
The Design and
Implementation of Protocol-
Based Hidden Key Recovery

Eu-Jin Goh, Stanford

Dan Boneh, Stanford

Philippe Golle, PARC

Benny Pinkas, HP Labs

Our contribution

• A key recovery system which is
• Hidden
• Unfilterable
• Real-time

• Implemented for SSL/TLS.

Hidden Key Recovery

• Add key recovery to existing protocols
without changing protocol.

• Modified protocol interoperates with
original protocol while still leaking key.

• Protocol session is compromised if any
of the involved parties supports key
recovery.

Unfilterable Key Recovery

• Cannot filter key recovery channels
without disrupting protocol operation.

• Even if users are aware of key recovery
they cannot block it.

• Unfilterability not supported by classic
covert channels.
e.g. timing-based channels

Real Time Key Recovery

• The recovered key is the current
session key.
• Allows on-the-fly traffic decryption.
• Well suited for wiretapping device.

e.g. Carnivore

Threat - Hackers

• Break into SSL web server and patch
server with hidden key recovery.

• Can eavesdrop on all secure connections
to server without breaking in again.

• Original and hacked versions of the
server indistinguishable from network.

Application - Governments

• Governments could pressure major
software vendors to distribute SSL/SSH2
implementations with key recovery.

• Can monitor all encrypted connections
where either client or server is
compromised.

Threat – Black-box Testing

• Black-box testing
• run the product and observe external state

(network traffic)
• Cannot detect hidden key recovery

• Must examine source code
• Hard to verify large programs
• Harder to verify hardware implementations

Model

• Client and server communicate using a
standard protocol with session key K.

• Recovery agency wants to eavesdrop. Has the
decryption key of a public recovery key KR.

• A corrupt implementation encrypts K with
recovery key KR to generate the Escrow
Agency Field (EAF).

EAF = EkR
[K]

Hidden Key Recovery

• Idea - embed EAF inside protocol fields
that contain random looking data.

• EAF is a ciphertext
• indistinguishable from random to everyone

except recovery agency.

• Where can the EAF be hidden?
• random nonces, ciphertext padding

Unfilterable and Real Time
Key Recovery

• Unfilterability - EAF is hidden in fields that
are essential for correct protocol operation.

E.g. send EAF in a field protected by MAC.
• Real-time - EAF delivers the key of the

current session.
EAF can be actual session key, or data which
is sufficient for computing it.

Problem: Low Capacity
Channels

• Suitable protocol fields (e.g. nonces, padding)
are usually shorter than public key ciphertexts.

• EAF should be encrypted using public key
encryption.

• Shortest secure pubic key scheme
• ElGamal using elliptic curve (ECEG) over F2163.
• Ciphertext is 41 bytes if plaintext < 20 bytes.

Low Capacity

• What if session key > 20 bytes (max
plaintext length)?
• Use short seed to deterministically

generate session key.
• Encrypt seed in the EAF.
• Recovery agency can generate key from

seed.

Low Capacity

• What if available protocol fields < 41
bytes (ECEG cipher text length)?

1. Can embed ciphertext in several sessions.
2. Or use ECEG to encrypt a symmetric Ks that

is leaked over several sessions. Then use Ks
for real-time key recovery of following
sessions (using symmetric crypto).

3. Or use weaker ECEG parameters.

SSH 2 – Padding Attack

• Padding rules => if 1 byte payload, at
least 8 bytes of ciphertext from pad.

• Pad consists of random bytes => can
hide 8 bytes of EAF as pad ciphertext.

• Payload, pad protected by MAC => pad
ciphertext is unfilterable

SSH 2 – Key Recovery

• Typical SSH 2 network traffic pattern -
large number of packets containing only
single keystroke => 1 byte payload.

• Session key completely disclosed in 5 or
10 packets by either client or server.

• Attack is undetectable and unfilterable.

TLS Overview
• TLS – successor to SSL 3.
• TLS very similar to SSL 3 except for

minor details.
• Our attack works on both TLS and SSL 3.

TLS Overview
• Two Phases in TLS:

• Handshake Protocol negotiates
cryptographic parameters.

• Record Protocol sends application data.

• TLS - most common config is RSA key
exchange and server-only auth.

TLS Handshake

Server Hello

Client Key Exchange

Change Cipher Spec

Finished (encrypted)

Change Cipher Spec

Finished (encrypted)

Certificate

Server Hello Done

Client Hello Client randomness 28 bytes
Server randomness 28 bytes
Session ID 32 bytes

Suitable FieldsClient Server

Session key
A function of a client
generated premaster key of
length 46 bytes.

Implemented key recovery
for OpenSSL

• Generate premaster secret from small seed
(20 bytes) to fit in plaintext of ECEG.

• Ciphertext is 41 bytes long but the client
randomness field is only 28 bytes long.

• SSL 3 - ECEG protects a symmetric key (IDEA).
- EAF later encrypted using IDEA.

• TLS 1 - 224 bit RSA key protects EAF.

Conclusions

• Easy to add hidden and unfilterable key
recovery to existing security protocols.
• OpenSSL – 400 lines of C for TLS and SSL

• Hard to design security protocols that
resist hidden key recovery attack.

