
A Dynamic Interactive Real-Time Light Field Renderer

Evan Parker and Katherine Chou

Stanford University Graphics Lab

Abstract
This paper describes the design and implementation
of a dynamic light field renderer for interactively
viewing real-time light fields with minimal latency.
Our light field data consists of synchronized footage
captured from 100 commodity video cameras. The
system we constructed employs a hybrid of rendering
algorithms in order to amortize latency artifacts,
which can arise from bandwidth, memory, and
processing limitations. Our method demonstrates the
advantages of region-based image loading from
individually compressed frames using the JPEG2000
encoding and decoding scheme as compared to
region-based seeking in raw images straight off disk.
The techniques we developed divorce the rendering
time from the number of cameras in the system,
which allows us to scale the system without
performance degradation. Our system specifications
were deliberately engineered to minimize perceptible
latency while relaxing as many assumptions about the
scene geometry and camera configuration as possible.
In this paper, we also provide an examination of the
relatively unexplored facet of fast light field
rendering with respect to dynamic scenes. We
present early experimental results from our prototype
of the first undistributed dynamic light field (DLF)
renderer.

1. Introduction

With the advent of multi-camera arrays that can not
only capture but also store entire light fields on disk,
the question is how do we leverage such a massive
amount of visual data to its fullest? Image-based
rendering (IBR) has lead to a relatively easy re-
creation of photorealistic static scenes often produced
by a single camera on a gantry or snapshots from a
sequence of cameras in one instance of time. Lately,
systems and algorithms have been developed to
address the issue of constructing an IBR that
incorporates a temporal dimension.

None have yet considered a real-time IBR of a
dynamic scene that allows complete navigational
freedom in all 5 dimensions of a light field, 4 spatial
and 1 temporal. In particular, we believe we are the
first to implement a scalable architecture that allows
this without reconstruction of a geometric model of

the scene or hardware enhancements. This is not surprising
since storing, transferring and processing such a large volume
of data from a 100 densely packed cameras is a nontrivial
problem.

To achieve our goal, we chose to design our IBR based on fast
decompression and region-based image selection. Region-
based pixel selection bounds the total amount of pixels that is
ever needs to be loaded into memory for recreating a novel
view. Fast decompression minimizes bandwidth requirements
and decoding time. Our proposed rendering algorithm is
scalable in the number of cameras and shifts the work of data
retrieval to the processor, removing bandwidth between disk
and memory as a bottleneck. At the same time, we tried to
maintain generality with regards to data specifications for our
light field renderer, although we chose a tightly packed
camera grid configuration to minimize the amount of
calibration and scene geometry calculations necessary.

In our work, we have made the following contributions:

1. An interactive light field renderer that can handle both static
and dynamic scenes.
2. Optimized rendering algorithm to suppress latency using
fast decompression and region-based data selection to perform
just-in-time rendering.
3. A flexible system that can hot-swap data specifications, i.e.
using compressed vs. uncompressed data or using cache-based
vs. region-based data selection.

2. Previous Work

2.1 Light field and Lumigraph Rendering
Levoy and Hanrahan 1 and Gortler et al. 2 first introduced
image-based rendering techniques for viewing a static light
field. Since the publication of these papers, there has been
research investigating time-critical lumigraph renderings by
Sloan et al.3 and dynamic reparameterization of light fields.

The discovery of these very fast algorithms dismissed
parameterization calculations as a bottleneck to real-time light
field rendering, reducing its feasibility to a data retrieval
problem.

As mentioned earlier, there has been increasing research in the
area of enhancing IBR to real-time rendering of dynamic light
fields. One such system is the real-time distributed light field

camera implemented at MIT.4 Their system however
has the drawback of not being able to record the light
field for future playback or generation of a
stereoscopic display. Naemura et al., 5 on the other
hand, handled the bandwidth issues of an interactive
application by using only 16 cameras and real-time
depth estimation hardware. Similarly, Goldlucke et
al. 6 developed an interactive dynamic light field
renderer that uses 4 cameras and a depth map
constructed using computer vision techniques in a
preprocessing step to allow the viewer limited motion
within the plane defined by the 4 cameras.

2.2 Compression
Dynamic light field compression has not been widely
investigated before now, likely due to the difficulty in
the acquisition of dynamic light fields.

In terms of static light field compression, Levoy and
Hanrahan1 discussed a compression method that uses
vector quantitization and a codebook to compress the
lightfield across all four dimensions. Another scheme
for efficient light field compression is multiple
reference frame (MRF) encoding, which uses an
MPEG algorithm to predict some camera images
from neighboring images.7 Recent research by Chang
et al. 8 discusses using four dimensional discrete
wavelet transform (DWT) combined with disparity-
compensated lifting (similar to MRF) to achieve
superior compression efficiency and scalability.

2.3 Camera Array
We are using the Stanford multi-camera array built
by Wilburn et al.,9 which we configured into a 10x10
densely packed grid arrangement. Our light field
renderer compliments the array well because both are
targeted at compression, storage, and scalability.

3. Acquisition
Each camera captures progressive VGA video at
30fps in real-time. The cameras are synchronized by
special-purpose hardware and stores the video
streams to disk in PNG format for our purpose. For
our first dynamic data set we acquired 20 frames of
video for a DLF that is 2/3 of a second long.

4. Design Considerations

4.1 Storage and Compression of the DLF
Dynamic light fields are big. 100 video streams at
30fps, 640x480 resolution, and 24 bits/pixel is
approximately 22 Gigabits/sec. Disk space is cheap,
but not that cheap. Thus compression of the DLF is a
consideration.

In choosing how to store a DLF we had two considerations:
storage space and random access speed. On the one hand we
would like to compress the DLF as much as possible. On the
other hand, in order to provide viewpoint-, camera-, and
resolution-scalability, we need essentially random access to
the image representing a particular frame within the video
stream of a given camera, and within that image random
access to a particular region of the image at a particular
resolution. Unfortunately these two needs generally conflict:
better compression results in slower random access times.

With these two considerations in mind we explored various
forms of DLF storage and compression. A DLF is a 5-
dimensional space: 2 dimensions in each image, 2 dimensions
across the array of cameras, and 1 temporal dimension.
Ideally we could take advantage of coherence across all five of
these dimensions to achieve high compression ratios.
However, given the scope and time-frame of our project as
well as our background, we decided to stick with already-
existing forms of compression rather than try to invent our
own. As no one has researched DLF compression this left us
to consider forms of compression that take advantage of only
some of the 5 dimensions of coherence.

4.1.1 Raw Storage
One possibility is to leave the DLF in raw, uncompressed form,
with the obvious disadvantage of large storage requirements.
We implemented this by storing every frame from every
camera in its own PPM file. This has the advantage of making
random access quite fast since no decompression is involved
and the location of regions of the image within the file is
easily determined, so one can just seek to the proper location
and read only the necessary pixels. However, random access
to various resolutions of each image is not nearly as fast
because this would involve reading, for example, every 4th
pixel out of the file, which would take just as long as reading
every pixel. To get around this problem one could imagine
storing separate copies of each image for each resolution. We
did not explore this option.

4.1.2 Temporal and Intra-Image Compression
The second option we briefly explored was using MPEG video
compression on each of the individual video streams. This
method of compression would take advantage of compression
in 3 of the 5 dimensions (the two dimensions within each
image and across the one temporal dimension). The main
disadvantage of MPEG is that random access to a particular
region out of one frame in a video stream is hard. There are
three types of frames in MPEG: I-frames, which are encoded
using only intra-frame DCT compression; P-frames, which are
encoded with reference to the previous P-frame or I-frame;
and B-frames, which are encoded with reference to both the
previous and next I- or P-frames. Thus decoding a region
from a P- or B-frame would require decoding regions from
nearby frames until an I-frame was decoded. If I-frames are

regularly spaced in the video stream, this time may
be bounded, but it is unclear how closely spaced the
I-frames would need to be to achieve acceptable
random access speeds. Also, MPEG does not support
decoding at multiple resolutions, so once again we
would need to create multiple, separate MPEG
streams for each resolution. For these reasons we
decided not to pursue this route.

4.1.3 Inter- and Intra-Image Compression
A third option we looked into involves compressing
across the two dimensions of the camera array and
across the two image dimensions within each image,
but not across time. Two examples of this type of
compression are the vector quantization (VQ) method
described in Levoy and Hanrahan1 and the multiple
frame reference (MRF) method described in Chang et
al.8 Both of these methods provide good
compression ratios while maintaining quality, and
allow for fast random access to image regions within
a static light field (i.e. one frame of a DLF).
However, it is unclear whether these methods would
allow for fast random access across frames in a DLF.
This is because both methods are meant for static
light field rendering and hence store large tables that
must be loaded and decoded before any of the light
field image information can be accessed. Once again,
decoding at multiple resolutions may require storing
a separate light field for each resolution. Still, these
methods and others like them that take advantage of
the coherence between camera views look quite
promising; given the time, we would like to explore
them.

4.1.4 Pure Intra-Image Compression
The final option we considered was pure intra-image
compression, i.e. only within each image - no
compression across time or across the camera array.
Intra-frame compression makes random access to a
particular image fast, but at the expense of not
compressing the DLF as much as would be possible
using other methods. To this end we chose to work
with the JPEG2000 compression standard.
JPEG2000 is the successor to JPEG and uses discrete
wavelet transform (DWT) based encoding to achieve
better compression than JPEG for the same quality.
It is generally considered the state of the art in image
compression, but it also has a number of features that
make it useful to our project. First of all JPEG2000
encodes multiple resolutions of an image within the
same file without extra overhead and allows decoding
of lower resolution versions of the image in
proportionally less time. Second, the compressed bit
stream is split up into blocks that represent blocks of
pixels in the image, thus allowing selective decoding
of only part of an image. Finally, well written

JPEG2000 source code and documentation is available for free
online, making it quite accessible to us. Unfortunately, as we
discovered, even today's fastest processors struggle to decode
JPEG2000 images in real-time.

5. Rendering System Overview

Our light field renderer uses OpenGL as opposed to ray
tracing for speed considerations. Here we describe the various
objects that make up the renderer.

First, the Renderer requests a set of SamplePoints and a
triangulation of those sample points of a
BlendingFieldSampler. Each SamplePoint represents a point
on the surface of arbitrary scene geometry. The Renderer then
passes this set of sample points to a WeightCalculator, which
returns a set of <CameraIndex, Weight> pairs for each sample
point. Each pair in the set of a given sample point represents
the weight of the camera specified by CameraIndex for that
sample point, and the sum of all Weights in a given sample's
set is 1. The Renderer then uses the reorders the information it
obtained from the BlendingFieldSampler and the
WeightCalculator into a set of CameraTriangles for each
CameraIndex. Each CameraTriangle represents a particular
triangle in the triangulation given by the
BlendingFieldSampler, and a Weight for each vertex
(SamplePoint) of the triangle. A particular triangle will be in
a camera's set of CameraTriangles if any of the sample points
at the vertices of that triangle have positive weights with
respect to that camera. (The reason to order things by camera
is so as to avoid as many state changes as possible during
rendering.) To begin rendering, the Renderer uses the
ViewCamera (which stores info about the current viewpoint)
to set up OpenGL's ModelView and Projection matrices. Then,
for each camera, the Renderer

1. Loads this camera's projection matrix (which is stored by
ImageCamera) into OpenGL's texture matrix,
2. Requests from the DLFImageSet (which stores all the
images representing a dynamic light field) the portion of the
image for this camera needed to cover all triangles in this
camera's set, and loads this image as the current OpenGL
texture,
3. Draws the triangles in this camera's set one by one, using
the location of each vertex (SamplePoint) as the texture
coordinates (thus they get mapped into the correct location of
the current image by the texture matrix), and the weight as the
alpha color component (this lets OpenGL interpolate the
blending field across a the triangle).

5.1 Sampling & Triangulating the Blending Field
Sample points on the view plane are typically chosen in an
even manner, triangulated, then projected back out into the
scene onto the geometric proxy. In the Buehler et al.2 paper,
sample points are chosen from 3 sources:

1) a uniform sampling of the view plane,
2) the projection of camera locations onto the view
plane,
3) the projection of the vertices of the geometric
proxy onto the view plane.

Triangulation is then accomplished using constrained
Delauney triangulation. In our system, the geometric
proxy is a focal plane that can be dynamically
positioned by the user. If we had scene geometry for
a particular dataset it would not be difficult to
incorporate that into our system. Since our geometric
proxy is just a plane, it contributes no vertices to the
sample points, so that leaves a uniform sampling of
the view plane and the projected camera locations.
Initially, we used both these sets of points and
triangulated them using Delauney triangulation, but
this turned out to be prohibitively slow. Hence, at the
expense of a slight loss in image quality, we decided
to not use the projected camera locations. Therefore,
we only use a regular sampling of the image plane
(see Figure 1). This makes triangulation trivial and
linear in the number of sample points.

Projecting the sample points onto the geometric
model is just a ray-plane intersection between the
sample-point-view-point ray and the focal plane.
There is a tradeoff in choosing the number of sample
points between the quality of the constructed image
and the speed of rendering. We found a 16x16 grid
of sample points produces a good balance between
speed and quality.

Figure 1: A triangulation of the view plane overlaid
on the image constructed from a virtual viewpoint.

5.2 Unstructured vs. Structured Lumigraphs
Our light field renderer is largely based on the
triangulation and blending field algorithm we adapted
from the Unstructured Lumigraph Rendering paper.2

The following discussion weighs the tradeoffs between a
structured and unstructured lumigraph:

To create a blending field for a lumigraph, we need to
determine a set of weights for the k-nearest neighboring
cameras (where ‘nearness’ of cameras is evaluated by angular
disparity across camera rays).

In the unstructured lumigraph paper, they assume nothing
about the camera positions, which means finding the k "best"
cameras (where k is usually ~4) for a given sample and view
point requires calculating and sorting the weights for every
sample point and every camera. This operation would take

O(N * (M + M log(M))

time, where N denotes the number of sample points and M
denotes the number of cameras. This becomes prohibitively
expensive with 32x32 sample points and one hundred cameras.
To reduce this cost we assume the cameras are on a grid,
short-circuiting the search for the k “best” cameras and their
weight. Now, we simply need to find the intersection of the
ray between the sample point and the view point with the
plane of the grid and select the 4 cameras surrounding this
point of intersection as the "best" cameras. Computing
weights thus takes time linear in the number of sample points,
which is much more scalable.

5.2.1 Determining the Camera Grid
Our light field renderer accepts an arbitrary grid position for
the camera locations, i.e. the x-y plane in the grid is not
oriented such that the two sides are parallel to the x-axis and
y-axis. We moved to this general strategy to accommodate the
data we acquired:

First we need to determine the location and orientation of the
grid so that for given a view point we can create a projection
matrix that projects the camera grid into the [0,1]^2 square on
the x-y plane. This allows us to find the "best" camera
locations for any sample point by simply projecting that point
using this matrix.

We determine the pose of the grid by calculating the least
squares fit plane to the set of camera locations. This allows us
to construct a rotation matrix that will place the grid
approximately on the x-y plane, with one exception – the sides
of the grid may still not be parallel to the x- and y-axes. So
we apply another rotation that is obtained by finding the
corners of the grid. We achieved this in the following manner:

1. Choose a point in the set and find the point furthest from
this point – this will be one corner.
2. Find the point furthest from the first corner - this will be the
opposite corner.

3. Find the point such that the sum of the distances
from this point to each of corners 1 & 2 is largest -
this will be a third corner.
4. Find the point furthest from the third corner - this
will be the fourth corner.

Once we have the four corners and the normal of the
least squares plane, we have an orthogonal basis that
can be used to construct a rotation matrix.
Conveniently, the locations of the four corners give
us the position of the grid as well.

6 Rendering a DLF in Real-Time
In order to be able to render a DLF in real-time we
need to ensure that we can bound the amount of time
it will take to render any virtual viewpoint.
Specifically, we must ensure that the amount of
information needed from the DLF is independent of
the viewpoint. Let us quantify this information in
terms of the total number of pixels needed from
images in the DLF. Assuming we are doing no
temporal filtering, we can restrict the information
needed to one frame in the DLF. Now consider one
pixel in the image being rendered - this pixel is
equivalent to a ray between the viewpoint location
and a sample point on scene geometry. How many
pixels from the current frame in the DLF are required
to reconstruct this pixel? If we are doing
quadralinear filtering, then 16 pixels are needed:
these pixels come from the images taken by the four
cameras selected as being closest to the desired ray,
and within each image four pixels are needed to do
bilinear filtering on the image plane. Thus we can
theoretically bound the number of pixels needed from
the DLF to be linearly dependent on the size in pixels
of the image being rendered. Notice that there is no
dependency on either the number of cameras or the
resolution of the images taken by the cameras.

Now the question is whether this bound is practical:
can it be achieved within our OpenGL rendering
framework? The short answer is yes, it can.
Consider a particular triangle from the triangulation
of the sample points. This triangle will be drawn
once for each camera that has positive weight at any
of the vertices of the triangle. Call this set of
cameras Ct for triangle t. Assuming at most 4
cameras have positive weight at any one sample point,
|Ct| will be at most 12 and, assuming sufficiently fine
sampling, will average close to 4. This means that
the sum over all triangles t of the area of triangle t (in
pixels, when projected onto the plane of the image
being rendered) multiplied by |Ct| will be
approximately 4 times the size of the image being
rendered.

How does this translate into pixels requested from the DLF?
Well, each triangle in object space maps to a triangle in the
image space of a particular camera c. Denote Tc to be the set
of triangles such that triangle t is in Tc if and only if camera c
is in Ct. Assuming the spacing of cameras in the grid is not
too large and the scene geometry is relatively flat (ours is just
a focal plane), the area in camera image space covered by all
triangles in Tc will be a roughly contiguous, rectangular
region. Since no image information is needed outside of this
region, we can load only this region as the texture used by
OpenGL when rendering the triangles in Tc. This helps
reduce the amount of image information needed to render the
scene in cases where only a small part of the image from each
camera is needed.

However, there are still cases where the entire image is needed
from each camera. Imagine moving the focal plane very close
to the grid of cameras, so that there is no overlap between each
camera's view of the focal plane. Now move the viewpoint
way back so it can see the entire field of view of the cameras.
The view rendered will contain scaled down versions of each
camera's image laid out in a grid. In this case, the region
required from each image covers the full image, but needs
only be of low resolution. Thus the renderer needs from
camera c's image only a particular region at a resolution
determined by the ratio of the area covered by the triangles in
Tc in view space to the area covered by the triangles in the
camera space. There will be some overhead due to restrictions
on what regions and resolutions can be requested, but this
overhead can be bounded by a constant multiplied by the size
of the region being requested relative to the resolution
requested. Ignoring this overhead, the area in pixels of the
region and resolution requested from a camera c's image will
be the same as the area in pixels covered by the triangles in Tc
in view space. Thus the total area in pixels requested by the
renderer from all camera images will be approximately four
times the size in pixels of the image being rendered for the
average case, and will be bounded by a constant (greater than
4) times the size in pixels of the image being rendered in the
worst case.

In other words, we can achieve the theoretical bound
described above in a practical manner, at least from the point
of view of our OpenGL renderer.

7 Region-Based Data Selection from Image Files
The implementation of region-based data selection in a raw
RGB file format is trivially achieved. Less apparent is how to
extract a region from a compressed J2K file. In order to
describe how to decode only the desired region in a J2K file,
we will first give a brief overview of how data is processed in
J2K.

7.1 J2K Compression

There are several encoding operations involved in
J2K compression, including transforming between
YUV and RGB color spaces, discrete wavelet
transformations (DWT), and entropy encoding (T1).
The main bottleneck in decompressing a J2K image
occurs in DWT, though T1 also takes a significant
amount of time. Since the decompression pipeline
sends the data first through T1 decoding and then
through DWT, we are able to repackage the
codeblocks that were decoded in T1 to only contain
the region we wanted and pass that down the J2K
pipeline. The interesting dilemma was understanding
how to filter for the data we wanted and repackage it
for further decompression.

7.2 J2K Data Ordering
Repackaging the data requires a careful
understanding of how J2K decomposes an image into
several structural entities. This decomposition allows
for easy and relatively fast regional access and
resolution specification as compared to MPEG1-2 or
JPEG. In Figure 2, we can see what the image looks
like after a J2K module performs entropy decoding
on the wavelet coefficients. Each sub-band represents
some high-low frequency permutation of the image at
a specific resolution. Figure 3 is a visual
representation of what an image from one of our data
sets looks like when we only decode lowest
resolution and leave other resolutions in their discrete
wavelet transforms form, still encoded.

Figure 2

Each block represents 1 of 4 possible sub-bands. The number
affixed to each sub-band label identifies that sub-bands

resolution level.

Figure 3

Sub-bands in the DWT decomposition

7.3 J2K Repackaged
For J2K to seamlessly transition from T1 to DWT in the
decompression pipeline, DWT needs to receive a data package
with all the sub-bands intact and all resolution levels less than
and equal to the resolution level we desired. This means that
when we want to retrieve a region of an image at full
resolution, we would locate that region in each sub-band at
each resolution level and repackage it to fit the same format
that you see in Figure 2, but scaled proportionally to the size
of the region requested to the original image size.

Figure 4

Repackaging a region out of each sub-band

8 Results & Discussion
We acquired two data sets, a static light field, which we used
to test our nascent light field renderer with, and the dynamic
light field that we described in section 3 of this paper.

Our system can process 640x480 30fps video from over a
hundred cameras. It allows for the user to navigate the
dynamic light field in real-time. In particular, the user can
play, pause, rewind, pan, rotate, zoom, and change the focal

HL

HL

HH LH

LL

HH LH

LL
LL

LH1 HH1

HL1

HH3

HL3LL3

LH3

Precinct

Code-block

Resolution
Level 1

Subband

LH2 HH2

HL2

depth of the view being rendered. In addition, the
user is given control over the resolution of the view
being rendered; dropping the resolution generally
improves the performance of the system.

8.1 Frame Rate with respect to Resolution
We tested our light field renderer on a 1.5GHz
Pentium M processor with 768MB of RAM, an
nVidia GeForce FX Go 5200 graphics card, and a
5400rpm disk running windows XP.

Resolution
Rendered

Frames Per Sec
(J2K, 100:1
compression)

Frames Per Sec
(Uncompressed)

640x480 0.8 4.0
320x240 1.8 1.3
160x120 3.0 1.8
80x60 6.0 4.0
40x30 10.0 6.0

Table 1
Rendering speeds at various resolutions while playing a DLF

video sequence

In Table 1 we see the rendering speeds our renderer
obtains while playing a DLF video sequence forward
in time using both compressed and uncompressed
data. Notice that at the highest resolution, loading
raw images directly off disk is about 5 times faster
than loading and decoding compressed J2K images.
This ratio is roughly determined by the ratio of
processor speed to the bandwidth between disk and
memory: in a system with a faster processor, J2K
decoding would improve; in a system with more
bandwidth off disk, the uncompressed case would
improve.

For J2K compression, as we decrease the resolution
of the image being rendered, frame rates steadily
improve by a factor of 2 for each drop in resolution
when using J2K compression. Ideally the frame rate
should go up by a factor of 4 since the amount of
image information being decoded goes down by a
factor of 4 when the resolution is halved. We
attribute the disparity between the ideal and what we
see here to overhead in J2K decompression and in
disk accesses.

For no compression, there is an initial drop in the
frame rate when the resolution is lowered. This is
likely due to the fact that we do not store multiple
versions of each image at different resolutions,
instead selectively reading exactly the pixels we need
out of each image (for instance, every other pixel in
the 320x240 case). This is highly inefficient, hence
the drop in frame rate. If we did store multiple
resolutions of each image we could expect frame

rates to improve by approximately a factor of 4 for each drop
in resolution.

8.2 Effects of Caching
When the user pauses the renderer, consecutive rendered
views begin to reuse image information from the previous
rendered view. In the uncompressed case this means that the
same files are re-read each time. Since operating systems
often cache recently used files, these duplicate reads will not
necessarily require going out to disk, resulting in a large
increase in frame rate. Thus viewing a static light field (or,
equivalently, one frame in a DLF) is quite smooth.

8.3 J2K Compression
In the test results shown in Table 1 we compressed our
original images by a factor of 100 using J2K compression.
While artifacts due to compression at this level are noticeable
if one compares the compressed image to the original, they are
not objectionable at all, especially when viewing a video
sequence.

9 Conclusions & Future Work
Although, we are only seeing 2 fps with region-based J2K
decompression, we are optimistic that there is many more
optimizations that can be done with J2K and our current
system.

There are optimizations that can be done with the compression,
specifically switching to a 4D discrete wavelet transformation,
although it is still unclear if that allows for fast random access
of data.

In terms of system optimizations we would like to explore
asynchronous disk I/O to allow image loading to occur in
parallel with image decoding. Another area we could explore
is pre-fetching images that are likely to be used to render a
view in the near future.

We also see areas where we can reduce the time taken for J2K
decompression but have not had the chance to test it.
Specifically, the region we select from J2K must start at a
power of 2 byte entry point in the image.

Finally, we could consider how to leverage dynamic resolution
(that is trivially attained with J2K decompression) in a scene
so that we can drop the resolution in uninteresting parts of the
image being rendered.

1 [Levoy96] Levoy, M., Hanrahan, P. “Light Field
Rendering” , Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 96), pp31-42.

2 [Buehler01] Buehler, C. Bosse, M. McMillan, L.
Gortler, S. Cohen, M. “Unstructured Lumigraph
Rendering” , Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 01).

3 [Sloan97] Sloan, P., Cohen, M., Gortler, S. “Time-
Critical Lumigraph Rendering.” 1997 Symposium on
Interactive 3D Graphics, pp. 17-24.

4 [Yang02] Yang, J., Everett, M., Buehler, C.,
McMillan, L. “A Real-Time Distributed Light Field
Renderer” , Thireteen Eurographic Workshop on
Rendering.

5 [Naemura02] Naemura, T., Tago, J., Harashima, H.
“Real-time video-based modeling and rendering of
3d scenes.” IEEE Computer Graphics and
Applications 2002, pp. 66-73.

6 [Goldlucke] “Hardware-Accelerated Dynamic Light
Field Rendering”

7 [Zhang00] Zhang C., Li J. “Compression of
Lumigraph with Multiple Reference Frame
Prediction and Just-in-Time Rendering.” IEEE
Proceedings of the Data Compression Conference
2000, pp. 254-263.

8 [Chang] Chang, C., Zhu, X., Ramanathan, P., Girod,
B., “ Inter-View Wavelet Compression of Light Fields
with Disparity-Compensated Lifting.” Invited Paper.

9 [Wilburn02] Wilburn, B., Smulski, M., Lee, H.K.,
and Horowitz, M. 2002. “The Light Field Video
Camera.” Media Processors 2002, vol. 4674 of SPIE.

10 [Anon04] “3D TV: A Scalable System for Real-
Time Acquisition, Transmission, and
Autostereoscopic Display of Dynamic Scenes.”

