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Encryption Schemes
Provide data confidentiality
• building block of crypto protocols
• two main types :

1. Symmetric Key Enc (e.g. DES, AES)
• Same key used to encrypt and decrypt

2. Public Key Enc (e.g. RSA)
• Public key used to encrypt
• Private key to decrypt
• Much slower than symm key enc
• Focus of this talk



Encryption Schemes from 
Bilinear Maps

1. Traditional pub key enc schemes
• e.g. El Gamal, RSA
• based on finite groups of prime or 

composite order 

2. Bilinear groups
• finite groups on certain elliptic curves 

with special function called bilinear map
• can build enc schemes on bilinear groups



Thesis

Bilinear groups
allow us to build pub key enc schemes 
with properties that are difficult to 
obtain using “traditional” groups

To support thesis, give 2 schemes we built

• Homomorphic enc scheme [BGN05]
• Hierarchical IBE                 [BBG05]



Part 1 :

Homomorphic Encryption



What is Homomorphic Encryption?

Enc. scheme is homomorphic to function f if

• from E[A], E[B], can compute E[f(A,B)]

• e.g. f can be +, ×, ⊕, …
• no secrets needed to compute

e.g. El Gamal ( × homomorphic )

CT1 = (ga, gsa × M1) CT2 = (gb, gsb × M2)

CT1 × CT2 = (ga + b, gs (a + b) × M1 M2)



Doubly Homomorphic Encryption

Enc. scheme is homomorphic to function f if
• from E[A], E[B], can compute E[f(A,B)]

• e.g. f can be +, ×, ⊕, …

Ideally, want f = NAND, or f = {+,×}
• Called doubly homomorphic encryption

Can do universal computation on ciphertext!



Why is doubly homomorphic
encryption useful?

Efficient solution for many problems:

Most generally
1. 2 party Secure Function Evaluation

Specific problems
• Computing on encrypted databases
• Distributed computing on confidential 

data



App: Database Computation

Outsourced server with database containing 
encrypted data

• User wants to compute function g on 
encrypted data
• e.g. data mining, data aggregation

With doubly homomorphic encryption,
• Database encrypted with doubly hom. enc.
• User sends g to server
• Server computes g on encrypted database
• Encrypted result returned to user



These applications are
pretty cool,

what does a doubly homomorphic
encryption scheme look like?

Sorry, it doesn’t exist (yet).
• Open problem from 1978 (Rivest et. al.)
• Existing schemes hom. to 1 function

• E.g. ElGamal (×), Paillier (+), GM (⊕)

But made some progress …



Our Results

Two homomorphic encryption schemes that 
support one × and arbitrary +

⇒ Eval multi-var polynomials of total deg 2

1. Subgroup decision scheme
• Built from finite bilinear groups with composite order
• Security based on subgroup decision problem

2. Linear scheme
• Built from finite bilinear groups with prime order
• Security based on linear problem

For talk, focus on subgroup decision scheme



Related Work

Sander et al. [SYY99]

• Enc. scheme — NC1 circuit eval. on CTs
⇒ Can evaluate 2-DNFs on CTs

But CT len. exponential in circuit depth
• CT size doubles for every + op

• Poly. len. 2-DNF gives poly. size CT

• Our schemes — constant size CT
— crucial for apps



Bilinear groups with
composite order n

For prime p = ln – 1 and p = 2 mod 3

• G = subgroup of points in Fp on 
elliptic curve y2 = x3 + 1 (order n)

• G1 = subgroup of Fp2 (order n)

Weil pairing on curve gives bilinear map 
e: G × G → G1 where

1. e (ua , vb) = e (u , v)ab

2. e (g , g) ≠ 1 (g = generator of G)



Enc. SchemeKeygen(τ):
• G:  bilinear group order n = q1q2 on ell. curve over Fp.
• Pick rand g,u ∈ G.       Set h = uq2 (⇒ h order q1)
• PK = (n, G, G1, e, g, h) SK = q1

Encrypt(PK, m):            m ∈ {1,…,T}

• Pick random r from Zn.

• Output     C  =  gmhr ∈ G.

Decrypt(SK, C): 
• Let        Cq1 = ( gmhr )q1 = (gq1)m ;     v = gq1

• Output      m = Dlog of Cq1 base v.
Note:   decrypt time is O(√T).



Homomorphisms
Given A = gahr and B = gbhs :
To get encryption of a + b

• pick random t ∈ Zn

• compute      C = A ⋅ B ⋅ ht = ga + b hr + s + t ∈ G

To get encryption of a × b
• let h = gαq2 , g1 = e(g,g), h1 = e(g,h)
• pick random t ∈ Zn

• compute 
C = e(A,B) ⋅ h1

t = g1
ab h1

r’ ∈ G1



Semantic Security

Keygen(τ)
Pick 2 msgs

M0, M1 (same len)
Pick random 
bit b∈ {0,1}

Challenger Adversary 

PK

M0 , M1

For encryption schemes, standard notion of 
security is semantic security.

Modeled as  game btw adversary and challenger

E[Mb] Output guess 
for b

Sem sec ⇒ can’t guess b with prob different from ½
⇒ can’t distinguish btw ciphertexts



Complexity Assumption

Decision subgroup assumption:
For rand. bilinear group G of order n = q1q2 ,
given (n,G,G1,e,x), the distributions :

• x  is uniform in G
• x  is uniform in q1—subgroup of G

are indistinguishable

Thm:   system is semantically secure, unless the 
subgroup assumption is false.



Security of Encryption Scheme

Proof Sketch : 

1. Assume enc scheme is broken
• ⇒ exists adversary A that can win semantic 

security game with prob better than ½
• use A to break complexity assumption
• i.e. given (n, G, G1, e, x), use A to determine if 

x is in q1 subgroup of G

2. Create simulator S that interacts with A to 
distinguish x with prob better than ½



Proof of Semantic Security

Pick rand g ∈ G

Pick 2 msgs
M0, M1

Pick random 
bit b ∈ {0,1}

Simulator Adversary 

PK = (n,G,G1,e,g,x)

M0 , M1

E[Mb] = gmb xr Output b’

Given (n,G,G1,e,x),
decide if x ∈ q1 subgroup of G

If x ∈ q1 subgroup of G, then E[Mb] valid CT
If not, then E[Mb] independent of b



Applications

1. Evaluate multi-variate polynomials of 
total degree 2 (on ciphertexts)

2. Gadget: “check” if CT contains 1 of 2 values
• Most voter efficient E-voting scheme
• Universally verifiable computation

3. SFE for 2-DNF formulas ∨ (bi,1 ∧ bi,2)
4. Build first perfect NIZK argument for all NP 

languages [GOS06]
• 20 year old problem in NIZK



1) Evaluating Quadratic Poly.

Multi-var polynomials of total deg 2
• x1 x2 + x3 x4 + …

• +, × hom. allow eval. of such poly. on CT

• e.g. e (E[x1] , E[x2]) × e (E[x1] , E[x2]) × …

• evaluate dot products

• but to decrypt, result must be in known 
poly. size interval.



Suppose CT: C = E[v].

Given 2 msgs v0,v1 and rand r, anyone can compute
E [ r ⋅ (v - v0) ⋅ (v - v1) ]

• If v ≠ v0,v1, result is E[random]
• Otherwise, result is E[0]

• Decryptor can verify CT is enc. of either v0 or v1 
• but not learn which one 

Applications:
1. E-voting: voter ballots need no NIZK proofs
2. Universally Verifiable Computation

• Anyone can check that public function on private inputs 
computed correctly without learning anything else

2) Gadget



4) Perfect NIZK for all NP lang. 

GOS06 built perfect NIZK for circuit sat
(CSAT) using our enc scheme

NIZK for CSAT ⇒ prove that circuit C is
satisfiable without revealing formula that
satisfies C

CSAT = NP-complete



4) NIZK for CSAT
Key observations :

• can build NIZK proof that CT contains enc of 0 or 1
• our enc scheme also commitment scheme

• If A, B, C commitments to bits

C = A NAND B     iff A + B + 2 (C – 1) ∈ {0,1}
can use homomorphic properties + NIZK proof to verify RHS

If A, B input wires of NAND gate and C output wire

• use NIZK proof to show that A, B, C are enc of bits 
• compute RHS and verify result with another NIZK proof

⇒ NAND gate well formed

• Then use this construction in circuit to show satisfaction 
without revealing formula



Secure Function Evaluation
2 parties : Alice  and Bob
• Alice has function f and Bob has input x
• Both want to evaluate f(x) without 

revealing f to Bob and x to Alice

Two security models :
1. Alice/Bob is semi-honest

• follow protocol exactly but can learn secret info 
from interaction (honest but curious)

2. Alice/Bob is malicious
• can do anything they like but assume that 

Alice/Bob still interested in learning f(x)

• can’t prevent aborting, not participating, using 
input y instead of x, …



4) 2 Party SFE for 2-DNF

Bob
A = (a1,…,an) 

∈ {0,1}n

Alice
φ(x1,…,xn) = ∨k

i=1(yi,1∧yi,2) s.t.

yi,* ∈ {x1,¬x1,…, xn,¬xn}.

Get Arithmetization Φ:
• replace ∨ by +, ∧ by ×, ¬xi  

by (1- xi).
• Φ is poly. with total deg 2!



2-DNF Protocol (Semi-Honest)

Invoke Keygen(τ)
Encrypt A

Eval. E[r ⋅ Φ(A)] 
for random rIf decrypt = 0, 

emit 0. Else, 1.

Bob
A = (a1,…,an)

Alice 
φ(x1,…,xn) = ∨k

i=1(yi,1∧yi,2)
Φ = arith. of φ

Bob’s Security: Alice cannot distinguish bet. Bob’s 
possible inputs — from semantic security of E.

Alice’s Security: Bob only knows if A satisfies φ() — by 
design, Bob output distrib. depends only on this.

PK, E[a1],…,E[an]

E[r ⋅ Φ(A)]



SFE for 2-DNF

1. Communication Complexity = O(n⋅τ)
• garbled circuit comm. comp. = Θ(n2)

2. Secure against unbounded Bob

3. Also have protocol secure against 
malicious Bob (in paper)



Concrete application for 2-DNF

Improve basic step in Kushilevitz-Ostrovsky
PIR protocol from √n to 3√n

• PIR = Private Information Retrieval
• Bob wants entry j in database
• but does not want database or any

eavesdropper to know j

• Trivial solution : send whole db
• want more communication efficient sol
• optimize for comm., not computation



PIR/SPIR
Bob: wants D(R,S)

Database D

√n

√n

D uses 2-DNF
φ(x1,…,x√n, y1,…,y√n) 

= ∨D(i,j)=1 (xi ∧ yj)

Set assignment A:
xR = yS = 1, 
xi = xj = 0

for i ≠ R, j ≠ S

|D| = n

Do 2-DNF SFE
with A and φ

Get φ(A) = D(R,S)

If D(R,S) = 0 ⇒ (xR ∧ yS) ∉ φ. Then φ(A) = 0 if xR = yS = 1 in A.
If D(R,S) = 1 ⇒ (xR ∧ yS) ∈ φ. Then φ(A) = 1 if xR = yS = 1 in A.
Comm. Complexity = O(τ ⋅ √n)   [O(τ ⋅ 3√n) balanced]
Alternative scheme — each db entry O(log n) bits



End of Part 1 : Homomorphic Enc

Two homomorphic enc schemes that support one ×
and arbitrary +

• based on subgroup decision and linear problems

Despite only one additional mult, still many useful 
applications :

1. Dot products, quadratic poly
2. 2-DNF, PIR
3. Voting, verifying computation
4. Perfect NIZK for NP



Questions?



Part 2 :

Identity Based Encryption



Identity Based Encryption (IBE)
IBE — Pub key enc system [S84,BF01,C01]

• In IBE, pub keys can be arbitrary strings (ID)

• Traditional Pub Key Enc :
• need user to have pub/priv key pair before can enc msgs to user

• IBE : since pub key can be arbitrary string

• can encrypt to user using public id (e.g. email addr) 
• Central auth (CA) issues priv key to user for public id

CA

ID1 ID2 ID99…



Hierarchical IBE (HIBE)
HIBE — IBE generalization [HL02,GS02,BB04]

• ID with priv keys can issue priv keys to 
descendent IDs
• e.g. with priv key for ID = (A1,A2), 

can create priv key for ID = (A1,A2, * , …)

CA

ID1 ID2 ID99…

ID1,ID1 ID1,ID2 ID1,ID99… …



Applications
ID hierarchy can mirror organization hier.

• Delegate key generation to subordinates

HIBE is a building block for:

• Forward Secure Enc
• Private key evolves over time s.t.

CT enc with key at time n cannot be dec with priv
key from time > n

• Public Key Broadcast Enc
• Broadcast enc = enc msg to large user base with 

ability to revoke users
• E.g. DVD enc scheme - AACS



Main Result
Existing HIBEs — HL02, GS02, BB04

CT size and dec cost linear with hierarchy depth

Our HIBE —

1. CT size and dec cost constant with hier depth
• CT Size = 3 group elmts ,     Dec Cost = 1 pairing

2. Priv key size shrinks as go down ID hierarchy

3. Selective ID Security in Standard Model
• Bilinear DH Inversion Problem (BDHI) [BB04]



Using our HIBE in Applications

Existing HIBEs — GS02, BB04

CT size, dec cost linear with hierarchy depth.

Forward Secure Enc
• GS,BB — CT size, Dec cost = O( log(time) )
• Ours — CT size, Dec cost = O(1)

Broadcast Enc N = # users, r = # revoked users
• GS,BB — CT size = O(r log N)
• Ours — CT size = O(r)



HIBE SchemeSetup(l):
• G:  bilinear group order p. HIBE max depth = l.
• Pick rand g, g2, g3, h1, … , hl ∈ G , α ∈ Zp.      Set g1 = gα.
• Params = (g, g1, g2, g3, h1, … , hl ) Master Key = g2

α

Encrypt(Params, ID, m): ID = (I1, … , Ik)
• Pick rand s ∈ Zp.
• Output     C  =  ( e(g1,g2)s · M , gs , (h1

I1 ··· hk
Ik)s ).

Decrypt(dID, CT):    CT = (A,B,C)     dID = (a0, a1 , bk+1 … , bl)

• Output      A · e(a1,C) / e(a0 ,B) 

KeyGen(dID*, ID):    ID* = (I1, … , Ik)      ID = (I1, … , Ik+1)
• dID* = ( g2

α ·(h1
I1 ··· hk

Ik · g3)r , gr , hk+1
r , … , hl

r )  rand r,t ∈ Zp

= ( a0,                             a1 , bk+1 , … , bl)

• dID = ( a0·bk+1
Ik ·(h1

I1 ··· hk+1
Ik · g3)t , a1 · gt , bk+2hk+2

t ,…, blhl
t )



IND-sID-CCA Security [BF01]

Challenger Adversary

Setup Alg
Pub params

Either ID or EID[M]

Priv key for ID or M

Priv key and
Decrypt
Queries

M0, M1

EID*[Mb]
ChallengePick rand bit b

More Queries
except challenge

Output guess b’. Win if b’ = b.

ID*



Security Theorem
lth Bilinear DH Inversion assumption [BB04]:

G    =    Bilinear group of prime order p
e :    G × G → G1

For rand generators   g, h ∈ G,   and rand α ∈ Zp*  
then following two distributions indistinguishable:

• ( g , h , g(α) , g(α2) , … , g(αl) , e(g,h)1/α )

• ( g , h , g(α) , g(α2) , … , g(αl) , T )     for rand T ∈ G1

Thm:   HIBE system is IND-sID-CCA, unless l-wBDHI
assumption is false.



End of Part 2 : HIBE

HIBE with constant size CT and dec cost
• Secure in Standard Model
• Weak Bilinear DH Inversion Assump.

Open Problem:
• Fully Secure HIBE with tight reduction



Conclusions

Bilinear groups
allow us to build pub key enc schemes 
with properties that are difficult to 
obtain using “traditional” groups

Gave 2 examples :
• Subgroup Decision homomorphic enc scheme
• Hierarchical IBE
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