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Dynamical spin response functions for Heisenberg ladders
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We present the results of a numerical study of thel2 spin-% Heisenberg ladder. Ground state energies and
the singlet-triplet energy gaps for<dL.<14 andJ, /J = 1 were obtained in a Lanczos calculation and
checked against earlier calculations by Bareesl. (evenL< 12). A related moments technique is then
employed to evaluate spin response functions.fer 12 and a range of, /J;, (0 — 5. We comment on two
issues, the need for reorthogonalization and the rate of convergence, that affect the numerical utility of the
moments treatment of response functidi£0163-18208)00317-9

Heisenberg spin ladders have attracted considerable12 as the ratio of rung to leg interaction strenglhgJ)| is
attention recentfydue to possible connections to materialsvaried. As this response can be measured in inelastic neutron
exhibiting highT, superconductivity: theoretical studfes scattering experimentsit provides an important test of spin
hint at the possibility of even-chain ladders becominginteractions in ladder materials. This response has also been
superconductors when doped with charge carriers. Therévaluated in recent plaguette basis approximation schBmes.
is some experimental support for this possibility asThe present calculations are based on a Lanczos moments
Sty 4Ca3 ClhaO41 54 @ Material with spirg chains and two-  €xpansion that can be iterated to arbitrary accuracy. We dis-
chain ladders, was shown to superconduct at 12 K and 8uUss some numerical aspects of this procedure that are rel-
GPa? evant to spin ladder calculations.

Spin ladders are also fascinating theoretically because of The Hamiltonian for the spig-Heisenberg spin ladder
their unexpected behavior when viewed as interpolators beconsisting of two coupled chains is
tween the spiry one-dimensional(1D) antiferromagnetic
Heisenberg chain and the 2D square analog. The latter is H=J, > §.§j+JH > S-S, (1)
fully ordered at low temperaturésyhile Bethé demon- (i) anl
strated in the 1930’s that spin-spin correlations in the 1D

chain have a slow power-law decay. Yet the transition beWherel is a lattice site on which one electron sits,}),

tween these limits by forming spififadders with increasing denotes nearest neighbor sites on the same rung(iar

numbers of legs is hot smooth: ladders with even numbers oqenotes .ne:_;lrest neighbors on either leg of the ladder. We
used periodic boundary conditions along the legs of the lad-

legs have a finite gap to the lowest triplet state and an expos . .
nential decay of spin-spin correlations, while odd-leg Iadderjjer' The ratial, /)|, the relative strength of the rung and

have gapless excitations and a power-law falloff of spin-spi €9 dmltec;acltlot?]s, (:epends or|1_ th‘le. CSO'/(TJG ofoom;terle}l being
correlations These issues and examples of materials exhipmodeled. In the strong coupling fimid,, /J—ce, he elec-
ns across each rung form &= 0 pair, and the ground

iting these properties are discussed in several recent revied? . . 7
(see, e.g., Ref.)1 state wave function is the resulting proddcthe ground

In the hope of gaining deeper insight into such systemsState thus ha$ = 0 and an energy/spin proportional 49,

numerical modelers have employed a variety of techniquelith perturbative corrections of relative siag/J, .

to study spin ladders, including exact diagonalizations with I'n the Lanczos algo.nthi’ﬁ thg Hamllto'nlan IS Wr|ttgn n
the Lanczos algorithrh, quantum Monte Carlo tridiagonal form recursively, using a series of operations
simulations’® and approximate density matrix renormaliza- \_ _ o .

tion group methods using rung or plaquette bases White Hlvi)=Bi-alvi-n)+ ailo)+ Bilvia) @
etal? and Piekarewicz and ShepfrdThe exact calcula- in which the next basis vectdo, ) is generated from the
tions, while limited to smallL, play an important role in previous onguv;) with the choice oflv;) depending on the
testing approximation schemes, and also in evaluating dyapplication. We truncated this series aftesteps and diago-
namic quantities, such as spin responses, that are difficult tealized the resultingg X k matrix by the QL algorithnt? The
treat in other approaches. In this report we present Lancza®sulting energy per spin for the singlet ground state and gap
results for the ground-state energy and singlet-triplet gap foto the first triplet state are compared to the results of Barnes
2XL systems through = 14, which we compare to the et al.in Tables | and Il. The agreement is very good, with
evenL <12 calculation5 of Barneset al. We then study the only very minor differences appearing for larte Our cal-
evolution of the dynamical spin response function for culations throughL = 13 were done in both single and
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TABLE I. The ground state energy per spin and interaction

strengthE/2LJ), for 2x L Heisenberg spin ladders with =J. é(ﬁ):; éj e'd-r, (5
L Present Barnest al. where the sum extends over all sites. In particular, if the
4 -0.6025112 -0.602511 dynamic spin response is probed ét:(qx ,Ay) = (m,m)
5 -0.5638793 =q,.,, in units of the inverse lattice spacing, then
6 -0.5844372 -0.584437
7 -0.5739430 N .
8 -0.5802030 -0.580203 S(qm):; (-1's;, ®)
9 -0.5766331
10 -0.5788595 -0.578860 so that the operator sign alternates from site to site.
11 -0.5775071 In the Barneset al. work Lanczos techniques were em-
12 -0.5783722 -0.578375 ployed in evaluatings(q,,,,®) for L=8." Quite recently
13 -0.5778259 Piekarewicz and Shepérdtudied theL = 6, 8, and 16 sys-
14 -0.5781816 tems by exploiting a plagquette truncation of the basis. Thus

one motivation for the present effort is to provide a series of
exact calculations in somewhat larger systeins-(2) that
double preCiSion: the results are identical to the accuraC¥an serve as benchmarks for approximate methodS, such as
employed in the tables. The = 14 calculations were per- those of Piekarewicz and Shepard, that are now being ap-
formed in single precision only. plied to dynamical quantities.

The ground-state energy per spin can be extrapolated to The Lanczos method is particularly well suited to the
the bulk limit using a scaling function similar to that of Bar- evaluation of inclusive response functions. Once an initial
neset al. Lanczos expansion has been carried out to the point where

/ the ground state is fully converged, the vector
-L/Lg

f(L)—f(se)=Co(—1)" T )

S/Ayx)9-S) @)

wherep = 2. A fit to the results of Table | yield§, = 1.12, ¢@n be formed and its norm determined. The resulting nor-
L, = 3.86, andf()=—0.5780. The evet- results for the malized vectotv,) can then be used as the starting vector in
spin-triplet gap extrapolate with = 1 to f(=) = 0.502 C, @ Second Lanczos expansion, which is then stopped kfter
= 3.61,L, = 3.82. iterations. If one denotes the resulting eigenvectors and ei-

We now consider the evolution of the dynamic spin re-genvalues of thé-dimensional Lanczos matrix by;) and

sponse functionS(q,»), where q and w are the three- €’ then
momentum and energy transfer, &s/J, is varied.S(q, w) k
's defined by 32, [(filSidrnlg.9)*8(w—e), )
S(q,w)=2, |(n|§(ﬁ)|g.s}|25(w—wn), (4)  viewed as a distribution im, reproduces the lowestk2- 1
n

moments of the exact distribution given in Ed).X° Thus

.the broad outline of the response function is determined after

gllzrnel)g.esr) adfgr?]te;t?ie?rgfugdcigitzndsgge;;the SUM 13 few iterations, with finer details emerging as the addition of
v P Xl © gywn - higher moments increases the resolution. The Lanczos mo-

The spin transition operator is ments technique for inclusive response functions is thus ex-
act in two senses: the lowesk2 1 moments are correctly

TABLE 1I. As in Fig. 1, only for the singlet-triplet gapy determined, and for any specified limit of resolutiéng.,

Eo)/J) - that achieved in some experimgitte iterations can be con-

L Present Barnest al. tinued until a sufficient _number_ of moments are obtained to
produce an overall profile that is exact at the scale.

4 0.8200894 0.820089 Figures 1a) and Xb) give the dynamic spin response
5 0.8761249 function per spinS(q,,, ,w)/2L for L = 12,3, 13 =1, and
6 0.6265690 0.626570 J); = 1, smoothed by a Gaussian resolution function with a
7 0.7734289 standard deviation of 0.05. These initial calculations were
8 0.5573976 0.557398 done to determine, for this choice of resolution, the required
9 0.7039126 number of iterations. These results, and those of Fig. 2, sug-
10 0.5281070 0.528106 gest that~ 70 iterations are needed to produce a fully con-
11 0.6558908 verged distribution. This conclusion, however, depends on
12 0.5147836 0.514999 one’s choice ofl, /J;;: when this ratio is increased, the pro-
13 0.6218955 portion of the response carried by high-lying excitations
14 0.5084957 drops, while at the same time the distribution of strength at

high o exhibits more structure. Both effects slow the rate of
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TABLE Ill. The dynamical spin response per spin for the 2

or 041~ 1,/%=10 XL =24 Heisenberg spin ladder divided into the lowest triplet state
L i solid: k=50 contribution and the contribution carried by all higher states.
é 20 |- 02 dashed: k=100 3.1 LowestS = 1 state Higher states
3:% I I N\ 0.0 2.484(84.3% 0.464
X 0.2 3.635(89.1% 0.443
X0 - ) I W A WY A VO 0.4 4.148(91.7% 0.376
2 3 4 > 0.6 4.219(93.8% 0.281
I 0.8 4.033(95.4% 0.193
(@0 P N I N R EE Y B 1.0 3.736(96.7% 0.126
30 04 1.2 3.431(97.7% 0.081
’ /=10 1.4 3.162(98.4% 0.053
L i solid: k=100 1.6 2.940(98.8% 0.035
0 dashed: k=200 1.8 2.758(99.29% 0.023
N 20 - 02 - 2.0 2.610(99.4% 0.016
3;:: | 5.0 1.864(99.98% 0.0004
o)
Ty 0.0 LA /\/\ N A
2 3 4 3 example, to repeated reconvergence of the ground state and
I J k to distortions in inclusive response functions. In many appli-
ol LV o e cations this difficulty makes repeated reorthogonalization by
(o) © 1 2 2 4 5 6 the Gramm-Schmidt procedure necessary, a step that be-

comes costly when a large number of iterations are per-
FIG. 1. Results for 2<L = 24 spin sites showing the conver- formed. However, the need for reorthogonalization varies

gence of the dynamical spin response per spin as a function of tn@'€atly from application to application. The results from our
number of iterations performed. The required number of iteration€Xploration of this issue for Heisenberg spin ladders are
depends on the desired resolution, which in these calculations 8hown in Fig. 2, where & = 70 calculation with reorthogo-
determined by the choice of smearing function. A Gaussian with nalization in each iteration is comparedko= 70 and 500
= 0.05 has been used. calculations without. The calculations were performedLfor
) =10 andJ, /J; = 1. The Heisenberg ladder Hamiltonian
convergence. Thus we found it necessary to use 200 itergppears to be remarkably immune to numerical orthogonality
tions in the case od, /J; = 5.0. difficulties: no differences among the three calculations are
A second numerical issue is the absence of exact 0rthogQg,ily discernable. Thus the remainder of the calculations

nality (.)f thellLanczos vectors whgn E@) is implemented reported here were done without a reorthogonalization step.
numerically.~ Errors associated with the overlaps of a newly Table Il and Figs. 8)—-3() give our main results

generated Lanczos vectpr;) with previous vectors can be . . N .
quite troublesome: spurious overlaps with extremum eigenS(dw,»»®) Per spin forJ = 1.0 andJ, /J ranging from 0.0
vectors can grow, in successive iterations, because they cof 5-0- The distributions have been smoothed by a Gaussian

tribute so strongly to higher moments. This can lead, forrésolution function withr = 0.05. As the momentum trans-
fer corresponds to the inverse lattice size, the operator re-

06 - verses the orientation of nearest neighbor spins: a low-lying
10 | ' T/% =10 spin triplet state increasingly dominates the spin response
i solid: k=70 on function asJ, is increasedsee Table IlJ. The gap between
- 0.4 1= . " the singlet ground state and the strong triplet state increases
— dashed: k=70 off R . X K .
Q 5 i with increasingJ, /J;;, in agreement with the strong cou-
~20 dotted: k=500 off . o
3 02 pling (largeJ, ) prediction ofEga;~J, —J);-
E | | The strength above the first triplet state is always modest,
& 00 M\LW . starting at~ 16% forJ, /J;; = 0 and declining montonically
107~ ) 3 4 5 to ~ 0.02% forJ, /J; = 5. The pattern of this strength,
L however, becomes more distinctive with increasingJ, .
Thus in principle this part of the dynamic spin response,
0 T, while accounting for little of the total strength, could be used
w in combination with the singlet-triplet gap to test whether

real materials respond as simple spin ladders.
FIG. 2. The dynamical spin response per spin for a ladder with The total response strength per spin is not a monotonic
2xL = 20 sites calculated witf70 iteration$ and without(70 and  function ofJ, /J;, but instead increases frodn /J;= 0to a
500 iteration$ reorthogonalization. The results without reorthogo- peak at aboud, /J;~ 0.5, then declines steadily above this
nalization remain stable well past the point wh&g, @) has  value. The results are shown in Table Ill. We also examined
fully converged. the evolution of the total strength, and strength carried by the
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FIG. 3. The evolution of the spin response function per site for ladders with 224 sites as a function af, /J;,.

first triplet state, as a function df for fixed J, /J = 1.0.  per spin carried by the first triplet state is somewhat less
The fraction of strength carried by the first triplet state ap-certain, as this quantity appears to be rather slowly approach-
pears to converge rapidly: the results for 6, 8, 10, and 12 ing an asymptote in our calculations: the resultslfor 6,

are 97.66, 97.04, 96.81, and 96.73 %, which extrapolate to 8,10, and 12 are 3.26745, 3.52202, 3.66170, and 3.73619.
bulk limit of 96.70%. The bulk limit of the absolute strength These values can be fit very well by a scaling function of the
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FIG. 3. (Continued.

form of Eq. (3) with p = 0, leading to a bulk limit of 3.83. stations. Each of the graphs comprising Fig. 3 required about
To compare with Ref. 8, we repeated these calculations fotwo hours of CPU time on a large-memo(y Gb DEC

open boundary conditions, finding 2.80696, 2.99800Alpha 500. The stability of Heisenberg spin ladder calcula-
3.12141, and 3.20260. The = 8 result agrees with the tions ir_1 the at_)s_ence of reorthogonalization contributes to the
corresponding exact calculation of Ref. 8, who also usedumerical efficiency: reorthogonalization can be costly be-
their approximate plaguette basis calculations to estimate @Use of the need for Lanczos vector storage and associated
bulk limit open-boundary-condition value of 3.30-3.36.1/0 operations. Thus such methods-of-moments calculations
[Note that the values given in Ref. 8 have been multiplied by?f dynamical spin responses for Heisenberg spin chains
3 to take into account the different normalization of Should be practical fot = 14 on workstations similar to

S(a ©) used therd.If we employ the same scaling func- ours, and extensions well beyond this possible with super-

tion in this case, our calculations yield a bulk limit 3.35, computers.

compatible with this range. Unfortunately we have results for We thank J. Piekarewicz and J. Shepard for bringing this

too few L values to test numerically whether our assumedproblem to our attention and for several helpful discussions.

scaling function is reasonable. Thus there could be substaffhis work was supported in part by the U.S. Department of

tial errors in these estimates. Energy. One of ugD.Y.) acknowledges the support of the
Finally, we stress that the dynamical spin response calcudniversity of Washington and National Science Foundation

lations described here are quite practical on standard workPhysics Research Experiences for Undergraduates Program.
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