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Dynamical spin response functions for Heisenberg ladders
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We present the results of a numerical study of the 23L spin-12 Heisenberg ladder. Ground state energies and
the singlet-triplet energy gaps for 4<L<14 andJ' /Juu 5 1 were obtained in a Lanczos calculation and
checked against earlier calculations by Barneset al. ~even L< 12!. A related moments technique is then
employed to evaluate spin response functions forL 5 12 and a range ofJ' /Juu ~0 – 5!. We comment on two
issues, the need for reorthogonalization and the rate of convergence, that affect the numerical utility of the
moments treatment of response functions.@S0163-1829~98!00317-8#
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Heisenberg spin ladders have attracted consider
attention recently1 due to possible connections to materia
exhibiting high-Tc superconductivity: theoretical studies2

hint at the possibility of even-chain ladders becomi
superconductors when doped with charge carriers. Th
is some experimental support for this possibility
Sr0.4Ca13.6Cu24O41.84, a material with spin-12 chains and two-
chain ladders, was shown to superconduct at 12 K an
GPa.3

Spin ladders are also fascinating theoretically becaus
their unexpected behavior when viewed as interpolators
tween the spin-12 one-dimensional~1D! antiferromagnetic
Heisenberg chain and the 2D square analog. The latte
fully ordered at low temperatures,4 while Bethe5 demon-
strated in the 1930’s that spin-spin correlations in the
chain have a slow power-law decay. Yet the transition
tween these limits by forming spin-1

2 ladders with increasing
numbers of legs is not smooth: ladders with even number
legs have a finite gap to the lowest triplet state and an ex
nential decay of spin-spin correlations, while odd-leg ladd
have gapless excitations and a power-law falloff of spin-s
correlations.6 These issues and examples of materials exh
iting these properties are discussed in several recent rev
~see, e.g., Ref. 1!.

In the hope of gaining deeper insight into such syste
numerical modelers have employed a variety of techniq
to study spin ladders, including exact diagonalizations w
the Lanczos algorithm,7 quantum Monte Carlo
simulations,7,3 and approximate density matrix renormaliz
tion group methods using rung or plaquette bases~see White
et al.2 and Piekarewicz and Shepard8!. The exact calcula-
tions, while limited to smallL, play an important role in
testing approximation schemes, and also in evaluating
namic quantities, such as spin responses, that are difficu
treat in other approaches. In this report we present Lanc
results for the ground-state energy and singlet-triplet gap
23L systems throughL 5 14, which we compare to the
evenL<12 calculations7 of Barneset al. We then study the
evolution of the dynamical spin response function forL
570163-1829/98/57~17!/10603~6!/$15.00
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512 as the ratio of rung to leg interaction strengthsJ' /Juu is
varied. As this response can be measured in inelastic neu
scattering experiments,9 it provides an important test of spi
interactions in ladder materials. This response has also b
evaluated in recent plaquette basis approximation schem8

The present calculations are based on a Lanczos mom
expansion that can be iterated to arbitrary accuracy. We
cuss some numerical aspects of this procedure that are
evant to spin ladder calculations.

The Hamiltonian for the spin-1
2 Heisenberg spin ladde

consisting of two coupled chains is

H5J' (
^ i , j &'

SW i•SW j1Juu (
^ i , j & uu

SW i•SW j , ~1!

where i is a lattice site on which one electron sits,^ i , j &'

denotes nearest neighbor sites on the same rung, and^ i , j & uu
denotes nearest neighbors on either leg of the ladder.
used periodic boundary conditions along the legs of the l
der. The ratioJ' /Juu , the relative strength of the rung an
leg interactions, depends on the choice of material be
modeled. In the strong coupling limit,J' /Juu→`, the elec-
trons across each rung form anS 5 0 pair, and the ground
state wave function is the resulting product.7 The ground
state thus hasS 5 0 and an energy/spin proportional toJ' ,
with perturbative corrections of relative sizeJuu /J' .

In the Lanczos algorithm10 the Hamiltonian is written in
tridiagonal form recursively, using a series of operations

Huv i&5b i 21uv i 21&1a i uv i&1b i uv i 11& ~2!

in which the next basis vectoruv i 11& is generated from the
previous oneuv i& with the choice ofuv1& depending on the
application. We truncated this series afterk steps and diago-
nalized the resultingk3k matrix by the QL algorithm.12 The
resulting energy per spin for the singlet ground state and
to the first triplet state are compared to the results of Bar
et al. in Tables I and II. The agreement is very good, w
only very minor differences appearing for largeL. Our cal-
culations throughL 5 13 were done in both single an
10 603 © 1998 The American Physical Society
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10 604 57DANNY B. YANG AND W. C. HAXTON
double precision: the results are identical to the accur
employed in the tables. TheL 5 14 calculations were per
formed in single precision only.

The ground-state energy per spin can be extrapolate
the bulk limit using a scaling function similar to that of Ba
neset al.7

f ~L !2 f ~`!5C0~21!L
e2L/L0

Lp
, ~3!

wherep 5 2. A fit to the results of Table I yieldsC0 5 1.12,
L0 5 3.86, andf (`)520.5780. The even-L results for the
spin-triplet gap extrapolate withp 5 1 to f (`) 5 0.502 (C0
5 3.61,L0 5 3.82!.

We now consider the evolution of the dynamic spin
sponse functionS(qW ,v), where qW and v are the three-
momentum and energy transfer, asJ' /Juu is varied.S(qW ,v)
is defined by

S~qW ,v!5(
n

u^nuSW ~qW !ug.s.&u2d~v2vn!, ~4!

where ug.s.& denotes the ground state and where the sum
taken over a complete set of excited statesun& of energyvn .
The spin transition operator is

TABLE I. The ground state energy per spin and interact
strengthE0/2LJuu for 23L Heisenberg spin ladders withJ'5Juu .

L Present Barneset al.

4 -0.6025112 -0.602511
5 -0.5638793
6 -0.5844372 -0.584437
7 -0.5739430
8 -0.5802030 -0.580203
9 -0.5766331

10 -0.5788595 -0.578860
11 -0.5775071
12 -0.5783722 -0.578375
13 -0.5778259
14 -0.5781816

TABLE II. As in Fig. 1, only for the singlet-triplet gap (E1

2E0)/Juu .

L Present Barneset al.

4 0.8200894 0.820089
5 0.8761249
6 0.6265690 0.626570
7 0.7734289
8 0.5573976 0.557398
9 0.7039126

10 0.5281070 0.528106
11 0.6558908
12 0.5147836 0.514999
13 0.6218955
14 0.5084957
y

to

-

is

SW ~qW !5(
j

SW je
iqW •rW j , ~5!

where the sum extends over all sites. In particular, if
dynamic spin response is probed atqW 5(qx ,qy)5(p,p)
5qW pp , in units of the inverse lattice spacing, then

SW ~qW pp!5(
j

~21! jSW j , ~6!

so that the operator sign alternates from site to site.
In the Barneset al. work Lanczos techniques were em

ployed in evaluatingS(qW pp ,v) for L58.7 Quite recently
Piekarewicz and Shepard8 studied theL 5 6, 8, and 16 sys-
tems by exploiting a plaquette truncation of the basis. Th
one motivation for the present effort is to provide a series
exact calculations in somewhat larger systems (L512) that
can serve as benchmarks for approximate methods, suc
those of Piekarewicz and Shepard, that are now being
plied to dynamical quantities.

The Lanczos method is particularly well suited to t
evaluation of inclusive response functions. Once an ini
Lanczos expansion has been carried out to the point wh
the ground state is fully converged, the vector

Sz~qW pp!ug.s.& ~7!

can be formed and its norm determined. The resulting n
malized vectoruv1& can then be used as the starting vector
a second Lanczos expansion, which is then stopped aftk
iterations. If one denotes the resulting eigenvectors and
genvalues of thek-dimensional Lanczos matrix byu f i& and
e i , then

3(
i 51

k

u^ f i uSz~qW pp!ug.s.&u2d~v2e i !, ~8!

viewed as a distribution inv, reproduces the lowest 2k21
moments of the exact distribution given in Eq.~4!.10 Thus
the broad outline of the response function is determined a
a few iterations, with finer details emerging as the addition
higher moments increases the resolution. The Lanczos
ments technique for inclusive response functions is thus
act in two senses: the lowest 2k21 moments are correctly
determined, and for any specified limit of resolution~e.g.,
that achieved in some experiment! the iterations can be con
tinued until a sufficient number of moments are obtained
produce an overall profile that is exact at the scale.

Figures 1~a! and 1~b! give the dynamic spin respons
function per spin,S(qW pp ,v)/2L for L 5 12,J' /Juu 5 1, and
Juu 5 1, smoothed by a Gaussian resolution function with
standard deviation of 0.05. These initial calculations w
done to determine, for this choice of resolution, the requi
number of iterations. These results, and those of Fig. 2, s
gest that; 70 iterations are needed to produce a fully co
verged distribution. This conclusion, however, depends
one’s choice ofJ' /Juu : when this ratio is increased, the pro
portion of the response carried by high-lying excitatio
drops, while at the same time the distribution of strength
high v exhibits more structure. Both effects slow the rate
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57 10 605DYNAMICAL SPIN RESPONSE FUNCTIONS FOR . . .
convergence. Thus we found it necessary to use 200 it
tions in the case ofJ' /Juu 5 5.0.

A second numerical issue is the absence of exact ortho
nality of the Lanczos vectors when Eq.~2! is implemented
numerically.11 Errors associated with the overlaps of a new
generated Lanczos vectoruv i& with previous vectors can b
quite troublesome: spurious overlaps with extremum eig
vectors can grow, in successive iterations, because they
tribute so strongly to higher moments. This can lead,

FIG. 1. Results for 23L 5 24 spin sites showing the conve
gence of the dynamical spin response per spin as a function o
number of iterations performed. The required number of iterati
depends on the desired resolution, which in these calculation
determined by the choice of smearing function. A Gaussian wits
5 0.05 has been used.

FIG. 2. The dynamical spin response per spin for a ladder w
23L 5 20 sites calculated with~70 iterations! and without~70 and
500 iterations! reorthogonalization. The results without reorthog

nalization remain stable well past the point whereS(qW p,p ,v) has
fully converged.
a-

o-

-
n-
r

example, to repeated reconvergence of the ground state
to distortions in inclusive response functions. In many app
cations this difficulty makes repeated reorthogonalization
the Gramm-Schmidt procedure necessary, a step that
comes costly when a large number of iterations are p
formed. However, the need for reorthogonalization var
greatly from application to application. The results from o
exploration of this issue for Heisenberg spin ladders
shown in Fig. 2, where ak 5 70 calculation with reorthogo-
nalization in each iteration is compared tok 5 70 and 500
calculations without. The calculations were performed forL
5 10 andJ' /Juu 5 1. The Heisenberg ladder Hamiltonia
appears to be remarkably immune to numerical orthogona
difficulties: no differences among the three calculations
readily discernable. Thus the remainder of the calculati
reported here were done without a reorthogonalization s

Table III and Figs. 3~a!–3~l! give our main results,

S(qW p,p ,v) per spin forJuu 5 1.0 andJ' /Juu ranging from 0.0
to 5.0. The distributions have been smoothed by a Gaus
resolution function withs 5 0.05. As the momentum trans
fer corresponds to the inverse lattice size, the operator
verses the orientation of nearest neighbor spins: a low-ly
spin triplet state increasingly dominates the spin respo
function asJ' is increased~see Table III!. The gap between
the singlet ground state and the strong triplet state incre
with increasingJ' /Juu , in agreement with the strong cou
pling ~largeJ') prediction ofEgap;J'2Juu .

The strength above the first triplet state is always mod
starting at; 16% forJ' /Juu 5 0 and declining montonically
to ; 0.02% for J' /Juu 5 5. The pattern of this strength
however, becomes more distinctive with increasingJ' /Juu .
Thus in principle this part of the dynamic spin respon
while accounting for little of the total strength, could be us
in combination with the singlet-triplet gap to test wheth
real materials respond as simple spin ladders.

The total response strength per spin is not a monoto
function ofJ' /Juu , but instead increases fromJ' /Juu5 0 to a
peak at aboutJ' /Juu; 0.5, then declines steadily above th
value. The results are shown in Table III. We also examin
the evolution of the total strength, and strength carried by

he
s
is

h

TABLE III. The dynamical spin response per spin for the
3L524 Heisenberg spin ladder divided into the lowest triplet st
contribution and the contribution carried by all higher states.

J' /Juu LowestS 5 1 state Higher states

0.0 2.484~84.3%! 0.464
0.2 3.635~89.1%! 0.443
0.4 4.148~91.7%! 0.376
0.6 4.219~93.8%! 0.281
0.8 4.033~95.4%! 0.193
1.0 3.736~96.7%! 0.126
1.2 3.431~97.7%! 0.081
1.4 3.162~98.4%! 0.053
1.6 2.940~98.8%! 0.035
1.8 2.758~99.2%! 0.023
2.0 2.610~99.4%! 0.016
5.0 1.864~99.98%! 0.0004
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FIG. 3. The evolution of the spin response function per site for ladders with 23L524 sites as a function ofJ' /Juu .
p

to
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the
first triplet state, as a function ofL for fixed J' /Juu 5 1.0.
The fraction of strength carried by the first triplet state a
pears to converge rapidly: the results forL5 6, 8, 10, and 12
are 97.66, 97.04, 96.81, and 96.73 %, which extrapolate
bulk limit of 96.70%. The bulk limit of the absolute streng
-

a

per spin carried by the first triplet state is somewhat l
certain, as this quantity appears to be rather slowly approa
ing an asymptote in our calculations: the results forL 5 6,
8,10, and 12 are 3.26745, 3.52202, 3.66170, and 3.73
These values can be fit very well by a scaling function of
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FIG. 3. ~Continued!.
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form of Eq. ~3! with p 5 0, leading to a bulk limit of 3.83.
To compare with Ref. 8, we repeated these calculations
open boundary conditions, finding 2.80696, 2.998
3.12141, and 3.20260. TheL 5 8 result agrees with the
corresponding exact calculation of Ref. 8, who also u
their approximate plaquette basis calculations to estima
bulk limit open-boundary-condition value of 3.30–3.3
@Note that the values given in Ref. 8 have been multiplied
3 to take into account the different normalization
S(qW pp ,v) used there.# If we employ the same scaling func
tion in this case, our calculations yield a bulk limit 3.3
compatible with this range. Unfortunately we have results
too few L values to test numerically whether our assum
scaling function is reasonable. Thus there could be subs
tial errors in these estimates.

Finally, we stress that the dynamical spin response ca
lations described here are quite practical on standard w
ys
.

or
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d
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stations. Each of the graphs comprising Fig. 3 required ab
two hours of CPU time on a large-memory~1 Gb! DEC
Alpha 500. The stability of Heisenberg spin ladder calcu
tions in the absence of reorthogonalization contributes to
numerical efficiency: reorthogonalization can be costly b
cause of the need for Lanczos vector storage and assoc
i /o operations. Thus such methods-of-moments calculati
of dynamical spin responses for Heisenberg spin cha
should be practical forL 5 14 on workstations similar to
ours, and extensions well beyond this possible with sup
computers.
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