How to
Search on Encrypted Data

Eu-Jin Goh
Stanford University
19 November 2003

How to search on
encrypted data?

Should we trust our
remote storage?

Many reasons not to

1. Outsourced backups and storage
2. Sysadmins have root access

3. Hackers breaking In

Should we trust our
remote storage?

Many reasons not to

1.
2.
F

Outsourced backups and storage
Sysadmins have root access
Hackers breaking In

untrusted file systems [GSMB03,MS02]
encrypt + MAC files before storing

Why we need efficient
encrypted data search?

e \Want all docs with “launch codes”

e But documents encrypted and server
not trusted with contents nor key

Why we need efficient
encrypted data search?

e \Want all docs with “launch codes”

e But documents encrypted and server
not trusted with contents nor key

e Download all documents, decrypt, and
search on local machine

e \Want “better” solutions than this

Design Goals

. Minimize communication overhead

. Minimize computation on both
server and client

. Multi-user setting
. Practical - deployable right now

Security Wish List

e distinguish between documents

e determine document contents

e see search keyword

e learn anything more than result
Server cannot generate coded query

3 Solutions

1) Practical Techniques for Searches on
Encrypted Data

D. Song, D. Wagner, and A. Perrig.
2) Searchable Public Key Encryption

D. Boneh, G. Crescenzo, R. Ostrovsky, G.
Persiano

3) Secure Indexes for Searching Efficiently
on Encrypted Compressed Data
E.-J. Goh

How to search on
encrypted data?

Solution 1 -

Practical Techniques for Searches
on Encrypted Data

D. Song, D. Wagner, and A. Perrig

Overview

e Focus on non-index solution
= Sequential scan entire document

e Searchable Symmetric Key
Encryption ()

e |[ndex solution uses hash tables but
updates insecure

Pseudo-Random Functions

Intuitively

e PRF’s indistinguishable from
random functions

e Given X,,...,X and f (x,),...,f.(x.),
adversary cannot predict f (x..,,)
for any X,

Linear Search with SSKE

Treat document as a series of keyword blocks.

Linear Search with SSKE

Searchable Symmetric Key Encryption (SSKE)

:I>OOI\JH

SSKE Operations

Key Generation

. Encrypt
. Generate Trapdoor

Test for keyword

SSKE - Encrypt

Wi-l Wi+1

1) Encrypt using a deterministic cipher with key a.
Divide cipher text into 2 parts, and

SSKE - Encrypt

2) Use a PRG with key b to generate random
bits = based on the location of

SSKE - Encrypt

3) Use a PRF with key c to derive key

SSKE - Encrypt

4) Use a PRF with to pad

SSKE - Encrypt

Wll Wi W|+1
l Encrypt
PRF.(L;)
Ki L | R
Si
TN R)

5) XOR two halves to form cipher text

SSKE - Trapdoor

Generate
Trapdoor

Keyword

Encrypt - key a l

VT

Trapdoor for keyword kw

SSKE - Trapdoor

Generate
Trapdoor

Keyword

Encrypt - key a l

VT

Trapdoor for keyword kw

Encrypt
W,
l Encrypt
PRF.(L;)
Kisem—| L |R
E[W,

s Fi(S)

SSKE - Test

Server gets and and scans document

Test

V*

1) XOR CT block with E[kw]

SSKE - Test

Server gets and and scans document
Test Encrypt
CT. W,
l l Encrypt
. PRF.(L,)
E[kW] ? Ki - Li Ri
E[Wi]
@ CT
S !

s Fi(S)

SSKE - Test

Server gets and and scans document
Test Encrypt
CT. W,
l l Encrypt
. PRF.(L,)
E[kW] ? Ki - Li Ri
E[Wi]
@ CT
!

If CT, = SSKE[kw], S
then T RG)

SSKE - Test

Server gets and and scans document
Test Encrypt
CT. W,
l l Encrypt
. PRF.(L,)
E[kW] ? Ki - Li Ri
E[Wi]
@ CT
S !

2) Check if i “\ -)
Ki*~i

Security of SSKE

e Proved that SSKE Is a PRG

e Security related to that of PRF and
PRG used In construction

Disadvantages

1. Work is linear In document size

2. Inelegant modifications to handle
variable length words

SWP Keyword Index

e Hash table keyed by words
e Buckets — ptrs to docs

SWP Keyword Index

e Hash table keyed by words
e Buckets — ptrs to docs

e Add new doc, update doc
= pucket length changes in hash table

e | eaks Iinfo about doc word set

How to search on
encrypted data?

Solution 2 -
Searchable Public Key Encryption

D. Boneh, G. Crescenzo, R. Ostrovsky,
and G. Persiano.

Linear Search with SSKE

Searchable Symmetric Key Encryption (SSKE)

Linear Search with SPKE

Searchable Public Key Encryption (SPKE)

N

Overview

allow mail gateway to prioritize
encrypted mail by keywords

. Bilinear maps
. Jacobi symbols
. General trapdoor permutations

Bilinear Maps

G,, G, - 2 groups of prime order p

ee: G, xG;, ® G,

- For any x,yl [1,p], e(g*,g")=e(g,9)"
e |If g Is a generator of G,, then
e(g,9) Is a generator of G..

:I>OOI\JH

SPKE Operations

Key Generation

. Encrypt
. Generate Trapdoor

Test for keyword

Let H, : {0,1}*® G, SPKE

1. Pickrand. a- Z,* and gen. g— G,
2. Apub: {g,ga}, Apriv: a

Let H, : {0,1}*® G, SPKE

1. Pick rand. a~ Z;* and gen. g— G,
2. Apub: {g,ga}, Apriv: a

given Ay, and w
1. Pickrand. r- Zf
2. Compute g', g2, t = e(H(w), g&)
3. CT—(0", 1

Let H, : {0,1}*® G, SPKE

1. Pick rand. a~ Z;* and gen. g— G,
2. Apub: {g,ga}, Apriv: a

given Ay, and w
1. Pickrand.r - Z*
2. Compute g', g2, t = e(Hy(w), g&)
3. CT—(0", 1)

given A .. and w

priv

1. Compute T, = Hy(w)2

Let H, : {0,1}*® G, SPKE

1. Pick rand. a~ Z;* and gen. g— G,
2. Apub: {g,ga}, Apriv: a

given Ay, and w
1. Pickrand.r - Z*
2. Compute g', g2, t = e(Hy(w), g&)
3. CT—(0", 1)

given A .. and w

priv
1. Compute T, = Hy(w)?
given T,= H,(w)2, CT=(A,B)

1. Check if e(T,,, A) ==

SPKE

given T,= H,(w)2, CT=(A,B)
1. Check if e(T,, A) == B

SPKE

given , CT=(A,B)
1. Check if e(T,, A) == B
2. If (A,B) contains w,
then , B =e(H{(w), g&)
P e(T,, A) =e(H (W) g)

SPKE

given T,= H,(w)2, CT=(A,B)
1. Check if e(T,, A) == B
2. If (A,B) contains w,
then A =g, B = e(H;(w), g&)
P e(T,, A) = e(H (W) g
= e(Hy(w), g)*

SPKE

given T,= H,(w)2, CT=(A,B)
1. Check if e(T,, A) == B
2. If (A,B) contains w,
then A = (",
P e(T,, A) = e(H (W) g
= e(Hy(w), g)*

given T,= H,(w)2, CT=(A,B)

1. Check if e(T,, A) == B
2. If (A,B) contains w,
then A =g, B = e(H;(w), g&)

P e(T,, A) =¢(

1(W)?, g")
(W), g)
(W), g%)

SPKE

Security

e Based on Bilinear Diffie-Hellman
assumption

= Given g, 0%, g°, g1 G,, hard to
compute e(g,g)a°°

e Model — semantic security against
chosen keyword attack (SS-CKA)

How to search on
encrypted data?

Solution 3 -

Secure Indexes for Searching
Efficiently on Encrypted
Compressed Data

E.-J. Goh

Overview

Build secure index for documents
= |ndexes give O(1) search time

Build using

1. Bloom filters - efficient test for set
membership

2. PRF - emulate “random functions”

Bloom Filters

e Represents a set S={s,,...,S.}
e |s depicted by m bit array

e Uses r independent hash functions
h,,..,h : {0,1}® [1,m]

Insertion Example

[0

0

< 0

3 hash functioVv
6 bit array

Array bits initially O |0

Insertion Example

To Insert word X

Insertion Example

To Insert word X

0
h,(x) = 0 .
0
() = 3 :
h(x) = 5 0
0

Insertion Example

To Insert word X

Insertion Example

To Insert word X

Insertion Example

To insert word y

Insertion Example

To insert word y

Insertion Example

To insert word y

Testing Example

h,(x) =0 - 1
h,(x) =3 1

>< O
n,(y) =1 :

N,(Y) =3 / .

Testing Example

h,(x) = 0 .1 Does x belong?

h,(X) = 3
\\ :

Testing Example

h,(x) =0

h,(X) = 3
\
\

1

Does x belong?

Compute
h;(x) =0
h,(x) =3

Testing Example

h,(x) =0

h,(X) = 3
\
\

1

Does x belong?

Compute

h;(x) =0

hy(x) =3
and check

Testing Example

h,(x) = 0 .1 Does z belong?

h,(X) = 3
\\ :

Testing Example

h,(x) =0

h,(X) = 3
\
\

1

Does z belong?

Compute
h,(z) =2
h,(z) =3

Testing Example

h,(x) = 0 .1 Does z belong?

h,(X) = 3 \
Compute
\ e h,(z) = 2

L hy(2)=3
0 and check

Bloom Filter

e |If any tested array bit is 0, al S

e QOtherwise, a probably In S

e False positive rate depends on
1. Number of hash functions

2. Array size
3. Number of elements In S

Pseudo-Random Functions

Intuitively

e PRF’s indistinguishable from
random functions

e Given X,,...,X and f (x,),...,f.(x.),
adversary cannot predict f (x..,,)
for any X,

Pseudo-Random Functions

A function F : {0,1}"x {0,1}® {0,1}™Is
a It
e For any t time oracle algorithm A
VPr[AF = 1] - Pr[ARF = 1]%2<
and A makes at most ¢ queries.

Overview

e 1 Bloom filter (BF) per document
e Use PRF with r keys as r hash fxns

e Denote PRFs as f,,...,T,

e Word Digest (WD)
" WD(X) = f,(X),..., F,(X)

Obvious Setup Algorithm

Generate suitable BF parameters
Scan each document —

for each word x in document j
Insert WD(x) into document j’s BF

Compress and encrypt docs
Transfer docs + Indexes to server

Obvious Setup Algorithm

Generate suitable BF parameters
Scan each document —

for each word x in document |
Insert WD(x) into document j’s BF

Compress and encrypt docs
Transfer docs + Index to server

Obvious Setup Algorithm

Generate suitable BF parameters
Scan each document —

for each word x in document j
Insert WD(x) into document j’s BF

Compress and encrypt docs
Transfer docs + Index to server

Obvious Method Is Insecure

e Compare doc BFs to determine doc similarity
e | earn doc contents from other doc indexes

e But analysis works only if same WD(x) across
all docs

Obvious Method Is Insecure

e Compare doc BFs to determine doc similarity
e | earn doc contents from other doc indexes

e But analysis works only if same WD(x) across
all docs

e Vary WD for each document
e But no key proliferation
— use same r keys for all docs

Modified Setup

. Assign and tag each document with
an integer from [1,n]

Scan each document —

for each word x in document |
insert fg (), ff () Into doc j’s BF

Modified Setup

. Assign and tag each document with
an integer from [1,n]

Scan each document —

for each word x in document |
Insert Into doc J’s BF

Why More Secure?

Lemma

If f, Is a PRF, then G(k)= f (1), ... ,f (q) IS
a PRG

Why More Secure?

If f, Is a PRF, then G(k)= f (1), ... ,f (q) IS
a PRG

For each word x in document |
insert f;. ,,(),-.,fr W) Into doc J’s BF

Why More Secure?

If f, Is a PRF, then G(k)= f (1), ... ,f (q) IS
a PRG

For each word x in document |
insert f¢ (), ff9(U) Into doc j’s BF
P X’s BF entry — PRG across all docs
P no correlation!

Search

1. User — compute WD(y) = f,(y),...,f.(y)
2. Send WD(y) to server

Search

1. User — compute WD(y) = f,(y),...,f.(y)
2. Send WD(y) to server

1. Server — for each doc j,

= Compute f; \(),.... ;)
= Test doc j’s BF

2. Send user matching docs

Updates

1. Add document
= Run setup alg. on new doc

2. Delete document

3. Update document

= Assign new doc humber
= Regenerate BF using new number

U and U Boolean Queries

e check doc J BF for both
ffl(x)(j)v"'1ffr(x)(j) and ffl(y)(j)v"-1ffr(y)(j)

e check for either
P Cost linear with size of query

Regular Exp. Queries

Limited set of regex queries

e Translate queries “abfa-z]” to
boolean queries “aba U ... Uabz”

P Cost linear with size of query

Other Nice Properties

. Can handle compressed data

. Indifferent to choice of cipher or
compression algorithm

. Variable Length Keywords
. SiImple Key Management

Heuristically Increasing
Security

Search for keyword y

1. User — compute WD(y) = f,(y),...,f.(y)
2. Send WD(y) to server

Heuristically Increasing
Security

Search for keyword y

1. User — compute WD(y) = f,(y),...,f.(y)
2. Send WD(y) to server
Instead of sending entire WD(y)

— send random r/2 parts of WD(y)

Heuristically Increasing
Security

Search for keyword y

1. User — compute WD(y) = f,(y),...,f.(y)
2. Send WD(y) to server
Instead of sending entire WD(y)
— send random r/2 parts of WD(y)
1. WD for repeated search of x looks diff
2. Heuristic — easy to detect in some cases

Occurrence Search

How to handle queries like “find all
docs where foo occurs twice”’?

Document setup
= prefix word with order of occurrence

Search query
= send digest for keyword “(2 || foo)™

Infrequent Keywords

e Only If don’t care about statistical
analysis across documents

e puild binary tree of doc BF

Security

Adversary learns no new Info
about a document from Iindex

Security

Adversary learns no new Info
about a document from Iindex

I.e. document P with n words
e m words known by adversary A
e Nn-m words unknown but A desires

Security

Adversary learns no new Info
about a document from Iindex

I.e. document P with n words
e m words known by adversary A
e Nn-m words unknown but A desires

A gains no info about n-m
words from P’s index even when have

= plain text access to all docs + indexes

= arbitrary queries to PRF on all words
except n-m unknown words

Security Model

Semantic Security against Chosen
Keyword Attack

— modeled as game between
adversary and challenger

SS-CKA Game — Setup

Adversary A

Challenger C

Create set S
of g words

SS-CKA Game — Setup

Choose
arbitrary num

subsets from S.

S* =
set of subsets

S*

Create set S
of g words

SS-CKA Game — Setup

S
Choose - Create set S
arbitrary num of g words
subsets from S. g
S* = g Create
set of subsets Indexes | for
- every subset
lsulisg in $* using

function f

SS-CKA Game — Queries

Adversary A
Make uptoq X Challenger C
queries on) >
any x| S WD(X)
Use Q to L,WD(x) _
check if x1 | . Function Q
Yes, No

SS-CKA Game — Challenge

Choose P 1 S*
Create Q s.t.

1QI=IPI.
(QEP)-(QGP): £

P,Q

SS-CKA Game — Challenge

Choose P1 S* 5.0 Pick
Create Q s.t. : V=PorQ
|QI=IP]. Create

l\, :
Index for V

(QEP)-(QCP)* £

SS-CKA Game — Challenge

Choose P1 S* 5.0 Pick
Create Q s.t. : V=PorQ
|QI=IP]. Create

l\, :
Index for V

(QEP)-(QCP)* £

SS-CKA Game — Challenge

Choose P1 S* 5.0 Pick
Create Q s.t. : V=PorQ
|QI=IP]. Create

l\, :
Index for V

(QEP)-(QCP)* £

Query on any

xi (QEP)-(QGP) ™ wpD(x)

SS-CKA Game

e A runs for t time and decides If V
ISP or Q

e A’s advantage In winning IS
e =YPr[Guess == V] - Y214

Security Theorem

Theorem

If Bloom filter construction uses a
(t,e,q)-PRF, then the Bloom filter
IS a (t,e,q)-SS-CKA Index.

Bloom Filter Sizes

Size of Bloom filter depends on num
unique words In all docs

e 437501 words, 22425 unique

e For false positive 1 in 1024, use 10 hash fxns to
give BF size 58 kB

Bloom Filter Sizes

Size of Bloom filter depends on num
unique words In all docs
= Calgary Corpus —
e 437501 words, 22425 unique

e For false positive 1 in 1024, use 10 hash fxns to
give BF size 58 kB

e 463869 words, 10014 unique

e For false positive 1 in 1024, use 10 hash fxns to
give BF size 29 kB

Sparse Array Encoding

e |[f large set of unique words over all
docs but each doc small

= Small docs b small number of unigque
words per doc

= Store using sparse array encoding

Sparse Array Encoding

e |[f large set of unique words over all
docs but each doc small

= Small docs b small number of unigque
words per doc

= Store using sparse array encoding
e e.¢. 2.5 mil unique words but each doc
contains only 5k unique words
= BF— 4 MB
= Store only 1’s (instead of 0’s) — BF 15 kB

Related Work

e Private Information Retrieval (PIR)
= User — want cell j of bit vec. on server
= PIR — get cell j without server knowing |J
e Oblivious RAMs
= Hide data access patterns

