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Abstract 
This paper describes the design and implementation 
of a dynamic light field renderer for interactively 
viewing real-time light fields with minimal latency.  
Our light field data consists of synchronized footage 
captured from 100 commodity video cameras. The 
system we constructed employs a hybrid of rendering 
algorithms in order to amortize latency artifacts, 
which can arise from bandwidth, memory, and 
processing limitations. Our method demonstrates the 
advantages of region-based image loading from 
individually compressed frames using the JPEG2000 
encoding and decoding scheme as compared to 
region-based seeking in raw images straight off disk. 
The techniques we developed divorce the rendering 
time from the number of cameras in the system, 
which allows us to scale the system without 
performance degradation. Our system specifications 
were deliberately engineered to minimize perceptible 
latency while relaxing as many assumptions about the 
scene geometry and camera configuration as possible. 
In this paper, we also provide an examination of the 
relatively unexplored facet of fast light field 
rendering with respect to dynamic scenes.  We 
present early experimental results from our prototype 
of the first undistributed dynamic light field (DLF) 
renderer. 
 
1. Introduction 
 
With the advent of multi-camera arrays that can not 
only capture but also store entire light fields on disk, 
the question is how do we leverage such a massive 
amount of visual data to its fullest?  Image-based 
rendering (IBR) has lead to a relatively easy re-
creation of photorealistic static scenes often produced 
by a single camera on a gantry or snapshots from a 
sequence of cameras in one instance of time. Lately, 
systems and algorithms have been developed to 
address the issue of constructing an IBR that 
incorporates a temporal dimension.  
 
None have yet considered a real-time IBR of a 
dynamic scene that allows complete navigational 
freedom in all 5 dimensions of a light field, 4 spatial 
and 1 temporal. In particular, we believe we are the 
first to implement a scalable architecture that allows 
this without reconstruction of a geometric model of 

the scene or hardware enhancements. This is not surprising 
since storing, transferring and processing such a large volume 
of data from a 100 densely packed cameras is a nontrivial 
problem.  
 
To achieve our goal, we chose to design our IBR based on fast 
decompression and region-based image selection. Region-
based pixel selection bounds the total amount of pixels that is 
ever needs to be loaded into memory for recreating a novel 
view. Fast decompression minimizes bandwidth requirements 
and decoding time. Our proposed rendering algorithm is 
scalable in the number of cameras and shifts the work of data 
retrieval to the processor, removing bandwidth between disk 
and memory as a bottleneck. At the same time, we tried to 
maintain generality with regards to data specifications for our 
light field renderer, although we chose a tightly packed 
camera grid configuration to minimize the amount of 
calibration and scene geometry calculations necessary. 
 
In our work, we have made the following contributions:  
 
1. An interactive light field renderer that can handle both static 
and dynamic scenes.   
2. Optimized rendering algorithm to suppress latency using 
fast decompression and region-based data selection to perform 
just-in-time rendering. 
3. A flexible system that can hot-swap data specifications, i.e. 
using compressed vs. uncompressed data or using cache-based 
vs. region-based data selection. 
 
 
2. Previous Work  
 
2.1 Light field and Lumigraph Rendering 
Levoy and Hanrahan 1  and Gortler et al. 2  first introduced 
image-based rendering techniques for viewing a static light 
field. Since the publication of these papers, there has been 
research investigating time-critical lumigraph renderings by 
Sloan et al.3 and  dynamic reparameterization of light fields. 
 
The discovery of these very fast algorithms dismissed 
parameterization calculations as a bottleneck to real-time light 
field rendering, reducing its feasibility to a data retrieval 
problem.  
 
As mentioned earlier, there has been increasing research in the 
area of enhancing IBR to real-time rendering of dynamic light 
fields. One such system is the real-time distributed light field 



camera implemented at MIT.4 Their system however 
has the drawback of not being able to record the light 
field for future playback or generation of a 
stereoscopic display. Naemura et al., 5  on the other 
hand, handled the bandwidth issues of an interactive 
application by using only 16 cameras and real-time 
depth estimation hardware. Similarly, Goldlucke et 
al. 6  developed an interactive dynamic light field 
renderer that uses 4 cameras and a depth map 
constructed using computer vision techniques in a 
preprocessing step to allow the viewer limited motion 
within the plane defined by the 4 cameras.  
 
2.2 Compression 
Dynamic light field compression has not been widely 
investigated before now, likely due to the difficulty in 
the acquisition of dynamic light fields.  
 
In terms of static light field compression, Levoy and 
Hanrahan1 discussed a compression method that uses 
vector quantitization and a codebook to compress the 
lightfield across all four dimensions. Another scheme 
for efficient light field compression is multiple 
reference frame (MRF) encoding, which uses an 
MPEG algorithm to predict some camera images 
from neighboring images.7 Recent research by Chang 
et al. 8  discusses using four dimensional discrete 
wavelet transform (DWT) combined with disparity-
compensated lifting (similar to MRF) to achieve 
superior compression efficiency and scalability. 
 
 
2.3 Camera Array 
We are using the Stanford multi-camera array built 
by Wilburn et al.,9 which we configured into a 10x10 
densely packed grid arrangement. Our light field 
renderer compliments the array well because both are 
targeted at compression, storage, and scalability. 
 
3. Acquisition 
Each camera captures progressive VGA video at 
30fps in real-time. The cameras are synchronized by 
special-purpose hardware and stores the video 
streams to disk in PNG format for our purpose.  For 
our first dynamic data set we acquired 20 frames of 
video for a DLF that is 2/3 of a second long.  
 
 
4. Design Considerations 
 
4.1 Storage and Compression of the DLF 
Dynamic light fields are big.  100 video streams at 
30fps, 640x480 resolution, and 24 bits/pixel is 
approximately 22 Gigabits/sec.  Disk space is cheap, 
but not that cheap.  Thus compression of the DLF is a 
consideration. 

 
In choosing how to store a DLF we had two considerations: 
storage space and random access speed.  On the one hand we 
would like to compress the DLF as much as possible.  On the 
other hand, in order to provide viewpoint-, camera-, and 
resolution-scalability, we need essentially random access to 
the image representing a particular frame within the video 
stream of a given camera, and within that image random 
access to a particular region of the image at a particular 
resolution.  Unfortunately these two needs generally conflict: 
better compression results in slower random access times. 
 
With these two considerations in mind we explored various 
forms of DLF storage and compression.  A DLF is a 5-
dimensional space: 2 dimensions in each image, 2 dimensions 
across the array of cameras, and 1 temporal dimension.  
Ideally we could take advantage of coherence across all five of 
these dimensions to achieve high compression ratios.  
However, given the scope and time-frame of our project as 
well as our background, we decided to stick with already-
existing forms of compression rather than try to invent our 
own.  As no one has researched DLF compression this left us 
to consider forms of compression that take advantage of only 
some of the 5 dimensions of coherence. 
 
4.1.1 Raw Storage 
One possibility is to leave the DLF in raw, uncompressed form, 
with the obvious disadvantage of large storage requirements.  
We implemented this by storing every frame from every 
camera in its own PPM file.  This has the advantage of making 
random access quite fast since no decompression is involved 
and the location of regions of the image within the file is 
easily determined, so one can just seek to the proper location 
and read only the necessary pixels.  However, random access 
to various resolutions of each image is not nearly as fast 
because this would involve reading, for example, every 4th 
pixel out of the file, which would take just as long as reading 
every pixel.  To get around this problem one could imagine 
storing separate copies of each image for each resolution.  We 
did not explore this option. 
 
4.1.2 Temporal and Intra-Image Compression 
The second option we briefly explored was using MPEG video 
compression on each of the individual video streams.  This 
method of compression would take advantage of compression 
in 3 of the 5 dimensions (the two dimensions within each 
image and across the one temporal dimension).  The main 
disadvantage of MPEG is that random access to a particular 
region out of one frame in a video stream is hard.  There are 
three types of frames in MPEG: I-frames, which are encoded 
using only intra-frame DCT compression; P-frames, which are 
encoded with reference to the previous P-frame or I-frame; 
and B-frames, which are encoded with reference to both the 
previous and next I- or P-frames.  Thus decoding a region 
from a P- or B-frame would require decoding regions from 
nearby frames until an I-frame was decoded.  If I-frames are 



regularly spaced in the video stream, this time may 
be bounded, but it is unclear how closely spaced the 
I-frames would need to be to achieve acceptable 
random access speeds.  Also, MPEG does not support 
decoding at multiple resolutions, so once again we 
would need to create multiple, separate MPEG 
streams for each resolution.  For these reasons we 
decided not to pursue this route. 
 
4.1.3 Inter- and Intra-Image Compression 
A third option we looked into involves compressing 
across the two dimensions of the camera array and 
across the two image dimensions within each image, 
but not across time.  Two examples of this type of 
compression are the vector quantization (VQ) method 
described in Levoy and Hanrahan1 and the multiple 
frame reference (MRF) method described in Chang et 
al.8  Both of these methods provide good 
compression ratios while maintaining quality, and 
allow for fast random access to image regions within 
a static light field (i.e. one frame of a DLF).  
However, it is unclear whether these methods would 
allow for fast random access across frames in a DLF.  
This is because both methods are meant for static 
light field rendering and hence store large tables that 
must be loaded and decoded before any of the light 
field image information can be accessed. Once again, 
decoding at multiple resolutions may require storing 
a separate light field for each resolution.  Still, these 
methods and others like them that take advantage of 
the coherence between camera views look quite 
promising; given the time, we would like to explore 
them. 
 
4.1.4 Pure Intra-Image Compression 
The final option we considered was pure intra-image 
compression, i.e. only within each image - no 
compression across time or across the camera array.  
Intra-frame compression makes random access to a 
particular image fast, but at the expense of not 
compressing the DLF as much as would be possible 
using other methods.  To this end we chose to work 
with the JPEG2000 compression standard.  
JPEG2000 is the successor to JPEG and uses discrete 
wavelet transform (DWT) based encoding to achieve 
better compression than JPEG for the same quality.  
It is generally considered the state of the art in image 
compression, but it also has a number of features that 
make it useful to our project.  First of all JPEG2000 
encodes multiple resolutions of an image within the 
same file without extra overhead and allows decoding 
of lower resolution versions of the image in 
proportionally less time.  Second, the compressed bit 
stream is split up into blocks that represent blocks of 
pixels in the image, thus allowing selective decoding 
of only part of an image.  Finally, well written 

JPEG2000 source code and documentation is available for free 
online, making it quite accessible to us.  Unfortunately, as we 
discovered, even today's fastest processors struggle to decode 
JPEG2000 images in real-time. 
 
 
5. Rendering System Overview 
 
Our light field renderer uses OpenGL as opposed to ray 
tracing for speed considerations.  Here we describe the various 
objects that make up the renderer. 
 
First, the Renderer requests a set of SamplePoints and a 
triangulation of those sample points of a 
BlendingFieldSampler.  Each SamplePoint represents a point 
on the surface of arbitrary scene geometry.  The Renderer then 
passes this set of sample points to a WeightCalculator, which 
returns a set of <CameraIndex, Weight> pairs for each sample 
point.  Each pair in the set of a given sample point represents 
the weight of the camera specified by CameraIndex for that 
sample point, and the sum of all Weights in a given sample's 
set is 1.  The Renderer then uses the reorders the information it 
obtained from the BlendingFieldSampler and the 
WeightCalculator into a set of CameraTriangles for each 
CameraIndex.  Each CameraTriangle represents a particular 
triangle in the triangulation given by the 
BlendingFieldSampler, and a Weight for each vertex 
(SamplePoint) of the triangle.  A particular triangle will be in 
a camera's set of CameraTriangles if any of the sample points 
at the vertices of that triangle have positive weights with 
respect to that camera.  (The reason to order things by camera 
is so as to avoid as many state changes as possible during 
rendering.)  To begin rendering, the Renderer uses the 
ViewCamera (which stores info about the current viewpoint) 
to set up OpenGL's ModelView and Projection matrices. Then, 
for each camera, the Renderer  
 
1. Loads this camera's projection matrix (which is stored by 
ImageCamera) into OpenGL's texture matrix,  
2. Requests from the DLFImageSet (which stores all the 
images representing a dynamic light field) the portion of the 
image for this camera needed to cover all triangles in this 
camera's set, and loads this image as the current OpenGL 
texture,  
3. Draws the triangles in this camera's set one by one, using 
the location of each vertex (SamplePoint) as the texture 
coordinates (thus they get mapped into the correct location of 
the current image by the texture matrix), and the weight as the 
alpha color component (this lets OpenGL interpolate the 
blending field across a the triangle). 
 
5.1 Sampling & Triangulating the Blending Field  
Sample points on the view plane are typically chosen in an 
even manner, triangulated, then projected back out into the 
scene onto the geometric proxy.  In the Buehler et al.2 paper, 
sample points are chosen from 3 sources:  



 
1) a uniform sampling of the view plane,  
2) the projection of camera locations onto the view 
plane,  
3) the projection of the vertices of the geometric 
proxy onto the view plane.   
 
Triangulation is then accomplished using constrained 
Delauney triangulation.  In our system, the geometric 
proxy is a focal plane that can be dynamically 
positioned by the user.  If we had scene geometry for 
a particular dataset it would not be difficult to 
incorporate that into our system. Since our geometric 
proxy is just a plane, it contributes no vertices to the 
sample points, so that leaves a uniform sampling of 
the view plane and the projected camera locations.  
Initially, we used both these sets of points and 
triangulated them using Delauney triangulation, but 
this turned out to be prohibitively slow.  Hence, at the 
expense of a slight loss in image quality, we decided 
to not use the projected camera locations. Therefore, 
we only use a regular sampling of the image plane 
(see Figure 1). This makes triangulation trivial and 
linear in the number of sample points.   
 
Projecting the sample points onto the geometric 
model is just a ray-plane intersection between the 
sample-point-view-point ray and the focal plane.  
There is a tradeoff in choosing the number of sample 
points between the quality of the constructed image 
and the speed of rendering.  We found a 16x16 grid 
of sample points produces a good balance between 
speed and quality. 
 
 

 
Figure 1: A triangulation of the view plane overlaid 
on the image constructed from a virtual viewpoint. 

 
5.2 Unstructured vs. Structured Lumigraphs 
Our light field renderer is largely based on the 
triangulation and blending field algorithm we adapted 
from the Unstructured Lumigraph Rendering paper.2 

The following discussion weighs the tradeoffs between a 
structured and unstructured lumigraph: 
 
To create a blending field for a lumigraph, we need to 
determine a set of weights for the k-nearest neighboring 
cameras (where ‘nearness’  of cameras is evaluated by angular 
disparity across camera rays).  
 
In the unstructured lumigraph paper, they assume nothing 
about the camera positions, which means finding the k "best" 
cameras (where k is usually ~4) for a given sample and view 
point requires calculating and sorting the weights for every 
sample point and every camera.  This operation would take 

 
O(N * (M + M log(M)) 

 
time, where N denotes the number of sample points and M 
denotes the number of cameras. This becomes prohibitively 
expensive with 32x32 sample points and one hundred cameras.  
To reduce this cost we assume the cameras are on a grid, 
short-circuiting the search for the k “best”  cameras and their 
weight. Now, we simply need to find the intersection of the 
ray between the sample point and the view point with the 
plane of the grid and select the 4 cameras surrounding this 
point of intersection as the "best" cameras.  Computing 
weights thus takes time linear in the number of sample points, 
which is much more scalable.   
 
5.2.1 Determining the Camera Grid 
Our light field renderer accepts an arbitrary grid position for 
the camera locations, i.e. the x-y plane in the grid is not 
oriented such that the two sides are parallel to the x-axis and 
y-axis.  We moved to this general strategy to accommodate the 
data we acquired:  
 
First we need to determine the location and orientation of the 
grid so that for given a view point we can create a projection 
matrix that projects the camera grid into the [0,1]^2 square on 
the x-y plane. This allows us to find the "best" camera 
locations for any sample point by simply projecting that point 
using this matrix.   
 
We determine the pose of the grid by calculating the least 
squares fit plane to the set of camera locations.  This allows us 
to construct a rotation matrix that will place the grid 
approximately on the x-y plane, with one exception – the sides 
of the grid may still not be parallel to the x- and y-axes.  So 
we apply another rotation that is obtained by finding the 
corners of the grid. We achieved this in the following manner:  
 
1. Choose a point in the set and find the point furthest from 
this point – this will be one corner.   
2. Find the point furthest from the first corner - this will be the 
opposite corner.   



3. Find the point such that the sum of the distances 
from this point to each of corners 1 & 2 is largest - 
this will be a third corner.   
4. Find the point furthest from the third corner - this 
will be the fourth corner.   
 
Once we have the four corners and the normal of the 
least squares plane, we have an orthogonal basis that 
can be used to construct a rotation matrix. 
Conveniently, the locations of the four corners give 
us the position of the grid as well.   
 
 
6 Rendering a DLF in Real-Time 
In order to be able to render a DLF in real-time we 
need to ensure that we can bound the amount of time 
it will take to render any virtual viewpoint.  
Specifically, we must ensure that the amount of 
information needed from the DLF is independent of 
the viewpoint. Let us quantify this information in 
terms of the total number of pixels needed from 
images in the DLF.  Assuming we are doing no 
temporal filtering, we can restrict the information 
needed to one frame in the DLF.  Now consider one 
pixel in the image being rendered - this pixel is 
equivalent to a ray between the viewpoint location 
and a sample point on scene geometry.  How many 
pixels from the current frame in the DLF are required 
to reconstruct this pixel?  If we are doing 
quadralinear filtering, then 16 pixels are needed: 
these pixels come from the images taken by the four 
cameras selected as being closest to the desired ray, 
and within each image four pixels are needed to do 
bilinear filtering on the image plane.  Thus we can 
theoretically bound the number of pixels needed from 
the DLF to be linearly dependent on the size in pixels 
of the image being rendered.  Notice that there is no 
dependency on either the number of cameras or the 
resolution of the images taken by the cameras. 
 
Now the question is whether this bound is practical: 
can it be achieved within our OpenGL rendering 
framework?  The short answer is yes, it can.  
Consider a particular triangle from the triangulation 
of the sample points.  This triangle will be drawn 
once for each camera that has positive weight at any 
of the vertices of the triangle.  Call this set of 
cameras Ct for triangle t.  Assuming at most 4 
cameras have positive weight at any one sample point, 
|Ct| will be at most 12 and, assuming sufficiently fine 
sampling, will average close to 4.  This means that 
the sum over all triangles t of the area of triangle t (in 
pixels, when projected onto the plane of the image 
being rendered) multiplied by |Ct| will be 
approximately 4 times the size of the image being 
rendered.   

 
How does this translate into pixels requested from the DLF?  
Well, each triangle in object space maps to a triangle in the 
image space of a particular camera c.  Denote Tc to be the set 
of triangles such that triangle t is in Tc if and only if camera c 
is in Ct.  Assuming the spacing of cameras in the grid is not 
too large and the scene geometry is relatively flat (ours is just 
a focal plane), the area in camera image space covered by all 
triangles in Tc will be a roughly contiguous, rectangular 
region.  Since no image information is needed outside of this 
region, we can load only this region as the texture used by 
OpenGL when rendering the triangles in Tc.  This helps 
reduce the amount of image information needed to render the 
scene in cases where only a small part of the image from each 
camera is needed.   
 
However, there are still cases where the entire image is needed 
from each camera.  Imagine moving the focal plane very close 
to the grid of cameras, so that there is no overlap between each 
camera's view of the focal plane.  Now move the viewpoint 
way back so it can see the entire field of view of the cameras.  
The view rendered will contain scaled down versions of each 
camera's image laid out in a grid.  In this case, the region 
required from each image covers the full image, but needs 
only be of low resolution.  Thus the renderer needs from 
camera c's image only a particular region at a resolution 
determined by the ratio of the area covered by the triangles in 
Tc in view space to the area covered by the triangles in the 
camera space.  There will be some overhead due to restrictions 
on what regions and resolutions can be requested, but this 
overhead can be bounded by a constant multiplied by the size 
of the region being requested relative to the resolution 
requested.  Ignoring this overhead, the area in pixels of the 
region and resolution requested from a camera c's image will 
be the same as the area in pixels covered by the triangles in Tc 
in view space.  Thus the total area in pixels requested by the 
renderer from all camera images will be approximately four 
times the size in pixels of the image being rendered for the 
average case, and will be bounded by a constant (greater than 
4) times the size in pixels of the image being rendered in the 
worst case.   
 
In other words, we can achieve the theoretical bound 
described above in a practical manner, at least from the point 
of view of our OpenGL renderer.   
 
 
7 Region-Based Data Selection from Image Files 
The implementation of region-based data selection in a raw 
RGB file format is trivially achieved. Less apparent is how to 
extract a region from a compressed J2K file. In order to 
describe how to decode only the desired region in a J2K file, 
we will first give a brief overview of how data is processed in 
J2K.  
 
7.1 J2K Compression 



There are several encoding operations involved in 
J2K compression, including transforming between 
YUV and RGB color spaces, discrete wavelet 
transformations (DWT), and entropy encoding (T1). 
The main bottleneck in decompressing a J2K image 
occurs in DWT, though T1 also takes a significant 
amount of time. Since the decompression pipeline 
sends the data first through T1 decoding and then 
through DWT, we are able to repackage the 
codeblocks that were decoded in T1 to only contain 
the region we wanted and pass that down the J2K 
pipeline. The interesting dilemma was understanding 
how to filter for the data we wanted and repackage it 
for further decompression.  
 
7.2 J2K Data Ordering 
Repackaging the data requires a careful 
understanding of how J2K decomposes an image into 
several structural entities. This decomposition allows 
for easy and relatively fast regional access and 
resolution specification as compared to MPEG1-2 or 
JPEG. In Figure 2, we can see what the image looks 
like after a J2K module performs entropy decoding 
on the wavelet coefficients. Each sub-band represents 
some high-low frequency permutation of the image at 
a specific resolution. Figure 3 is a visual 
representation of what an image from one of our data 
sets looks like when we only decode lowest 
resolution and leave other resolutions in their discrete 
wavelet transforms form, still encoded.   

 
Figure 2 

Each block represents 1 of 4 possible sub-bands. The number 
affixed to each sub-band label identifies that sub-bands 

resolution level.  
 

 
Figure 3 

Sub-bands in the DWT decomposition 
 
7.3 J2K Repackaged 
For J2K to seamlessly transition from T1 to DWT in the 
decompression pipeline, DWT needs to receive a data package 
with all the sub-bands intact and all resolution levels less than 
and equal to the resolution level we desired. This means that 
when we want to retrieve a region of an image at full 
resolution, we would locate that region in each sub-band at 
each resolution level and repackage it to fit the same format 
that you see in Figure 2, but scaled proportionally to the size 
of the region requested to the original image size.   
 

 
Figure 4 

Repackaging a region out of each sub-band 
 
8 Results & Discussion 
We acquired two data sets, a static light field, which we used 
to test our nascent light field renderer with, and the dynamic 
light field that we described in section 3 of this paper.  
 
Our system can process 640x480 30fps video from over a 
hundred cameras.  It allows for the user to navigate the 
dynamic light field in real-time.  In particular, the user can 
play, pause, rewind, pan, rotate, zoom, and change the focal 
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depth of the view being rendered.  In addition, the 
user is given control over the resolution of the view 
being rendered; dropping the resolution generally 
improves the performance of the system. 
 
8.1 Frame Rate with respect to Resolution 
We tested our light field renderer on a 1.5GHz 
Pentium M processor with 768MB of RAM, an 
nVidia GeForce FX Go 5200 graphics card, and a 
5400rpm disk running windows XP.  
 
Resolution 
Rendered 

Frames Per Sec 
(J2K, 100:1 
compression) 

Frames Per Sec 
(Uncompressed) 

640x480 0.8 4.0 
320x240 1.8 1.3 
160x120 3.0 1.8 
80x60 6.0 4.0 
40x30 10.0 6.0 

Table 1 
Rendering speeds at various resolutions while playing a DLF 

video sequence 
 
In Table 1 we see the rendering speeds our renderer 
obtains while playing a DLF video sequence forward 
in time using both compressed and uncompressed 
data.  Notice that at the highest resolution, loading 
raw images directly off disk is about 5 times faster 
than loading and decoding compressed J2K images.   
This ratio is roughly determined by the ratio of 
processor speed to the bandwidth between disk and 
memory: in a system with a faster processor, J2K 
decoding would improve; in a system with more 
bandwidth off disk, the uncompressed case would 
improve. 
 
For J2K compression, as we decrease the resolution 
of the image being rendered, frame rates steadily 
improve by a factor of 2 for each drop in resolution 
when using J2K compression.  Ideally the frame rate 
should go up by a factor of 4 since the amount of 
image information being decoded goes down by a 
factor of 4 when the resolution is halved.  We 
attribute the disparity between the ideal and what we 
see here to overhead in J2K decompression and in 
disk accesses. 
 
For no compression, there is an initial drop in the 
frame rate when the resolution is lowered.  This is 
likely due to the fact that we do not store multiple 
versions of each image at different resolutions, 
instead selectively reading exactly the pixels we need 
out of each image (for instance, every other pixel in 
the 320x240 case).  This is highly inefficient, hence 
the drop in frame rate.  If we did store multiple 
resolutions of each image we could expect frame 

rates to improve by approximately a factor of 4 for each drop 
in resolution. 
 
8.2 Effects of Caching 
When the user pauses the renderer, consecutive rendered 
views begin to reuse image information from the previous 
rendered view.  In the uncompressed case this means that the 
same files are re-read each time.  Since operating systems 
often cache recently used files, these duplicate reads will not 
necessarily require going out to disk, resulting in a large 
increase in frame rate.  Thus viewing a static light field (or, 
equivalently, one frame in a DLF) is quite smooth. 
 
8.3 J2K Compression 
In the test results shown in Table 1 we compressed our 
original images by a factor of 100 using J2K compression.  
While artifacts due to compression at this level are noticeable 
if one compares the compressed image to the original, they are 
not objectionable at all, especially when viewing a video 
sequence.   
 
9 Conclusions & Future Work 
Although, we are only seeing 2 fps with region-based J2K 
decompression, we are optimistic that there is many more 
optimizations that can be done with J2K and our current 
system. 
 
There are optimizations that can be done with the compression, 
specifically switching to a 4D discrete wavelet transformation, 
although it is still unclear if that allows for fast random access 
of data.  
 
In terms of system optimizations we would like to explore 
asynchronous disk I/O to allow image loading to occur in 
parallel with image decoding.  Another area we could explore 
is pre-fetching images that are likely to be used to render a 
view in the near future. 
 
We also see areas where we can reduce the time taken for J2K 
decompression but have not had the chance to test it. 
Specifically, the region we select from J2K must start at a 
power of 2 byte entry point in the image.  
 
Finally, we could consider how to leverage dynamic resolution 
(that is trivially attained with J2K decompression) in a scene 
so that we can drop the resolution in uninteresting parts of the 
image being rendered.  
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