The Design and
Implementation of Protocol-
Key Recovery

Based Hidden

Eu-Jin Go
Dan Bone

N, Stanford

N, Stanford

Philippe Golle, PARC
Benny Pinkas, HP Labs

Our contribution

e A key recovery system which Is
Hidden

Unfilterable

Real-time

e Implemented for SSL/TLS.

Hidden Key Recovery

e Add key recovery to existing protocols
without changing protocol.

e Modified protocol interoperates with
original protocol while still leaking key.

e Protocol session Is compromised if any
of the involved parties supports key
recovery.

Unfilterable Key Recovery

e Cannot filter key recovery channels
without disrupting protocol operation.

e Even If users are aware of key recovery
they cannot block It.

e Unfilterability not supported by classic
covert channels.

e.g. timing-based channels

Real Time Key Recovery

e The recovered key Is the current
session key.
e Allows on-the-fly traffic decryption.

e Well suited for wiretapping device.
e.g. Carnivore

Threat - Hackers

e Break into SSL web server and patch
server with hidden key recovery.

e Can eavesdrop on all secure connections

to server wit
e Original and

nout breaking In again.

nacked versions of the

server indistinguishable from network.

Application - Governments

e Governments could pressure major
software vendors to distribute SSL/SSH2
Implementations with key recovery.

e Can monitor all encrypted connections
where either client or server IS
compromised.

Threat - Black-box Testing

e Black-box testing

e run the product and observe external state
(network traffic)

e Cannot detect hidden key recovery

e Must examine source code
e Hard to verify large programs
e Harder to verify hardware implementations

Model

e Client and server communicate using a
standard protocol with session key K.

e Recovery agency wants to eavesdrop. Has the
decryption key of a public recovery key K.

e A corrupt implementation encrypts K with
recovery key K; to generate the Escrow
Agency Field (EAF).

EAF = E, [K]

Hidden Key Recovery

e |dea - embed EAF inside protocol fields
that contain random looking data.
e EAF Is a ciphertext

e indistinguishable from random to everyone
except recovery agency.

e Where can the EAF be hidden?
e random nonces, ciphertext padding

Unfilterable and Real Time
Key Recovery

e Unfilterability - EAF Is hidden in fields that
are essential for correct protocol operation.

E.g. send EAF in a field protected by MAC.

e Real-time - EAF delivers the key of the
current session.

EAF can be actual session key, or data which
Is sufficient for computing It.

Problem: Low Capacity
Channels

e Suitable protocol fields (e.g. nonces, padding)
are usually shorter than public key ciphertexts.

e EAF should be encrypted using public key
encryption.

e Shortest secure pubic key scheme
e ElGamal using elliptic curve (ECEG) over F,zss.
e Ciphertext is 41 bytes if plaintext < 20 bytes.

Low Capacity

e What if session key > 20 bytes (max
plaintext length)?

Use short seed to deterministically
generate session key.

Encrypt seed in the EAF.

Recovery agency can generate key from
seed.

Low Capacity

e What If available protocol fields < 41
bytes (ECEG cipher text length)?

1.
2.

Can embed ciphertext in several sessions.

Or use ECEG to encrypt a symmetric K, that
IS leaked over several sessions. Then use K,
for real-time key recovery of following
sessions (using symmetric crypto).

. Or use weaker ECEG parameters.

SSH 2 - Padding Attack

e Padding rules => if 1 byte payload, at
least 8 bytes of ciphertext from pad.

Pad consists of random bytes => can
nide 8 bytes of EAF as pad ciphertext.

e Payload, pad protected by MAC => pad
ciphertext is unfilterable

SSH 2 - Key Recovery

e Typical SSH 2 network traffic pattern -
large number of packets containing only
single keystroke => 1 byte payload.

e Session key completely disclosed In 5 or
10 packets by either client or server.

e Attack Is undetectable and unfilterable.

TLS Overview

_S - successor to SSL 3.

_S very similar to SSL 3 except for
minor details.

e Qur attack works on both TLS and SSL 3.

TLS Overview

e Two Phases In TLS:

e Handshake Protocol negotiates
cryptographic parameters.

e Record Protocol sends application data.

e TLS - most common config Is RSA key
exchange and server-only auth.

Client

TLS Handshake

Client Hdllo

Server

Server Hello

>

Certificate

Server Hello Done

Client Key Exchange

Change Cipher Spec

>

Finished (encrypted)

>

Change Cipher Spec

>

Finished (encrypted)

Suitable Fields

Client randomness 28 bytes

Server randomness 28 bytes
Session ID 32 bytes

Session key

A function of aclient
generated premaster key of
length 46 bytes.

Implemented key recovery
for OpenSSL

e Generate premaster secret from small seed
(20 bytes) to fit in plaintext of ECEG.

e Ciphertext is 41 bytes long but the client
randomness field is only 28 bytes long.

e SSL 3 - ECEG protects a symmetric key (IDEA).
- EAF later encrypted using IDEA.
e TLS 1 - 224 bit RSA key protects EAF.

hashf=n: /homeleujindkeyrecovery-deno# |, /demo-s=ldump,sh CewjinBhazhfxn “/keyrecovery—dencl® ,Avdm—tlsl https:/thacker,stanford edussouir
relmail /]
-
Ready lsshe: AES-12F) 2, 1 |38Rows, 75Cals [¥T100 | /| Ready sshi2: BES-12F) 2, 9 |33 Rows, 80 Cols WT100

Recovery Agency HTTPS Login for Webmall

Conclusions

e Easy to add hidden and unfilterable key
recovery to existing security protocols.

e OpenSSL - 400 lines of C for TLS and SSL

e Hard to design security protocols that
resist hidden key recovery attack.

