Secure Indexes*

Eu-Jin Goh
Stanford University
15 March 2004

* Generalizes an early version of my paper

“How to search on encrypted data”
on ePrint Cryptology Archive on 7 October 2003



Secure Indexes

e Index words (w,, ..., w.) In a doc

e Allow users with trapdoor for word w
to search only for w in O(1) time

e Contents hidden without trapdoor

e Index preserves semantic security of
encrypted documents

= Do not hide public info about doc
(e.g. encrypted file size)



2.

3.
4.
D.

Applications

. Searching on Encrypted Data

Encrypted Searchable Audit Logs

Private Database Queries
Accumulated Hashing
Private Set Membership Test



Talk Overview

1. Security model
- — almost always sufficient
- — stronger (by )

2. Efficient Construction (Z-IDX)
e Variants secure in both models



Secure Index Scheme

Consists of 4 algorithms —
1. Keygen
2. Trapdoor
3. Buildindex
4. Searchindex



IND-CKA Intuition

Semantic Security
cannot deduce doc contents from Index



IND-CKA Intuition

Semantic Security
cannot deduce doc contents from Index

IND

1. chooses 2 equal size docs V, , V; and
IS given index | for either V, or V;

2. V, and V; (possibly) unequal # words
3. guesses which doc is indexed by |



IND-CKA Intuition

Semantic Security
cannot deduce doc contents from Index

IND

chooses 2 equal size docs V, , V; and
IS given index | for either V, or V,

V, and V, (possibly) unequal # words
guesses which doc is indexed by |

(CKA) given
plain text access to all docs + indexes

gueries for any trapdoor of its choice
(restricted after challenge)



IND-CKA Intuition

Semantic Security
cannot deduce doc contents from Index

IND

chooses 2 docs V, , V, and Is given
Index | for either V, or V,

Vy ,V; (possibly) unequal size + # words
guesses which doc is indexed by |

(CKA) given
plain text access to all docs + indexes

gueries for any trapdoor of its choice
(restricted after challenge)



IND-CKA vs. IND2-CKA

IND-CKA

»= Equal size docs have indexes that appear to
contain same # of words/tokens

IND2-CKA

= Uneqgual size docs have indexes that appear
to contain same # of words/tokens

= But can already distinguish indexes for
unequal size docs from doc size



IND-CKA vs. IND2-CKA

IND-CKA

» Equal size docs have indexes that appear to
contain same # of words/tokens

IND2-CKA

= Uneqgual size docs have indexes that appear
to contain same # of words/tokens

= But can already distinguish indexes for
unequal size docs from doc size

IND2-CKA model appears too strong

= IND-CKA probably strong enough + gives
more efficient constructions



Construction Z-IDX

Z-1DX bullt using

1. (BF) —
= Efficiently test set membership
= O(1) insert/test algorithms

2. (PRF)
= emulate “random functions”



Keygen (s): PRF f: {0,1}» " {0,1} ® {0,1}s IN D'CKA
Output K, = (k;, ., k)«R{0,1} Z-1DX



Keygen (s): PRF f: {0,1}» " {0,1}s ® {0,1}s IN D'CKA
OUtpUt Kpriv - (kl 7ty kr)<j— {O’l}sr Z— I DX

Trapdoor (K, W):
Output T, = (f(w , k,) , .., f(w , k) )T {0,1)sr



Keygen (s): PRF f: {0,1}» " {0,1} ® {0,1}s IND'CKA
Output <R {0,1) /-1DX
Trapdoor (K, W):
Output T, = (f(w, k) , ..., f(w, k) )T {0,1p

Buildindex (D, K,;,): Let :
upper bound on # words for doc of size |D}

1) For , do
a) Compute T = (%, = 1( ), s X = 1( ))
b) Compute + insert (f(D,;, X;), ..., f(D,;, X)) In BF

2) Insert (u - n)-r of 1’s uniformly at random in BF
3) Output I, = (D, , BF)



Keygen (s): PRF f: {0,1} "~ {0,1} ® {0,1}* IND-CKA
OUtpUE Koy, = (K » - s K)o R {0,1) /-1DX
Trapdoor (K, W):
Output | {O,1}
Buildindex (D, K,;,): Let D = (Dijy, Wy, ..., W),
u = upper bound on # words for doc of size |D|
1) For w,, ..., w,, do
a) Compute T, = (X, = f(w;, Ky) , .., X =T(w;, k) )
b) Compute + insert ( f( Dy, X;) , ... , f{( Diyy, X, ) ) In BF
2) Insert (u - n)-r of 1’s uniformly at random in BF
3) Output

Searchindex (T,,, I5): Let

1) ComPUte (yl = f( ) y vy yr = f( ) )
2) Test if BF contains 1’s in all y,, ... , y, locations



Keygen (s): PRF f: {0,1}» " {0,1} ® {0,1}s IN D 'CKA

Output Koy, = (ky , . » k)« R {0,1F" /-1DX
Trapdoor (K, W):
Output | {0,1}s"
Buildindex (D, Kpriv): Let D =(Diy, Wy, ..., W,),
1) For w,, ..., w,, do
a) Compute T, = (X, = f(w;, Ky) , .., % =T(w;, k) )
b) Compute + insert ( f( Diy, X;) , ... , f( Diyy, X, ) ) In BF
2) Insert (u - n)-r of 1’s uniformly at random in BF
3) Output
Searchindex (T,,, Iy): Let
1) Compute (y; =f(Djy, X;) » .., ¥ = T(Dig, X))
2) Test if BF contains 1’s in all y,, ... , y, locations



el

/-1DX Properties

Handle arbitrary updates

Compressible Indexes
Space efficient for small and medium size docs

Short Trapdoors

Computationally very efficient
Occurrence Search

Efficient Boolean + Limited Regex Queries
Simple Key Management



Chang-Mitzenmacher

= Based on similar techniques as Z-IDX
L secure
= Use pre-built dictionaries



Chang-Mitzenmacher

= Based on similar techniques as Z-IDX
- secure
= Use pre-built dictionaries

= More space efficient than IND2-CKA secure Z-IDX

No false positives (negligible in Z-IDX with proper
choice of BF params)



Chang-Mitzenmacher

Based on similar techniques as Z-IDX
secure
Use pre-built dictionaries

More space efficient than IND2-CKA secure Z-1DX

No false positives (negligible in Z-IDX with proper
choice of BF params)

Cannot handle arbitrary updates
Much less comp. efficient than both Z-IDX’s

Large fixed size indexes — not compressible

b less space efficient than IND-CKA Z-1DX for
small and medium size docs



