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

SIGMSK
[Meta Data

Hash]

3) Append Pub FSK, time stamp,
and file name to enc. key block

4) Hash and sign using owner’s master signing key



Meta Data File Creation

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

SIGMSK
[Meta Data

Hash]

3) Append Pub FSK, time stamp,
and file name to enc. key block

4) Hash and sign using owner’s master signing key

5) Update md-file freshness tree



Why are freshness 
guarantees needed?

• Can verify latest version of info is read

• md-file freshness prevents rollback of 
revoked privileges



Rollback Revoked Privileges

1. Bob revokes write access from Alice
2. Alice replaces new md-file with saved 

(older) copy
3. Replacement restores write privileges
4. Alice can undetectably write to d-file



Freshness Overview

• SiRiUS client generates hash tree of all 
md-files owned by user

• Hash tree root: hash of all the md-files
• Every directory has mdf-file made of 

the hash of:
1. md-files in that directory
2. mdf-files of sub directories



Hash Tree Generation

/a

/a/b

foo

bar

conbin

/

dir

file

Key:



Hash Tree Generation

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf
Want to generate

root mdf



Hash Tree Generation

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf

Before root mdf can be
generated, we need

/a/mdf

Want to generate
root mdf



Hash Tree Generation

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf

Before root mdf can be
generated, we need

/a/mdf

which in 
turn needs 
/a/b/mdf mdf

Want to generate
root mdf



Hash Tree Generation

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

Hash bin and 
con to generate

/a/b/mdf mdf



Hash Tree Generation

/a

/a/b

foo

bar

conbin

/

dir

file

Key:
mdf

Hash /a/b/mdf
and bar to generate

/a/mdf

mdf/a/b/mdf



Hash Tree Generation

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf/a/mdf

mdf/a/b/mdf

Hash /a/mdf and
foo to generate

root mdf



Root mdf-file

• Contains a time stamp
• Time stamp updated by client at 

specified time intervals
• Signed by owner of the md-files



Hash Tree Generation

1. Generated only once
2. Generated by owner of md-files
3. Hash tree cacheable
4. Updated only on md-file changes



Verify md-file Freshness

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf/a/mdf

mdf/a/b/mdf



Verify md-file Freshness

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf/a/mdf

mdf/a/b/mdf
Verify bar

md-file
freshness



Verify md-file Freshness

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf

1) Hash /a/b/mdf
and bar

to regenerate 
/a/mdf

mdf/a/b/mdf
Verify bar
md-file

freshness



Verify md-file Freshness

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf
2) Compare 
regenerated
/a/mdf to 

current version

mdf/a/b/mdf
Verify bar

md-file
freshness

1) Hash /a/b/mdf
and bar

to regenerate 
/a/mdf mdf



Verify md-file Freshness

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf/a/mdf

mdf/a/b/mdf
Verify bar

md-file
freshness

1) Hash /a/mdf
and foo

to regenerate 
root mdf



Verify md-file Freshness

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf/a/mdf

mdf/a/b/mdf
Verify bar

md-file
freshness

1) Hash /a/mdf
and foo

to regenerate 
root mdf

2) Compare 
regenerated
root mdf to 

current version



Verify md-file Freshness

/a

/a/b

foo

bar

conbin

/

dir

file

Key:

root mdf

mdf/a/mdf

mdf/a/b/mdf
Verify bar

md-file
freshness

1) Hash /a/mdf
and foo

to regenerate 
root mdf

2) Compare 
regenerated
root mdf to 

current version

3) Check timestamp
verify owner’s sig



File System Operations

1. Create, read, write, rename, unlink, 
share files 

2. Symbolic links but no hard links
3. User access revocation



User 1 Access Revocation

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

SIGMSK
[Meta Data

Hash]

Enc. Key
Block

(User 1)



Time 
Stamp

Enc. Key
Block

(User 1)

User 1 Access Revocation

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

File
name

SIGMSK
[Meta Data

Hash]

1) Regenerate new file keys



User 1 Access Revocation

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

SIGMSK
[Meta Data

Hash]

Enc. Key
Block

(User 1)

1) Regenerate new file keys
2) Remove user 1 key block



Time 
Stamp

User 1 Access Revocation

1) Regenerate new file keys

3) Update file sig. key
and enc. key blocks

2) Remove user 1 key block

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

File
name

SIGMSK
[Meta Data

Hash]



User 1 Access Revocation

1) Regenerate new file keys

3) Update file sig. key
and enc. key blocks

4) Update
time stamp

2) Remove user 1 key block

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

File
name

SIGMSK
[Meta Data

Hash]

Time 
Stamp



User 1 Access Revocation

1) Regenerate new file keys

3) Update file sig. key
and enc. key blocks

4) Update
time stamp

5) Update
hash and sig

2) Remove user 1 key block

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

SIGMSK
[Meta Data

Hash]



User 1 Access Revocation

1) Regenerate new file keys

3) Update file sig. key
and enc. key blocks

4) Update
time stamp

5) Update
hash and sig

6) Update freshness hash tree
2) Remove user 1 key block

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

SIGMSK
[Meta Data

Hash]



User 1 Access Revocation

1) Regenerate new file keys

3) Update file sig. key
and enc. key blocks

4) Update
time stamp

5) Update
hash and sig

6) Update freshness hash tree
7) reencrypt file data2) Remove user 1 key block

Enc. Key
Block

(Owner)

File Sig.
Pub. Key 

(FSK)

Time 
Stamp

File
name

SIGMSK
[Meta Data

Hash]



Architecture

SiRiUS layered over NFS using SFS toolkit

Application NFS Client

NFS Server

NFS Client

NFS Server

User

Kernel

SiRiUS Client

Client Machine

File Server

Network



Implementation Details

• Multiplex incoming NFS requests into 
multiple outgoing NFS requests

• NFS file handle cache
• Changing file access controls
• Random access

• Essential for good performance in partial 
file reads/writes



Random Access

Existing crypto file systems that support 
random access either

1. use block storage servers (SUNDR)
2. don’t encrypt data on server (SFS)

Method: 
1. View file as a series of blocks
2. Hash tree for file integrity

Similar construction used for authenticating 
digital streams – Wong and Lam (1998).



Performance

1. Public key encryption - RSA-1024
2. Signatures - DSA-512
3. Data file encryption - AES-128
4. Linux 2.4

NFS server - 1.13 GHz P3
NFS client - 866 MHz P3-M
100 Mbps link



Performance

632.9102.7100.01 MBSeq. Write
223.897.896.71 MBSeq. Read
21.92.01.18 KBSeq. Write
18.01.40.98 KBSeq. Read
1.10.40.30Delete File
14.53.40.40Create File

SiRiUSDumbFSKernel NFSFile SizeTest

Times are in milliseconds.



Other Extensions

• Encrypted path names
• Large scale group sharing using NNL 

broadcast encryption
• Maintaining traditional file system 

semantics using union mounts
• Union mounts also solve d-file rollback


