Client Side Caching for TLS*

Hovav Shacham Dan Boneh Eric Rescorla
hovav@cs.stanford.edu dabo@cs.stanford.edu ekr@rtfm.com

Abstract

We propose two new mechanisms for caching handshake informa-
tion on TLS clients. The “fast-track” mechanism provides a client side
cache of a server’s public parameters and negotiated parameters in the
course of an initial, enabling handshake. These parameters need not
be resent on subsequent handshakes. Fast-track reduces both network
traffic and the number of round trips, and requires no additional server
state. These savings are most useful in high latency environments such
as wireless networks. The “client side session cache” mechanism allows
the server to store an encrypted version of the session information on
a client, allowing a server to maintain a much larger number of active
sessions in a given memory footprint. Our design is fully backwards
compatible with TLS: extended clients can interoperate with servers
unaware of our extensions and vice versa. We have implemented our
proposal to demonstrate the resulting efficiency improvements.

1 Introduction

TLS is a widely deployed protocol for securing network traffic. It is com-
monly used for protecting web traffic and some e-mail protocols such as
IMAP and pOP. Variants of TLS, such as WTLS [11], are used for secur-
ing wireless communication. In this paper we consider two modifications to
the TLS (and WTLS) handshake protocols. The first, “fast-track,” makes
the protocol more efficient in terms of bandwidth and number of round
trips. Improving the handshake protocol is especially relevant in bandwidth-
constrained environments, such as wireless communications, where latency
is high and small payload transfers are common. The second, “Client-side
session caching” (CSSC), extends TLS’ session resumption mechanism to
reduce the load on the server. We hope that these extensions will promote

*This is the full version of a paper that appeared in NDSS 02 [9].

the use of TLS in high latency and high load situations and discourage the
development of ad-hoc security protocols to address them.

Recall that the TLS protocol [5] incorporates two types of handshake
mechanisms: a full handshake, and a resume handshake protocol. The re-
sume handshake protocol is used to reinstate a previously negotiated TLS
session between a client and a server. Compared to a full handshake, the
resume mechanism significantly reduces handshake network traffic and com-
putation on both ends. A session can only be resumed if the old session is
present in the server’s session cache. Unfortunately, heavily loaded servers
can only store a session for a relatively short time before evicting it from the
cache. As a result, a full handshake is often needed even though the client
may be willing to resume a previously-negotiated session.

In contrast, clients rarely connect to numerous TLS servers, and could
cache information about servers for a longer time. Both of our extensions
take advantage of this situation to improve TLS efficiency. The fast-track
extension (Section 3) allows the client to cache the server’s long-lived pa-
rameters, thus bypassing the “discovery” phase of the TLS handshake. The
CSSC extension (Section 4) allows the server to export the cost of session
caching to the client, allowing the server to maintain a much larger session
cache.

2 TLS handshake overview

A TLS handshake has three objectives: (1) to negotiate certain session
parameters; (2) to authenticate the server to the client, and optionally the
client to the server; and (3) to establish a shared cryptographic secret. The
session parameters include the protocol version, the cipher suite, and the
compression method. Authentication makes use of a certificate-based public
key infrastructure (PKI): servers and clients identify themselves through
certificate chains terminating in well-known Certification Authority (CA)
certificates.

The standard TLS handshake is summarized in Figure 1. Messages sent
by the client are on the left; by the server, the right. Messages appearing
in slanted type are only sent in certain configurations; messages in brackets
are sent out-of-band. The handshake proceeds, in four flows, as follows.

A client initiates a handshake by sending a ClientHello message. This
message includes a suggested protocol version, a list of acceptable cipher
suites and compression methods, a client random value used in establishing
the shared secret, and (when TLS extensions [1] are used) other extension-

ClientHello —_—

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
— ServerHelloDone
Certificate
ClientKeyExchange
CertificateVerify
[ChangeCipherSpec]
Finished e

[ChangeCipherSpec]
— Finished

Figure 1: TLS handshake message diagram

specific parameters.

The server replies with a ServerHello message, which selects a protocol
version, cipher suite, and compression method, and includes the server ran-
dom, and extension-specific parameters. The server then sends its certificate
chain in the Certificate message. In certain cases, it sends a ServerKeyExchange
message with additional information required for establishing the shared
secret (for example, the 512-bit export-grade RSA key for RSA export key-
exchange). If the server wishes that the client authenticate itself, it sends a
CertificateRequest message listing acceptable certificate types and CA names
for the client’s certificate chain. Finally, it sends a ServerHelloDone message
to signal the end of the flow.

If the server requests client authentication, the client begins its response
with a Certificate message that includes its certificate chain, and, after the
ClientKeyExchange message, a CertificateVerify message that includes its signa-
ture on a digest of the handshake messages to that point. The ClientKeyEx-
change message includes the information necessary to determine the shared
secret. (For example, in RSA key exchange, it includes the encryption of a
“premaster secret” that is used to calculate the secret.)

Finally, the client sends a ChangeCipherSpec message (which is not a hand-
shake message), signaling its switch to the newly-negotiated parameters and
secret key, and sends an encrypted and compressed Finished message that in-
cludes a digest of the handshake messages.

The server, in turn, also sends a ChangeCipherSpec message and a Finished
message that includes a digest of the handshake messages (up to the client’s

ClientHello —
ServerHello
[ChangeCipherSpec]
— Finished
[ChangeCipherSpec]
Finished _

Figure 2: Message diagram for a TLS session resume

Finished message). After this, the client and server can exchange application
data over the encrypted, authenticated, and possibly compressed link that
has been established.

A server can identify a particular connection by a “session ID,” a field in
the ServerHello message. By mutual consent, a client and server can resume
a connection. The client includes the ID of the session it wishes to resume
in its hello message, and the server accepts by including the same ID in its
hello. The client and server proceed directly to the ChangeCipherSpec and
Finished messages (with the previously-agreed-upon parameters and secrets).
This exchange is summarized in Figure 2.

Relative to establishing a new session, resuming a previously-negotiated
session saves bandwidth, flows, and computation (since the handshake’s ex-
pensive cryptographic operations are avoided). However, heavily loaded
servers typically keep session IDs in their session cache for only a relatively
short while.

We note that our fast-track optimization applies only to full handshakes,
not session-resuming handshakes. Hence, fast-track is most effective in envi-
ronments where short-lived TLS sessions are common, and full handshakes,
not resumes, are the norm.

3 Fast-Track

The TLS handshake is optimized for two basic situations. In the case where
the peers have never communicated, the full handshake is required for the
client to discover the server’s parameters. When the peers have communi-
cated very recently, then the resumed handshake can be used. However, an
intermediate case, in which the server and the client have communicated
at some point in the past but the session has expired or been purged from
the server’s cache, is quite common. Since server parameters are essentially
static, the discovery phase is unnecessary. Fast-track takes advantage of this

observation to improve full TLS handshake efficiency.

Fast-track clients maintain a cache of long-lived server information, such
as the server certificate, and long-lived negotiated information, such as the
preferred cipher suite. The long-lived cached information allows a reduc-
tion in handshake bandwidth: The handshake messages by which a server
communicates this information to the client are obviated by the cache, and
omitted from the fast-track handshake. Moreover, the remaining messages
are reordered, so a fast-track handshake has three flows rather than four.
Hence, our fast-track mechanism reduces both network traffic and round
trips in the TLS handshake protocol.

By a flow we mean an uninterrupted sequence of messages from one
participant in a connection to the other. An ordinary TLS handshake has
four flows; our fast-track handshake has three. Because of the design of the
TLS protocol, multiple consecutive handshake messages can be coalesced
into a single TLS transport-layer message. Thus, when network latency is
high, a savings in flows can translate into a savings in time.

The use of fast-track, along with the particular fast-track parameters, is
negotiated between clients and servers by means of TLS extensions [1]. Care
is taken to ensure interoperability with non-fast-track clients and servers,
and to allow graceful fallback to ordinary TLS handshakes when required.

The use of fast-track session establishment gives savings in handshake
bandwidth and flows, but does not provide a significant computational
speedup relative to ordinary TLS handshakes. It is most useful for band-
width-constrained, high-latency situations, and those in which application
message payloads are small. Fast-track, via a relatively simple, and fully
backwards-compatible change to the TLS protocol, improves performance
and makes TLS more usable in wireless environments.

We enumerate the long-lived, cacheable items and describe the manner
in which they are used in Section 3.1. We discuss some design criteria in
Section 3.2. We describe the fast-track handshake protocol in Section 3.3.
We then discuss performance, implementation, and security consideration
in Sections 3.4, 3.5, and 3.6.

3.1 Cacheable handshake parameters

The savings we achieve through fast-track depend on a client’s caching cer-
tain long-lived handshake parameters. “Long-lived,” in this context, means,
first, that they do not change between handshakes (as does, e.g., the server
random), and, second, that they are expected not to change except when
either the server or client is reconfigured. A client collects these parameters

in the course of an ordinary TLS handshake. In a fast-track handshake, it
uses these parameters to craft its messages.

The particular values which a client uses in a fast-track handshake are
called the determining parameters for that connection. A server uses infor-
mation in the client hello message and its own configuration to come up with
its own version of the determining parameters for the connection. The two
versions must match for the handshake to be successful. Therefore, a fast-
track-initiating hello message includes a hash of the determining parameters
to allow the server to verify this match, as described in Section 3.3.2.

The long-lived parameters fall into two general categories: (1) those that
are features of the server’s configuration alone; and (2) those that properly
depend on the interaction of the server’s configuration with the client’s.

In the first category, we include:

e The server’s certificate chain;
e The server’s Diffie-Hellman group, if any; and
e Whether client authentication is required; if so,

— Acceptable client certificate types; and

— Acceptable certificate authorities.

These features of a TLS server’s configuration are assumed to change infre-
quently and thus to be capable of being cached on the client.
In the second category, we include parameters such as:

e The preferred client-server cipher suite; and
e The preferred client-server compression method.

(The cipher suite comprises a key-exchange algorithm, a bulk encryption
algorithm, and a MAC algorithm.) These are a function of both the server
and client configurations, and are negotiated in a TLS handshake: the client
proposes a list for each, and the server chooses.

A client in possession of the above information knows enough to be able
to compute a key-exchange message, without any additional input from the
server (with one exception discussed below). It is this fact that allows the
reordering of the handshake messages.

To participate in ephemeral Diffie-Hellman (EDH) key exchange, a client
needs to know the group modulus and generator relative to which the Diffie-
Hellman exchange will operate. The description of this group is part of the

ServerKeyExchange message when EDH is used. It is assumed that the server
will not often change its EDH group, so a fast-track client can cache the
group parameters and use them to send a ClientKeyExchange message during a
fast-track handshake. By contrast, a server employing temporary RSA keys
for key exchange, in the RSA “export” cipher suites, will typically change its
export RSA key quite often. The temporary RSA key, which a client would
need for its fast-track key exchange, can be cached only briefly. Accordingly,
fast-track explicitly does not support RSA export authentication. Since the
RSA export mechanism is being phased out, this is not a serious constraint.

3.2 Design considerations

With significant deployment of legacy TLS clients, incompatible changes to
the protocol are unlikely to be accepted. Accordingly, fast-track’s design
emphasizes interoperability and backwards-compatibility. Fast-track clients
and servers must be able to interoperate with TLS servers and clients not
capable of using fast-track; they must be able to discover which peers are
capable of fast-track; and they must recover gracefully when configurations
have changed, falling back on the ordinary TLS handshake protocol.

Through the use of TLS extensions [1], a client and server can, in an or-
dinary TLS handshake, negotiate the future use of fast-track. A subsequent
fast-track connection uses another extension to allow the client and server to
ascertain their both using the same unsent, client-cached parameters. Since
a client must suggest, and a server must assent to the use of fast-track, the
likelihood of a client’s attempting to initiate a fast-track connection with a
non-fast-track server is minimal.

If a client does attempt to initiate a fast-track connection with a non-
fast-track server, it is important that it be alerted of its mistake quickly. A
fast-track handshake is initiated through a message that TLS servers not
implementing fast-track would reject as invalid. This minimizes confusion
resulting from such a mismatch. For servers aware of fast-track, but not
wishing to use it, we include a rollback mechanism to allow a server to revert
gracefully to an ordinary TLS handshake if its configuration has changed.

3.3 The fast-track handshake

In this section, we describe the actual fast-track handshake protocol. There
are two distinct phases. First, in the course of an ordinary TLS handshake,
a client and server negotiate and agree on the future use of fast-track, and
the client collects the parameters that will allow it to make that future

handshake. Next, the client initiates a fast-track handshake with the server,
using the determining parameters from earlier.

Fast-track also defines a mechanism whereby the server can decline the
use of fast-track; it would do so, for example, when its configuration has
changed, rendering the client’s cached determining parameters obsolete.
This mechanism is also used for session resumes.

3.3.1 Negotiation of fast-track

A client wishing to engage in a fast-track handshake with a server must first
determine whether that server is capable of (and willing to use) fast-track.
This is not a problem, since the client must also have completed an ordinary
handshake with the server to have obtained the information it needs for the
new, fast-track handshake.

The TLS Extensions mechanism [1] provides the machinery for the ne-
gotiation. A client proposing the prospective use of fast-track includes the
fasttrack-capable extension in its hello; a server assenting to the prospective
use includes the same extension in its hello. Such a handshake is referred to
as “enabling.”

Servers might be reconfigured to disable fast-track, and clients should
be alerted of the configuration change as soon as possible; preferably, be-
fore they undertake the computationally-heavy early steps of the fast-track
handshake.

Accordingly, a client is expected to include in each of its handshakes
the fasttrack-capable extension, and attempt a fast-track handshake with a
server only if their most recent successful handshake was an enabling one.
(Per the specification, the extensions governing a resumed session are those
negotiated in the original handshake for that session; a successful resume is
therefore not considered a handshake for this purpose.)

3.3.2 Fast-track

To engage in a fast-track handshake, the client and server must agree on
certain determining parameters (see Section 3.1). The client obtains these
from a previous, enabling handshake. But it and the server must make sure
that they expect to use the same parameters. Fast-track ensures this as
follows. As part of its fast-track hello message, a client must include, in the
fasttrack-hash extension, the SHA-1 hash of the determining parameters. The
server builds its own version of the parameters, and ensures that the hashes
match.

ClientHelloF T + fasttrack-hash
Certificate

ClientKeyExchange @~ ——
ServerHelloFT

ServerKeyExchange
[ChangeCipherSpec]
— Finished
CertificateVerify
[ChangeCipherSpec]
Finished _

Figure 3: Message diagram for an accepted fast-track handshake

Suppose a client initiates a fast-track handshake, and includes in its hello
message both the fasttrack-capable extension and the fasttrack-hash extension,
accompanying the latter with a hash of what it thinks are the determining
parameters for the handshake. If the server’s configuration has changed, but
it still wishes to engage in fast-track in the future (with the new, correct
parameters), it ought to deny the fast-track, but include the fasttrack-capable
extension in its (ordinary) hello message. If, instead, the server’s configu-
ration has changed, and it no longer wishes to engage in fast-track in the
future, it ought to deny the fast-track, and ought not to include the fasttrack-
capable extension in its hello.

The fast-track handshake is summarized in Figure 3. The notation is that
employed in Figures 1 and 2, above. Note that the ClientHelloFT message
must include the fasttrack-hash extension with a hash of the determining
parameters; this requirement is indicated in the first line of the figure.

The exchange omits the server Certificate, CertificateRequest, and ServerHel-
loDone messages, and requires three flows rather than four. In an ordinary
TLS handshake, the server has the last handshake flow; here, the client
does. If the client sends the first application data— the typical situation —
the savings in flows is magnified, since the client’s first application-data flow
can be coalesced with its last handshake flow.

The fast-track handshake calls for a nontrivial reordering of the TLS
handshake messages. If a client were accidentally to attempt it with a
server entirely unaware of fast-track, the client and server might befud-
dle one another. In keeping with the design goal that the client and server
should expeditiously discover whether fast-track is appropriate, the fast-
track client hello is made a different message type— ClientHelloFT rather
than ClientHello—although the two message types have an identical format.

ClientHelloF T + fasttrack-hash
Cortifi

ChientKeyExchange ——

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
— ServerHelloDone
Certificate
ClientKeyExchange
CertificateVerify
[ChangeCipherSpec]
Finished —_—

[ChangeCipherSpec]

— Finished

Figure 4: Message diagram for a denied fast-track handshake

A TLS server that is not aware of fast-track will alert the client immediately
to the unexpected message type.

The client has enough information to create its key-exchange message
without any additional server input, so this message can be sent in the first
flow. Once the server has sent its server-random (in its hello) and potentially
its key-exchange message, both sides have enough information to calculate
the master secret and change cipher suites. The client must wait until it has
seen a message from the server before sending its CertificateVerify message, to
avoid replay attacks.

3.3.3 Denying fast-track

A server need not agree to engage in a fast-track handshake, even if it
had previously assented to one through the fasttrack-capable extension. Fast-
track includes a mechanism whereby the server denies an in-progress fast-
track handshake, and the client and server revert to an ordinary handshake
negotiation.

A server denies fast-track by responding to the client’s first flow with
a ServerHello message rather than a ServerHelloFT. Its response should be as
though the client had initiated the connection through a ClientHello message
with the same body as that of the ClientHelloFT message it actually had sent
(except without the fasttrack-hash extension). From that point on, the parties
carry on an ordinary TLS handshake, conforming to the rules given in the

10

ClientHelloFT + fasttrack-hash
ertifi
ClientKeyExehange ——
ServerHello
[ChangeCipherSpec]
— Finished
[ChangeCipherSpec]
Finished -

Figure 5: Message diagram for a session resume, with fast-track denied

TLS specification. The other messages sent by the client as part of its first
flow are ignored by both parties, and are not included in any handshake
message digests.

Figure 4 presents the messages exchanged when fast-track is denied. The
notation is the same as employed in Figure 3, with the additional convention
that messages printed with strike-through are not included in any handshake
digests.

Finally, a server can deny fast-track but proceed with a session-resume if
it wishes, and if the client sent a nonempty session-id in its fast-track hello
message. Figure 5 gives the message flow in this case, using the same nota-
tional conventions as the previous figures. Session resumption provides less
of a performance gain to fast-track clients, since they will have already en-
gaged in the time-consuming ClientKeyExchange calculations when the server
accepts the resume.

3.4 Performance considerations

The fast-track handshake mechanism reduces the protocol’s communication
requirements and round trips but has little effect on CPU load. We briefly
discuss fast-track’s effect on CPU load for both servers and clients A more
extensive analysis of the performance of standard TLS in the Web environ-
ment is available [4].

The performance of servers employing fast-track is comparable to that
of ordinary servers. Fast-track servers avoid sending as many as three mes-
sages (Certificate, CertificateRequest, and ServerHelloDone), but none of these
involves any computationally-intensive operation; contrariwise, fast-track
servers must verify the SHA-1 hash of the determining parameters.

Performance of fast-track clients is slightly improved, with a proper im-
plementation. For example, once a client has validated a server’s certificate

11

chain, it need not revalidate it in the course of a fast-track handshake. In-
deed, once it has computed the determining parameters hash which will later
be sent to the server, the client may choose to discard the chain, maintaining
only the server’s public key. Thus, in a fast-track handshake, a client avoids
the signature verifications of an ordinary handshake, with a long-term space
overhead of only a few hundred bytes for the server key. Note that the client
would need to store one server public key (about 128 bytes) for every server
it talks to.

In truly limited clients, even this small memory overhead may be exces-
sive. One solution to this problem is to replace RSA with an identity-based
encryption (IBE) scheme, such as that proposed by Boneh and Franklin [3].
When using IBE, a client can derive a server’s public key from its identity
and the current time (e.g., from the string “urlwww.example.com:443") as
needed. Therefore, there is no need to cache the server’s public key. Natu-
rally, this would require defining IBE-based cipher suites for TLS, but doing
so would be straightforward.

3.5 Implementation

We have modified OpenSSL 0.9.6a to negotiate and perform fast-track hand-
shakes. Since OpenSSL does not currently support TLS extensions, our
implementation instead used TLS’ version negotiation scheme: fast-track-
capable clients and servers speak the fictitious TLS “Version 1.1.”

We summarize our observed savings in bandwidth below. Aside from the
bytes-sent measurements, our implementation also maintains the savings in
flows that fast-track provides over ordinary TLS handshakes: three flows,
rather than four.

Table 1 presents, for each of two cipher suites, the number of bytes
written across the wire by the client and by the server in both a standard
(RFC 2246) TLS handshake [5], and a fast-track handshake. The first cipher
suite, called “TLS_RSA_WITH_3DES_EDE_CBC_SHA” in RFC 2246 (and called
“DES-CBC3-SHA” in OpenSSL), uses RSA for key exchange. It does not
require a ServerKeyExchange message to be sent. The second cipher suite,
“TLS_DHE_RSA WITH_3DES_EDE_CBC_SHA” (and “EDH-RSA-DES-CBC3-SHA” in
OpenSSL), employs Ephemeral Diffie-Hellman (EDH) for key exchange, with
RSA authentication. A handshake using this cipher suite requires the server
to send a ServerKeyExchange message. At present, EDH-based key exchange
is not widely deployed in TLS environments, though support for it has been
added in some recent browsers; accordingly, the first of the two settings in
Table 1 is by far the more common.

12

H RFC 2246 | Fast-Track H Savings

TLS_RSA_WITH_3DES_EDE_CBC_SHA

Client 322 291 10%
Server 1187 130 89%
Total 1509 421 72%
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
Client 285 245 14%
Server 1461 404 2%
Total 1746 649 63%

Table 1: Handshake bytes sent for TLS key exchange methods; no client
authentication

H RFC 2246 ‘ Fast-Track H Savings

TLS_RSA WITH 3DES EDE CBC_SHA, client auth

Client 2519 2488 1%
Server 1196 130 89%
Total 3715 2618 30%
TLS_DHE_RSA_WITH_3DES_SHA, client auth
Client 2482 2442 2%
Server 1472 404 73%
Total 3954 2846 28%

Table 2: Handshake bytes sent for TLS key exchange methods; client au-
thentication required

13

The data in Table 1 show quite clearly that, in typical situations, the
bandwidth cost of a TLS handshake is dominated by the server certificate
chain. The server’s key exchange message, when sent, is also a significant
component. Note that the server here sends only its own certificate. Since
the client must already have a copy of the self-signed CA certificate to assess
the server’s credentials, the CA certificate need not be transmitted. (This
is permitted by the TLS specification [5, 7.4.2].)

Although the savings in bandwidth generated by the server is substantial,
the savings in client bandwidth is quite modest. In fact, our implemented
client does not (yet) send the determining-parameters hash to the server.
These additional 22 bytes of extension to the client hello (required in a fully-
conforming fast-track implementation) would largely negate the savings in
client bytes-sent evident in Tables 1 and 2. The savings in server bytes-
sent is unaffected. This underscores that, since fast-track does not assume
a server-side cache, it can do little to reduce the information that a client
must supply during a handshake. (The client bytes-sent savings are largely
at the TLS transport layer, where the reduced number of flows allows greater
consolidation of messages.)

Table 2 presents data in the same format as in Table 1, but in which
the server requires that the client authenticate itself. Here, the dominant
component is the client’s certificate chain. Unlike the server, the client does
send the CA certificate along with its own.

The limited gains in bytes-sent seen in Table 2 again reflect fast-track’s
inability to do away with the sending of client information to the server.
The specific problem of client certificates can be alleviated via a different
mechanism, complementary to fast-track: the TLS Extensions document
defines a client-certificate-url extension [1, 3.3]. With this extension, a client
sends the URL where its certificate may be found, along with a hash of the
certificate, rather than the certificate itself.

The number of bytes which a server writes depends on its certificate
chain; similarly for a client when client authentication is required. Since
certificates vary in length, a limit is placed on the accuracy of bytes-sent
measurements. This limit is made more severe by the presence at several
points in the TLS handshake of arbitrary-length lists: the client’s supported
cipher suites; the client’s supported compression methods; and the server’s
acceptable certificate types and acceptable CA names (for client authenti-
cation).

14

3.6 Security analysis

In this section we argue that fast-track is no less secure than the ordinary
TLS handshake protocol. Unfortunately, a formal argument about the secu-
rity of fast-track as a handshake protocol is extremely difficult, especially in
the absence of a comprehensive formal analysis of TLS [7]. Nor is a rigorous
reduction of fast-track security to TLS security feasible — the message order
is changed between the two protocols, so an attacker on one would not nec-
essarily be able to create messages for the other without breaking the hash
functions used in the finished-message digests. In light of these limitations,
we present common arguments about the security of fast-track.

Fast-track is negotiated in the course of an ordinary TLS handshake,
using the fasttrack-capable extension (Section 3.3.1). The extension itself
contains no sensitive data, and the negotiation is protected by the same
mechanisms that protect other negotiated extensions.

A client should store determining parameters for use in a future fast-
track handshake only after verifying that the server has a valid certificate,
and the parameters come from an ordinary handshake, so these parameters
should not be open to tampering. Furthermore, if the client and server
determining parameters differ, the mismatch will be detected in the course
of the handshake, since some messages will be incomprehensible. Thus,
determining parameter mismatch is not a security problem, and the SHA-
1 hash should be sufficient to provide collision-resistance for robustness.
(The exception is if the client has obtained an adversary’s certificate for
the server’s distinguished name, a situation that could allow for a man-in-
the-middle attack. But this would require a compromise of the public key
infrastructure.)

All the same information exchanged in a standard handshake is ex-
changed in a fast-track handshake, except for the determining parameters,
for which a cryptographic hash is exchanged. The handshake digest hashes
in the Finished messages should thus provide the same security as in ordinary
TLS.

The ordering of the server and client Finished messages is opposite of that
in ordinary TLS handshakes, but TLS session resumes also use this reversed
ordering.

The server response message (ServerHello or ServerHelloF'T) is included
in the final hashes regardless of whether fast-track is denied, so rollback
attacks should be impossible.

The only message not verified by both the client and server finished-
message hashes is the client CertificateVerify message. It is included in the

15

client finished-message hash, so the server should be able to detect its having
been modified and abort the connection.

In any case, the client certificate itself is included in both finished-
message hashes, and is presumably no more open to tampering than in an
ordinary TLS handshake. The client CertificateVerify message contains only
a signature with the certificate’s key, so opportunities for mischief through
its modification are limited.

4 Client side session caching

In most cases, TLS session resumption dramatically improves handshake
performance, since it allows the peers to skip the time-consuming key agree-
ment computation. However, maintaining the session cache imposes a sub-
stantial memory burden on the server. In addition, when multiple SSL
servers are used together for load balancing, session-cache coordination be-
tween the servers becomes problematic. Client side session caching (CSSC)
substantially alleviates these problems.

4.1 Memory consumption

The amount of memory consumed by the session cache scales roughly with
the number of sessions cached on the server. The exact amount of memory
consumed by each session varies, but is at minimum 48 bytes for the master
secret. Since session IDs are themselves 32 bytes, 100 bytes is a reasonable
approximation. Assuming a server operating at 1000 handshakes/second,
which is easily achievable with modern hardware, the session cache will
grow at a rate of 3 MB/minute.

This effect makes a 24 hour timeout, as suggested by the TLS RFC,
quite impractical for any server with reasonable transaction volume. Typ-
ical settings are on the order of a small number of minutes. For example,
mod _ssl’s default setting is 5 minutes. Experiments with sites like Etrade
show that sessions are evicted from the session cache after approximately 5
minutes.

4.2 Distributed implementations

When a web site is served by a cluster of SSL servers behind a load balancer,
the problem of sharing the session cache becomes a distributed systems prob-
lem. In general, server implementors choose to ignore this problem. Instead,
each server has its own session cache and the load balancer is expected to

16

direct returning clients to their original server. This increases load balancer
complexity.

Moreover, the need to maintain connection locality to make use of the
session cache can interfere with the load balancer’s ability to distribute load
evenly.

4.3 Client side session caching theory

One way to reduce the overhead of session caching is to force the client to
store the session cache data for the server and provide the server with it
when attempting to resume. For obvious reasons, it’s not safe to provide
the client with the cache data in the clear, but it’s easy to encrypt it using
a symmetric cipher under a fixed server key called enc-key. The simplest
such token is:

Token = Eepe—jey| Cache Datal

Note that the symmetric cipher must be semantically secure (for example, by
using CBC mode with a new random IV for every token) since otherwise an
attacker might deduce relations between the cache data in different tokens.
When using the simple token above the server may not be able to tell
whether the token has been modified. The problem is that encryption by
itself does not guarantee integrity. To verify integrity the server should also
use a MAC with a fixed server key called mac-key. There are several ways
for combining encryption and a MAC [6]. For consistency with TLS we
construct tokens using the following method called mac-then-encrypt:

Token = FEepe—key[Cache Data || mac]

where mac = MAC pqc—pey| Cache Datal

Both enc-key and mac-key can be derived from a single fixed server master
key as done in TLS. This approach allows us to do away completely with
the server-side session cache. Any data that the server wishes to retain
across sessions can be placed in the authentication token. Since the token
is authenticated and encrypted, even sensitive information can be carried
around by the client. Only the master key need to be shared across server
processors or cluster members, and these can be statically configured.

4.4 Adapting TLS for client side caching

For CSSC to work, the server must ensure that the client returns the authen-
tication token when requesting resumption. The only piece of information

17

ClientHello + c-s-cache-capable ——
ServerHello + c-s-cache-request

Certificate
ServerKeyExchange
CertificateRequest
— ServerHelloDone
Certificate
ClientKeyExchange
CertificateVerify
[ChangeCipherSpec]
Finished _

ExtendedSessionlD
[ChangeCipherSpec]
— Finished

Figure 6: TLS handshake using extended session 1D

that the client is guaranteed to provide during a resumption attempt is the
session ID, so this suggests that the authentication token must be placed
in the session ID. Unfortunately, the session ID is currently unsuitable for
two reasons. First, it’s too short. The TLS session ID is limited to 32
bytes. Since the Master Secret is 48 bytes long, an encrypted Master Secret
cannot fit in the session ID. Second, it’s delivered at the wrong time. The
server provides the session ID in the ServerHello, which is transmitted before
it knows the Master Secret.

We must therefore modify the TLS handshake message flow to make
client-side caching possible. The necessary changes are relatively simple.
First, we relocate the session ID. The server delivers a zero-length session
ID in the ServerHello message, and then sends a new ExtendedSessionID message
containing the authentication token immediately before the ChangeCipherSpec
message. The sequence of events is shown in Figure 6.

Like fast-track, CSSC is negotiated using a TLS Extension. The client
signals to the server that it can do client-side session caching using the client-
side-cache-capable extension in the ClientHello. If the server wants to request
CSSC, it responds with the client-side-cache-request extension in its ServerHello.

When the client attempts to resume a client-side cached session, it needs
to provide the server with the authentication token. If we could guarantee
that this token would be less than 256 bytes long, it could be placed in
the session ID field of the ClientHello. However, if the authentication token
includes a client certificate, it will not fit in the ClientHello. Instead, we use

18

another TLS extension to carry the extended session ID. Session resumption
with CSSC is otherwise identical to ordinary session resumption.

4.5 Cache Invalidation

TLS sessions can become invalid in a number of ways, including expiration,
improper closure, and error. Expiration is easily dealt with by including
a timestamp in the token, provided that the servers in a load-balancing
configuration are roughly synchronized. Moreover, when CSSC is in use,
expiration is less important, since it’s not required for garbage collection.

Unscheduled invalidation due to errors or improper closure is a more
serious problem. In the stateless regime described in Section 4.4, tokens
are completely self-authenticating and there is no way to invalidate sessions
before they expire. One can proceed along two paths. The first path is
simply to fail to invalidate sessions under such circumstances. This violates
the TLS specification, but, as we argue in Section 4.8, is still secure. The
second is to maintain a “black list” consisting of those sessions that have
been invalidated but have not yet expired.

The size of the black list depends on the exact data structure chosen. In
general, a black list consumes far less memory than a session cache. Suppose
the server is processing R new handshakes per second where each session has
a lifetime of T" seconds. Suppose the invalidation rate is E € [0, 1], i.e. we
have E'R invalidations per second. Then an ordinary session cache has size
80T R(1 — E) bytes assuming 80 bytes per entry (32 bytes for the session ID
and 48 bytes for the premaster secret). A naive hash table implementation
that just keeps track of invalidated session IDs has size 32T RE bytes, which
will be less than the size of the session cache unless £ > 0.7.

In practice, the size of the black list can be substantially reduced by
clever implementation. In particular one can store a message digest of the
session ID rather than the session ID itself, thus reducing the size of the
black list to 8'RE bytes when using a 64-bit digest. (Note that this trick
can be used to reduce the size of the session cache as well, but since the bulk
of the session cache data is the Master Secret the effect is less.)

It’s worth mentioning two more-sophisticated data structures. In en-
vironments where F is relatively high, it is more efficient to assign tokens
in sequence. The black list can then be stored as a low-water mark and a
bitmask (the bitmask is 0 at positions that correspond to invalid sessions
and 1 elsewhere). The size of the bitmask vector is (1/8)T R bytes. When
the bitmask becomes excessively large, the low-water mark can simply be
rolled forward, expiring all sessions created before that time. In environ-

19

Invalid Session Hash | Bitmask Wide Bloom
Rate Cache Table Bitmask Filter

.01 | 171,072,000 172,800 | 270,000 | 8,640,000 25,879
0.1 | 155,520,000 | 1,728,000 | 270,000 | 8,640,000 | 258,793
0.2 | 138,240,000 | 3,456,000 | 270,000 | 8,640,000 | 517,587
0.5 | 86,400,000 | 8,640,000 | 270,000 | 8,640,000 | 1,293,969

1 0 | 17,280,000 | 270,000 | 8,640,000 | 2,587,938

Table 3: Memory consumption, in bytes, for various session cache data
structures. Here, T'R, the number of sessions that must be kept track of, is
2,160,000. Column (1) refers to the standard valid session cache. Column
(2) refers to a simple hash table storing a 64-bit hashes of invalid session
IDs. Column (3) refers to the bitmask method and column (4) refers to a
bitmask stored as one 32-bit word per bit. Column (5) refers to storing the
invalid sessions using a Bloom filter tuned for a 1% false positive rate.

ments where E' is low, a more efficient approach is to use a Bloom filter [2].
Although a Bloom filter has false positives and thus identifies as invalid some
valid sessions, this merely causes the occasional full handshake. The size of
the Bloom filter can be tuned for the appropriate balance between memory
consumption and false positive frequency.

Table 3 shows the memory consumption, in bytes, for various session-
cache data structures. As this table shows, CSSC consumes less memory
than ordinary session caching unless the invalidation rate is very high.

Aside from their small size, both Bloom filters and bitmasks have the
advantage that they require only minimal synchronization and can be stored
in shared memory. If we assume that bit-wise ORs can be performed atom-
ically, both writers and readers can safely write the blacklist without first
synchronizing. (In the worst case we can allocate one word per bit). The
only operation that requires synchronization is rollover, in order to ensure
that two writers don’t independently try to move the high water mark.

4.6 Performance Analysis

When a session is resumed, the CSSC token must be decrypted and MAC
verified. (Tokens must also be encrypted when issued but we assume that
session resumption is more common than full handshakes.) This requires
symmetric decryption and the computation of a MAC, which, though not
free, are relatively efficient. Table 4 shows the time (in seconds) to perform

20

a million token encryptions using HMAC-MD5 and various encryption algo-
rithms. A size of 100 bytes is realistic for sessions which do not require client
authentication, 500 bytes is realistic for small certificates and 1000 bytes for
large certificates. Note that the high estimate is somewhat pessimistic, since
the certificate, if MACed, can be left unencrypted.

Since CSSC does not require session cache locking, it is natural to com-
pare the additional cost incurred for encryption and MACing to that for
locking the session cache. Table 5 shows the performance of locking and
unlocking on a typical server, an Ultra60 running Solaris 8. The benchmark
task, from Stevens [10], is incrementing a single counter from one to one
million. The column labeled Semaphores uses System V semaphores and
the column labeled Mutexes is POSIX Mutexes. Note that performance
declines dramatically as the number of processes attempting to acquire the
lock increases. To some extent, this is not representative of SSL servers since
the server processes, unlike our benchmark, do other things than attempt to
acquire locks. However, on an active server, it is reasonable to expect that
there will be significant contention for the session cache.

As is apparent, the cost for CSSC is commensurate with that incurred by
locking the shared session cache. When client authentication is not required,
CSSC overhead is comparable to that of an average of 10 processes’ accessing
the session cache (using mutexes) or merely 2 processes’ (using semaphores).
Even with client authentication, we expect the CPU cost from CSSC to be
better than for semaphores though somewhat worse than that for mutexes.
(How much worse depends on how much contention there is for the session
cache.) Note that CSSC has the advantage here in that its CPU overhead
per connection is constant rather than increasing with load on the server as
does cache locking.

| Bytes || AES-128 | DES | 3DES |

100 8 9 18
200 13 16 33
300 18 22 48
500 27 34 78
1000 o1 65 214

Table 4: Token decryption and MAC performance: seconds per million

21

Processes H Semaphores ‘ Mutexes ‘

1 2.2 0.2
2 10.6 0.8
3 254 1.8
) 51.9 7.7
10 100.2 10.1
20 192.3 20.5
40 388.5 44.1
60 586.0 79.2

Table 5: Locking performance: seconds per million

4.7 Backward Compatibility

CSSC is designed to be backward compatible with ordinary TLS so that it
can be deployed in stages. If both peers are CSSC-capable, they will use
CSSC and omit ordinary session caching. Otherwise they will fall back to
ordinary TLS with ordinary session resumption. This means that CSSC-
capable agents need simultaneously to do old-style and CSSC-style session
caching.

This does not introduce any security problems. Since the CSSC token
and session ID are delivered in separate fields, they can’t be confused; and,
since they are different lengths, they will not collide. (The probability of
random 32-byte fields colliding is negligible in any case.) Note that regular
TLS session IDs are separately generated from the CSSC tokens. Hence,
no information about open sessions in one method can be gained from open
sessions in the other method.

4.8 Security Analysis

CSSC introduces three new security concerns: (1) Can CSSC be safely ne-
gotiated? (2) Can attackers tamper with or forge CSSC tokens in any useful
way? (3) What is the impact of failing to invalidate sessions?

The use of CSSC is negotiated via the usual TLS extension mechanisms.
Thus, any attempt to force peers to use CSSC by tampering with the hand-
shake would be detected by the Finished check. No sensitive information is
contained in any of the new CSSC extensions, so having them appear in the
clear is not a problem. Similarly the ExtendedSessionlD message is covered by
the Finished message and therefore cannot be forged.

22

Since the integrity of CSSC tokens is protected using a key known only
to the server, it is not possible for attackers to tamper with valid tokens or
forge their own. It is of course possible for an attacker to attempt to use
a passively-captured CSSC token to resume his own connection, but since
the attacker will not know the corresponding keying material, he will not
be able to complete the handshake. Similarly, since the CSSC token is en-
crypted an attacker cannot learn anything about the keying material hidden
in the token. (When encrypted using a semantically secure cipher, the token
provides no more information than the random session ID currently used in
TLS.) It’s worth noting that if a stream cipher is used to encrypt the token,
care must be taken to ensure that a fresh section of keystream is used each
time, perhaps by providing an offset at the beginning of the token.

As we noted earlier, although the TLS specification requires that a ses-
sion be invalidated when errors occur, this procedure adds substantial com-
plexity to CSSC. With respect to security, rather than standards compliance,
invalidation is unnecessary. To see this, consider that errors can occur under
three circumstances: (1) local-side error; (2) error by the peer; or (3) active
attack. Only the third case represents a potential threat.

However, the structure of TLS key derivation renders this threat mini-
mal. In particular, because the individual session keys are derived from the
master secret via a message-digest-based PRF, it is not possible to obtain
useful information about the master secret or about other sessions by ob-
serving server behavior with respect to one session. To do so would require
reversing the message digests. If such a reversal were possible it would se-
riously threaten the security of TLS. Thus, failing to invalidate sessions —
even under an active attack—does not pose a security risk.

If session invalidation is performed, then one possible concern here is the
predictability of CSSC tokens. If the sequence-number-based blacklisting
method of Section 4.5 is used, then the plaintext of the tokens (at least the
part containing the sequence number) will be predictable. If an attacker
could generate tokens with known sequence numbers he could invalidate the
corresponding sessions. Even though the tokens are encrypted, it is possible
that, given a token for one session, the attacker could generate a token for
another session if, for instance, the token were encrypted in CTR mode (by
using the malleability of ciphertexts generated by this mode). However,
the MAC used to test token integrity prevents a user from generating a
valid token for another user’s session. Therefore, servers must test token
integrity before using any data in the token. Otherwise, an attacker might
be able to take advantage of bad logic by generating an invalid token with
a predictable sequence number, which would then cause session invalidation

23

when the handshake failed. Note that it is still possible to invalidate sessions
that the attacker has observed, but this attack is also possible with ordinary
TLS.

5 Comparison of fast-track and CSSC

TLS servers deal many clients, whereas clients typically connect to only a
few servers in a given time period. Nevertheless, standard TLS requires
more extensive state maintenance on the server. This is understandable,
since servers cannot trust clients’ honesty, but not optimal. Information that
clients could remember must be retransmitted to them with each connection;
state which thus must remain on the server is expired for lack of space.

Both fast-track and CSSC make use of client-side caching. Both use
cryptography to ensure that malicious clients cannot subvert the handshake
protocol and reduce the security of TLS.

Although both fast-track and CSSC make use of client-side caches to
improve TLS efficiency, the environments in which their use is appropriate
are quite different. Fast-track is intended to save bandwidth and round-trip-
induced latency over a full handshake, and is therefore most useful where
the connection between the client and server is slow. Also, fasttrack requires
no state on the server. By contrast, since CSSC increases the size of the
TLS handshake messages, it is most appropriate in situations where the
connection is fast, but a large number of clients are connecting to a given
server.

That fast-track and CSSC are applicable in such widely different sce-
narios is evidence that client-side caching is a versatile tool for reducing
or rebalancing costs (such as bandwidth and memory overhead) associated
with the TLS handshake protocol, and likely in other security protocols as
well.

6 Conclusions

We have described two extensions to TLS that use client-side caches to
improve efficiency. The fast-track extension caches the server’s long-lived
parameters, reducing network bandwidth consumption in a handshake by
up to 72% and the number of flows from four to three. The CSSC extension
relocates the session cache from the client to the server, allowing the server
to maintain a much larger cache, so that connections that would otherwise
have required a full handshake can be resumed.

24

We have implemented our proposals in a backwards-compatible fashion.
If either the client or the server does not understand or does not wish to
use these extensions, it can revert to the standard TLS handshake. Our
prototype implementations are available for download. An Internet-Draft
describing fast-track is also available [8].

Acknowledgments

We thank Dan Simon and Dan Wallach for helpful conversations about this
paper. This work was partially supported by an NSF CAREER grant.

References

[1] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen,
and T. Wright. TLS Extensions. Internet-Draft:
draft-ietf-tls-extensions-05.txt, July 2002. Work in progress.

[2] B. Bloom. Space/time Trade-offs in Hash Coding with Allowable Er-
rors. Comm. ACM, 13(7):422-6, 1970.

[3] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil
Pairing. In Joe Killian, editor, Proceedings of Crypto 2001, volume
2139 of LNCS, pages 213-29. Springer Verlag, 2001.

[4] C. Coarfa, P. Druschel, and D. Wallach. Performance Analysis of TLS
Web Servers. In Mahesh Tripunitara, editor, Proceedings of NDSS ’02,
pages 183-94. Internet Society, feb 2002.

[5] T. Dierks and C. Allen. RFC 2246: The TLS Protocol, Version 1,
January 1999.

[6] H. Krawczyk. The order of encryption and authentication for protect-
ing communications. In Joe Killian, editor, Proceedings Crypto 2001,
volume 2139 of LNCS, pages 310-31. Springer Verlag, 2001.

[7] J. Mitchell, V. Shmatikov, and U. Stern. Finite-State Analysis of SSL
3.0. In Proceedings of USENIX Security 1998, pages 201-16, 1998.

[8] H. Shacham and D. Boneh. TLS Fast-Track Session Establishment.
Internet Draft: draft-shacham-tls-fasttrack-00.txt, August 2001.
Work in progress.

25

[9] H. Shacham and D. Boneh. Fast-Track Session Establishment for TLS.
In Proceedings of Internet Society’s 2002 Symposium on Network and
Distributed System Security (NDSS), pages 195-202, 2002.

[10] W. Richard Stevens. UNIX Network Programming, Volume 2: Inter-
process Communications. Prentice-Hall, 1999.

[11] Wireless Application Forum. Wireless Transport Layer Security Speci-
fication. http://www.wapforum.org, 2000.

26

