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Homomorphic Encryption

Enc. scheme is homomorphic to function f if
• from E[A], E[B], can compute E[f(A,B)]

e.g. f can be +, ×, ⊕, …

Ideally, want f = NAND, or f = {+,×}
• Called doubly homomorphic encryption

Can do universal computation on ciphertext!



Why is doubly homomorphic
encryption useful?

Gives efficient solutions for many 
problems. e.g.

1. 2 party Secure Function Evaluation
2. Computing on encrypted databases



App: Database Computation

Outsourced server with database containing 
encrypted data

• User wants to compute function g on 
encrypted data
• e.g. data mining, data aggregation

With doubly homomorphic encryption,
• Database encrypted with doubly hom. enc.
• User sends g to server
• Server computes g on encrypted database
• Encrypted result returned to user



These applications are
pretty cool,

so where can I get a fully homomorphic
encryption scheme?

Sorry, it doesn’t exist (yet).
• Long standing open problem [RAD78]
• Existing schemes hom. to 1 function

• E.g. ElGamal (×), Paillier (+), GM (⊕)

But some progress …



Main Result

Homomorphic encryption scheme that 
supports one × and arbitrary +.

• Based on finite bilinear groups with 
composite order

• Semantic security based on natural 
decision problem



Related Work

Sander et al. [SYY99]

• Enc. scheme — NC1 circuit eval. on CTs
⇒ Can evaluate 2-DNFs on CTs

But CT len. exponential in circuit depth
• CT size doubles for every + op

• Poly. len. 2-DNF gives poly. size CT

• Our scheme — constant size CT
— crucial for our apps



Enc. SchemeKeygen(τ):
• G:  bilinear group order n = q1q2 on ell. curve over Fp.
• Pick rand g,u ∈ G.       Set h = uq2.
• PK = (n, G, G1, e, g, h) SK = q1

Encrypt(PK, m):            m ∈ {1,…,T}
• Pick random r from Zn.

• Output     C  =  gmhr ∈ G.

Decrypt(SK, C): 
• Let        Cq1 = ( gmhr )q1 = (gq1)m ;     v = gq1

• Output      m = Dlog of Cq1 base v.
Note:   decrypt time is O(√T).



Homomorphisms
Given A = gahr and B = gbhs :
To get encryption of a + b

• pick random t ∈ Zn

• compute      C = AB ⋅ ht = ga + b hr + s + t ∈ G

To get encryption of a × b
• let h = gαq2 , g1 = e(g,g), h1 = e(g,h)
• pick random t ∈ Zn

• compute 
C = e(A,B) ⋅ h1

t = g1
ab h1

r’ ∈ G1



Complexity Assumption

Subgroup assumption:
Gen. rand. bilinear group G of order n = q1q2 ,
then following two distributions indistinguishable:
• x  is uniform in G

• x  is uniform in q1—subgroup of G.

Thm:   system is semantically secure, unless the 
subgroup assumption is false.



Why not use Pallier directly?

• Paillier CT: C = gmrn (mod n2)
• Can we directly apply bilinear map to C?

Short ans: No.
• Miller’s alg. for pairing needs order of curve.
• Fact: Knowing order of curve mod n 

allows factoring of n.



Applications

what can you do with 1 × and arbitrary + ?

1. Evaluate multi-variate polynomials of 
total degree 2

• Caveat: result in small set e.g. {0,1}

2. Evaluate 2-DNF formulas ∨ (bi,1 ∧ bi,2)
• By arithmetizing 2-DNF formulas to 

multi-variate poly. with deg 2



1) Evaluating Quadratic Poly.

polynomials of total deg 2
• x1 x2 + x3 x4 + …

• +, × hom. allow eval. of such poly. on CT

• but to decrypt, result must be in known 
poly. size interval.

• evaluate dot products



2) 2 Party SFE for 2-DNF

Bob
A = (a1,…,an) 

∈ {0,1}n

Alice
φ(x1,…,xn) = ∨k

i=1(yi,1∧yi,2) s.t. 
yi,* ∈ {x1,¬x1,…, xn,¬xn}.

Get Arithmetization Φ:
• replace ∨ by +, ∧ by ×, ¬xi  

by (1- xi).
• Φ is poly. with total deg 2!



2-DNF Protocol (Semi-Honest)

Invoke Keygen(τ)
Encrypt A

Eval. E[r ⋅ Φ(A)] 
for random rIf decrypt = 0, 

emit 0. Else, 1.

Bob
A = (a1,…,an)

Alice 
φ(x1,…,xn) = ∨k

i=1(yi,1∧yi,2)
Φ = arith. of φ

Bob’s Security: Alice cannot distinguish bet. Bob’s 
possible inputs — from semantic security of E.

Alice’s Security: Bob only knows if A satisfies φ() — by 
design, Bob output distrib. depends only on this.

PK, E[a1],…,E[an]

E[r ⋅ Φ(A)]



SFE for 2-DNF

Communication Complexity = O(n⋅τ)
• garbled circuit comm. comp. = Θ(n2)

Secure against unbounded Bob
• garbled circuit (Alice garbles φ) secure 

against unbounded Alice

Prove security against malicious Bob
(details in paper)



Concrete applications

1. Improve basic step in Kushilevitz-Ostrovsky
PIR protocol from √n to 3√n

2. Gadget: “check” if CT contains 1 of 2 values.
• Most voter efficient E-voting scheme
• Universally verifiable computation



PIR/SPIR
Bob: wants D(R,S)

Database D

√n

√n

D uses 2-DNF
φ(x1,…,x√n, y1,…,y√n) 

= ∨D(i,j)=1 (xi ∧ yj)

Set assignment A:
xR = yS = 1, 
xi = xj = 0

for i ≠ R, j ≠ S

|D| = n

Do 2-DNF SFE
with A and φ

Get φ(A) = D(R,S)

Comm. Complexity = O(τ ⋅ √n)   [O(τ ⋅ 3√n) balanced]
Alternative scheme — each db entry O(log n) bits



Suppose CT: C = E[v].
Given 2 messages v0,v1 and random r, anyone 

can compute
E [ r ⋅ (v - v0) (v - v1) ]

• If v ≠ v0,v1, result is E[random]
• Otherwise, result is E[0]

• can ensure/verify that CT is enc. of v0 or v1 

Applications:
1. 2-DNF SFE secure against malicious Bob
2. E-voting: voter ballots need no ZK proofs
3. Universally Verifiable Computation

• Anyone can check comp. public function on private inputs 
done correctly without learning anything else

Gadget



Conclusions

Adding even limited additional homomorphism 
has many uses.

Open Problems:
• Extend encryption scheme to

1. efficiently handle arbitrary messages
2. arbitrary # of multiplications

• Find n-linear maps 
• allow eval. of polynomials with total deg n



Questions?




