Traitor Tracing with Constant Size Ciphertext

Dan Boneh* Moni Naorf
Stanford University Weizmann Institute of Science

August 15, 2008

Abstract

A traitor tracing system enables a publisher to trace a pirate decryption box to one of the
secret keys used to create the box. We present a traitor tracing system where ciphertext size is
“constant,” namely independent of the number of users in the system and the collusion bound.
A ciphertext in our system consists of only two elements where the length of each element
depends only on the security parameter. The down side is that private-key size is quadratic in
the collusion bound. Our construction is based on recent constructions for fingerprinting codes.

1 Introduction

Traitor tracing systems, introduced by Chor, Fiat, and Naor [7], help content distributors identify
pirates who violate copyright restrictions. To be concrete, consider a satellite radio system (such
as XM Satellite Radio) where broadcasts should only be played on certified radio receivers. We let
n denote the total number of radio receivers and assume that each receiver contains a unique secret
key: radio receiver number ¢ contains secret key sk;. Broadcasts are encrypted using a broadcast
key bk and any certified receiver can decrypt using its secret key. Certified players, of course, can
enforce digital rights restrictions such as “do not copy” or “play once”.

Clearly a pirate could hack a number of certified players and extract their secret keys. The
pirate could then build a pirate decoder PD that will extract the cleartext content and ignore
any relevant digital rights restrictions. Even worse, the pirate can make its pirate decoder widely
available so that anyone can extract the cleartext content for themselves. DeCSS [16], for example,
is a widely distributed program for decrypting encrypted DVD content.

This is where traitor tracing is helpful — when the pirate decoder PD is found, the distributor
can run a tracing algorithm that interacts with the pirate decoder and outputs the index i of at
least one of the keys sk; that the pirate used to create the pirate decoder. The distributor can then
choose to take action against the owner of this sk;.

A precise definition of traitor tracing systems is given in [3] and is reproduced here in Ap-
pendix A. For now we give some intuition that will help explain our results. A traitor tracing
system consists of four algorithms Setup, Encrypt, Decrypt, and Trace. The Setup algorithm gen-
erates the broadcaster’s key bk, a tracing key tk, and n recipient keys ski,..., sk,. The Encrypt
algorithm encrypts the content using bk and the Decrypt algorithm decrypts using one of the sk;.

*Supported by NSF and the Packard Foundation.
fIncumbent of the Judith Kleeman Professorial Chair. Supported by a grant from the Israel Science Foundation.

The tracing algorithm 7Trace is the most interesting — it takes tk as input and interacts with a
pirate decoder, treating it as a black-box oracle. It outputs the index i € {1,...,n} of at least one
key sk; that was used to create the pirate decoder.

We describe our system as a public-key scheme, namely bk is public and anyone who knows
it can create broadcast messages (we could equally have described it as a secret key scheme). As
in many traitor tracing constructions, the tracing key tk in our system must be kept secret. Our
tracing algorithm is black-box: it need not look at the internals of the pirate decoder PD and only
interacts with PD as if it were a decryption oracle.

A traitor tracing system is said to be t-collusion resistant if tracing succeeds as long as the
pirate has fewer than ¢ user keys at his disposal. If £ = n the system is said to be fully collusion
resistant. While ciphertext-size in our system is independent of n or ¢, private-key size is quadratic
in t. More precisely, our basic system provides the following parameters as a function of the total
number of users n, collusion bound ¢, and security parameter A:

CT-len = O(\)
SK-length = O(t*A?logn)
Tracing-time = O(t*\logn)

Setting t < n gives the parameters for full collusion resistance. Note that ciphertext length is
independent of n or t.

Related work. Traitor tracing systems have been studied extensively. We refer to [3] for various
properties of traitor tracing systems. Traitor tracing constructions generally fall into two categories:
combinatorial, as in [7, 24, 33, 34, 11, 12, 8, 29, 1, 32, 30, 23|, and algebraic, as in [20, 2, 25, 19, 9,
22, 36, 6, 3, 5]. The broadcaster’s key bk in combinatorial systems can be either secret or public.
Algebraic traitor tracing use public-key techniques and are often more efficient than the public-key
instantiations of combinatorial schemes. In these systems the ciphertext length (for short messages)
depends linearly on the collusion bound ¢. One exception is [3] which is fully collusion resistant
with ciphertext size O(y/n).

Some systems, including ours, only provide tracing capabilities. Other systems [25, 23, 15, 13, 9,
5] combine tracing with broadcast encryption to obtain trace-and-revoke features — after tracing,
the distributor can revoke the pirate’s keys without affecting any other legitimate decoder.

Kiayias and Yung [19] and others [6, 10] describe a black-box tracing system that achieves
constant rate for long messages, where rate is measured as the ratio of ciphertext length to plaintext
length. For full collusion resistance, however, the ciphertext size is linear in the number of users
n. For comparison, our system generates ciphertexts of constant size. It can provide constant
rate (rate = 1) for long messages by using hybrid encryption (i.e. encrypt a short message-key
using the traitor tracing system and encrypt the long data by using a symmetric cipher with the
message-key).

In most traitor tracing systems, including ours, the tracing key tk must be kept secret. Some
systems, however, support public key tracing [26, 27, 37, 18, 6].

Stateful vs. Stateless decoders: a stateless decoder is one that does not keep state between de-
cryptions. For instance, software decoders, such as DeCSS, cannot keep any state. However, pirate
decoders embedded in tamper resistant hardware, such as a pirate cable box, can keep state between
successive decryptions. When the decoder detects that it is being traced it could shutdown and

refuse to decrypt further inputs. A software decoder cannot do that. Kiayias and Yung [17] and
others [21, 28, 31] show how to convert tracing systems for stateless decoders into tracing systems
for stateful decoders by embedding robust watermarks in the content. Consequently, most tracing
systems in the literature, as do we, focus on the stateless settings.

2 Collusion resistant fingerprinting codes

Since our construction is based on collusion resistant fingerprinting codes, we first review their
definition [4]. Collusion resistant codes are designed for fingerprinting digital content, but are also
used in traitor tracing systems (e.g. [7, 19, 10, 31]). Here we will use them to construct a traitor
tracing system with short ciphertexts. We are only interested in binary codes, namely codes defined
over {0,1} (as opposed to a larger alphabet).

e For a word w € {0,1}* we write w = wy ... w; where w; € {0,1} is the ith letter of w for
i=1,....0

o Let W = {@M,..., %"} be a set of words in {0,1}*. We say that a word @ € {0,1}¢ is
feasible for W if for all « = 1,...,¢ there is a j € {1,...,t} such that w; = w?). For
example, if W consists of the two words:

01010
00111

then all words of the form [0 (?) ((1])1((1])] are feasible for W.

e For a set of words W C {0, 1} we say that the feasible set of W, denoted F(W), is the set
of all words that are feasible for W.

A fingerprinting code is a pair of algorithms (G, T') defined as follows:

e Algorithm G, called a code generator, is a probabilistic algorithm that takes a pair (n,e€)
as input, where n is the number of words to output and € € (0,1) is a security parameter.
The algorithm outputs a pair (T, tk). Here I' (called a code) contains n words in {0, 1}* for
some ¢ > 0 (called the code length). The output ¢k is called the tracing key.

e Algorithm T, called a tracing algorithm, is a deterministic algorithm that takes as input a
pair (@*, tk) where w* € {0,1}¢. The algorithm outputs a subset S of {1,...,n}. Informally,
elements in S are “accused” of creating the word w*.

We require that G and 7' run in polynomial time in nlog(1/e).

Security of a fingerprinting code (G,T) is defined using a game between a challenger and an
adversary. Let n be an integer and € € (0,1). Let C be a subset of {1,...,n}. Both the challenger
and adversary are given (n,¢,C) as input. Then the game proceeds as follows:

1. The challenger runs G(n, €) to obtain (T, tk) where T' = {@(", ..., @™}. It sends
the set W := {@) };cc to the adversary.
2. The adversary outputs a word w* € F(W).

We say that the adversary A wins the game if T'(w*, tk) is empty or not a subset of C.
Let CR Adv[(G(n,¢€),T,C), A] be the probability that A wins the game.

Boneh-Shaw [4] Tardos [35]
Full collusion resistance | £ = O(n®log(n/e)) ¢ = 0(n*log(n/e))
t-collusion resistance ¢ =0O(t*1log(n/e)log(1/e)) | £ = O(t*log(n/e))

Table 1: Lengths of fingerprinting codes obtained by running G(n, €)

Definition 1. We say that a fingerprinting code (G,T) is fully collusion resistant if for all
adversaries A, alln > 0, all e € (0,1), and all subsets C C {1,...,n}, we have that

CR Adv[(G(n,€),T,C), Al < €

We say that (G, T) is t-collusion resistant if for all adversaries A, allm > t, all € € (0,1), and
all subsets C C {1,...,n} of size at most t, we have

CR Adv[(G(n,€),T,C), A] <

2.1 Known results on collusion resistant codes

Boneh and Shaw [4] constructed a fully collusion resistant fingerprinting code as well as ¢-collusion
resistant codes. Tardos [35] improved these results by constructing shorter codes. The resulting
code lengths are summarized in Table 1. Throughout the paper, except for Section 4, we will
primarily rely on the Tardos construction.

We note that Chor et al. [7] constructed collusion resistant codes, but their codes are defined
over a much larger alphabet, namely T' is a subset of {1,...,¢}¢ rather than {0,1}*. For the
application we have in mind it is crucial that we use a fingerprinting code defined over a binary
alphabet. Other constructions over large alphabets include [33, 34, 12, 32, 30]

3 A traitor-tracing system with short ciphertexts

Let € := (Genes Eencs Denc) be a public-key encryption system. We let M denote the finite message
space of £ with security parameter A\. Throughout the paper we assume that its size | M| is finite,
but exponential in the security parameter. For simplicity we write M rather than M.

Let (G, Ty) be a fingerprinting code. Our traitor tracing system 77T works as follows: (traitor
tracing systems are defined in Appendix A)

Setup(n, \): Let € := 1/2*. The algorithm works as follows:

1. Generate a fingerprinting code by running (T, tk) & Gu(n,e).
Let T'= {w®, ..., wM} C{0,1}%

2. Generate 2/ public/secret key pairs by running Gep. 2¢ times:

fori=1,...,0and j =0,1do: (pk[i,]], skli,5]) & Genc(N)

QD(%) Ski

0 [sk[1,0] | sk[1,1]
sk[2,0] | sk[2,1] |

0 | sk[3,0] | sk[3,1]

0 B sk[é, 0] | sk[e,1]

Figure 1: An example secret key: the key consists of the shaded boxes

3. Fori=1,...,n define sk; « (w®, sk[l,wli)], ooy sk[L, wéi)]) _
An example secret key is shown in Figure 1.

4. Define bk < (pk[1,0], pk[1,1],...,pk[(,0], pk[(,1])
5. Output bk, tk, and (ski,..., sky)

Encrypt(bk,m): Choose random j hid {1,...,¢} and compute

Co & Eenc(pk[ja 0],771), C1 g Eenc(pk[ja 1]7 m)

output ¢ < (j,co,c1). Note that the ciphertext is short.
(i)

Decrypt(i, ski, (4, co,cl)): if w;” = 0 output Denc(sk[7,0], co); otherwise output Dn.(sk[7,1], c1).

Including the index j in the ciphertext is done for convenience. In principle, j can be removed
at the cost of forcing the decryptor to try all 1 < j7 < n until a j is found for which decryption
succeeds (assuming the encryption system £ embeds an integrity tag in ciphertexts). Clearly this
is undesirable in all but extreme cases where the cost of bandwidth is much higher than the cost
of computation.

The tracing algorithm: intuition

Suppose the adversary obtains a set of ¢ secret keys and uses them to build a pirate decoder PD.
For now let us assume that PD is a perfect decoder, namely it correctly decrypts well-formed
ciphertexts. The t keys at the adversary’s disposal correspond to ¢ words in the fingerprinting
code T' C {0,1}%. Let C' C {0,1}¢ be the set containing these t words. Now, consider a particular
j€A{1,...,¢} and consider the invalid ciphertext

c* = (]? Eenc(pk[jao]’ m)’ Eenc(pk[j’ 1]’ O))

Here m is some message not equal to 0. This ciphertext is invalid since the message encrypted
under pk[7, 0] is different from the message encrypted under pk[j, 1]. Let us consider what happens
when we run PD on ¢*. We are interested in two cases.

e Case 1: Suppose all ¢ codewords in C contain a 1 in position j. Then the adversary does
not have sk[j,0] and therefore PD(c*) will return a quantity different than m with high
probability.

e Case 2: Suppose all t codewords in C' contain a 0 in position j. Now the adversary does not
have sk[j,1] and therefore PD cannot distinguish ¢* from a well-formed ciphertext. Conse-
quently, PD(c*) will return m (otherwise PD is not a perfect pirate decoder).

To make use of these two observations, let us define ¢ experiments, denoted by TR; for j = 1,... /.
Experiment TR; is defined as follows:

mﬁj\/l
co & Eene(pk[4,0],),
ClgEenc(pk[il]v O)

¢t — (j,C(],Cl)
m «— PD(c*)

Define w; € {0,1} as follows:

(1)

0 if m=m, and
Wi —
J 1 otherwise.

The argument in Case 1 suggests that if all words in C' have a 1 is position j then w; = 1. The
argument in Case 2 suggests that if all words in C' have a 0 is position j then w; = 0. It follows
that the word

@ = wy ... we € {0,1}¢ (2)

is in the feasible set F'(C). But then running the tracing algorithm T} of the collusion resistant
code on input w* will output the identity of at least one of the words in C', which is also the identity
of one of the keys in the pirate’s possession.

The tracing algorithm

To make the intuition above rigorous, we spell out the tracing algorithm. The tracing algorithm
Tracet™P (tk) works as follows:

1. For each j in {1,...,¢} run experiment TR; once.
2. Define the word @w* as in equations (1) and (2).
3. Output Ty (w*, tk).

Overall, the tracing algorithm makes a total of O(¢) calls to the pirate decoder PD. Using Tardos’s
t-collusion resistant code we have ¢ = O(t?log(n/e)) = O(t*Xlogn) and therefore the total number
of queries to PD is

PD queries = O(t*\log(n))

We note that this tracing algorithm is minimal access as defined at the end of appendix A. That
is, the tracing algorithm does not need access to the decrypted message from PD. It only needs to
know whether the ciphertext was decrypted correctly. This is a useful property when tracing pirate
music players in practice — one only gets to observe whether the player plays the music or not.

3.1 Security

The following theorem shows that the traitor tracing system 7T is t-collusion resistant, namely it
satisfies the security definition in Appendix A. For the public-key system £ and a semantic security
adversary B we use SS Adv[B, £] to denote B’s advantage in winning the semantic security game
against &.

Theorem 1. Suppose € = (Gene, Fency Denc) s semantically secure and (Gy,Ty) is a t-collusion
resistant fingerprinting code. Then TT is a t-collusion resistant traitor-tracing system.

In particular, using the notation of Appendix A, for allt > 0, n > t, and all polynomial time
adversaries A, there exist polynomial time semantic security adversaries By and Bs attacking £
such that

MH Adv[A, TT(n)](\) < (20) - SS Adv([By, €](N)

TR Adv[A, TT(n, t)](\) < €-SS Adv[Ba, EJ(\) + ¢ + |M€|

where £ = O(t*Xlogn) and e = 1/(2*).

The semantic security property (namely the bound on MH Adv[A, TT(n)] defined in Ap-
pendix A, Game 1) is immediate. We bound the adversary’s advantage in winning the tracing
game, namely TR Adv[A, TT(n,t)] defined in Appendix A, Game 2. This will follow from Lemma 2
below. For an adversary A in Game 2 we let w*(A) denote the random variable representing the

word w* constructed in step 2 in the tracing algorithm while tracing a pirate decoder PD created
by A.

Lemma 2. With the notation as in Theorem 1, let C C T C {0,1}* be the set of words corresponding
to the set of private keys in the adversary’s possession. Then for any adversary A in the tracing
game (game 2) there exists a semantic security adversary B attacking € = (Genc, Fency Denc) such
that

Prjw*(A) ¢ F(C)] < £-SS Adv[B,&] + (¢/|M])

Proof. Consider a modified tracing algorithm that produces a word ¢*(A) as follows. For all
j=1,...,¢ run experiment TR; defined in Figure 2 and define ¢; € {0,1} as:

~J0 ifm=m, and
@ 1 otherwise.

and 7*(A) :=q1 ... q.

We say that position j is critical for A if all words in C' contain the same symbol at position j.
We claim that Pr{w; # ¢;] must be negligible at all critical positions. In particular, for all critical
positions j € {1,...,¢} there is a polynomial time semantic security adversary B for £ such that

Priw; # ¢;] <SS Adv[B, £] (3)

To see why, notice that when all bits at position j in C are 1 then .4 does not have sk[j, 0]. However,
if Pr{w; # g;] is non-negligible then A is able to distinguish Fe,,. (pk:[j, 0], O) from E.p. (pk:[j, 0], m),
which breaks semantic security of £. A similar argument applies when all bits at position j are 0.

R
m — M

if all words in C have a 1 in position j do:

CogEenc(l)k[}OL O), ClgEenc(pk[jalh 0)
else do:
CogEenc(pk[}O]a m), ClgEenc(pk[jal]a m)

¢* «— (J,co,c1)

i PD(&)

Figure 2: Experiment TR; for1 <j</¢

Let bad be the event that there exists some critical coordinate j for which w; # ¢;. It follows
from (3) and the union bound that

Pr[bad] < £-SS Adv([B, £]

When event bad does not happen (i.e. w*(A) and ¢*(A) match at all critical positions) then
w*(A) € F(C) if and only if g*(A) € F(C). Hence, we obtain that
(A

| Pr[w*(A) ¢ F(C)] - Prlg

To complete the proof we argue that

Pr(g"(A) ¢ F(C)] < ¢/|M].

)€ F(C)H < Pr[bad] < £-SS Adv[B, £] (4)

There are two cases

e Consider a bit position j where all words in C' have a 1 at position j. We argue that ¢; =1
with high probability. For this j, the ciphertext ¢* does not depend on m and therefore
running PD(¢*) will output m with probability at most 1/|M|. We conclude that for this j
the probability that g; # 1 is at most 1/|M|.

e Consider a bit position j where all words in C' have a 0 in position j. We argue that ¢; = 0.
For this j, the ciphertext ¢* is a valid encryption of m and, since PD is a perfect decoder,
PD(¢*) will output m with probability 1. Hence, ¢; will always equal 0.

Summing over all bit positions we see that the probability that ¢*(\A) is inconsistent with C' in any
critical position is at most ¢/|M|. It follows that

Pr(g*(A) ¢ F(C)] < ¢/|M]| ()
Putting together equations (4) and (5) proves the lemma. O

To complete the proof of Theorem 1 observe that when w*(A) € F(C) then Ty (w*(A), tk)
outputs a member of C' with probability at least e. Hence,

TR Adv[A, TT] < - SS Adv[B,] + ¢ + (¢/|]M])

as required.]

4 Tracing imperfect decoders

Our definition of secure traitor tracing in Appendix A requires that the adversary produce a perfect
pirate decoder PD, namely a decoder that correctly decrypts all well-formed ciphertexts. In reality,
the pirate may be content with a decoder PD than works only a fraction of the time, say decrypts
only 10% of well-formed ciphertexts (this may be useful for content that is repeated frequently).
When the tracing algorithm from Section 3 interacts with such a decoder it may produce a word
w* that is not in the adversary’s feasible set F'(C') and consequently the fingerprinting code may
fail to trace.

For a given broadcast key bk, let § be the probability that PD fails to decrypt well-formed
ciphertexts:

d :=Prim & M, ¢ & Encrypt(bk,m) : PD(c) # m)|

We call ¢ the error-rate of PD. Until now we focused on perfect pirates, namely when § = 0.

In this section we consider imperfect decoders. We assume that the broadcaster fixes an upper
bound on 4 and is not interested in tracing decoders with error-rate higher than § since their
usefulness is limited. Hence, we need only trace decoders PD whose error-rate is less than some
fixed §. Formally, the Setup algorithm for the traitor tracing system takes § as a third input.

4.1 Robust fingerprinting codes

To address imperfect decoders we need a more sophisticated tracing algorithm as well as more
powerful fingerprinting codes. We start with the requirements on the fingerprinting codes. When
tracing an imperfect decoder PD there may be several coordinates where we fail to determine which
keys are in the adversary’s possession. Our traitor tracing algorithm (described in Section 4.3) will
place a ‘?” in these coordinates. Consequently, unlike Section 3, the interaction with PD results in
a “noisy” codeword

o* €{0,1,7}° .

PD can cause a ‘7’ to appear in any coordinate in w*, as long as the overall number of ‘7’ in w* is
bounded.

To trace noisy codewords we extend the definition of collusion resistant fingerprinting from
Section 2. First, for a set of words W C {0,1}¢ we say that a word w € {0,1,?}¢ is feasible for
W if it is feasible for W when one considers only the non-?’ coordinates. That is, w € {0,1,?7}* is
feasible for W if for all i = 1,..., ¢ either w; =7 or there is a j € {1,...,t} such that w; = ﬂ)g]).
We say that the extended feasible set for W, denoted F»(WW), is the set of all feasible words for
W in {0,1,7}%.

Informally, we say that a fingerprinting code is d-robust if the tracing algorithm can trace a
word w* € {0, 1, ?}é that is feasible for a subset C' and contains at most ¢ - £ symbols ‘?’, back to
a member of C'. More precisely, we modify step 2 in the game used in Definition 1 as follows:

2. The adversary outputs a word w* € Fy(W) that contains at most ¢ - £ symbols ‘7’

We let CR Adv[(G(n,¢,0),T,C), A] be the probability that A wins the game and we use this
quantity in Definition 1 as follows.

Definition 2. We say that a fingerprinting code (G,T') is 6-robust fully collusion resistant if
for all adversaries A, alln > 0, all e € (0,1), and all subsets C C {1,...,n}, we have that

CR Adv[(G(n,€,0),T,C), Al < €

We say that (G,T) is 0-robust t-collusion resistant if for all adversaries A, all n > t, all
e € (0,1), and all subsets C C {1,...,n} of size at most t, we have

CR Adv[(G(n,€,0),T,C), Al <€

Several results in the literature trace noisy codewords (codewords containing ‘?’). Most relevant
is a recent result of Sirvent [31] who constructed codes satisfying Definition 2. Other results address
much weaker notions of robustness, and are insufficient for our application:

e Boneh and Shaw [4] allow ‘?’ symbols in the word w*, but only at non-critical coordinates
(i.e. coordinates where C' is not all 0 or all 1). In our case, however, PD is free to cause a ‘?’
symbol to appear in any coordinate.

e Guth and Pfitzmann [14] consider fingerprinting codes where a d-fraction of the coordinates
in w* are ‘?’. The ‘7’ locations, however, must be chosen independently of the attacker’s
view. In our case, A can instruct PD to adversarialy choose the location of ‘?” symbols. For
example, the adversary may cause a ‘?’ to appear at all critical coordinates.

In the context of fingerprinting digital content, there was never a reason to study fingerprinting
codes that resist adversarial corruptions as is needed here.

4.2 Tracing using robust fingerprinting codes

We show that the traitor tracing system of Section 3 can be adapted to trace imperfect decoders,
as long as the underlying fingerprinting code is robust. The system is unchanged except that the
tracing algorithm works differently. It can trace a decoder PD with error rate at most as long as
the underlying fingerprinting code is ¢’-robust for a suitably chosen 4’.

The new tracing algorithm interacts with PD using the ¢ experiments defined in Figure 3. It
runs all £ experiments and obtains ¢ pairs (p;, ¢;) for j =1,...,¢. To give some intuition we make
two observations about the quantities p; and ¢; computed in these experiments:

e First, if p; > 0 then the adversary A must possess sk[j, 0], since otherwise £ is not semantically
secure (€ allows decryption of content without the key).

e Second, if p; and ¢; are “far apart” then A must possess sk[j, 1], since, again, otherwise € is
not semantically secure (€ distinguishes encryptions of 0 from encryptions of m).

Observe also that g; is computed by running the pirate decoder on valid ciphertexts and therefore
gj is an estimate for the decoder’s error rate for ciphertexts that use coordinate j.

These observations motivate defining the following codeword: for j =1,...,¢ let w; € {0,1} be
0 ifp; >0 (A knows sk[j,0])
wj = 1 ifp; =0and q; > % (A knows sk[j,1]) (6)
‘" otherwise (pj=0and ¢; < %)

10

repeat the following steps A\?In ¢ times:
m & M
R . R .
COHEenc(pk[]vo]y m)7 CIHEenc(pk[jal]v 0)
ct— (]a CO,Cl)
m «— PD(c*)
let p; be the fraction of times that m = m
repeat the following steps A?In /¢ times:
R
m — M
R . R .
COHEenc(pk[]voL m)7 CIHEenc(pk[]alL m)
¢ (j,co, 1)
m «— PD(c)
let g; be the fraction of times that m = m

Figure 3: Experiment RobustTR; for 1 < j < /.

and set w* := wy...wy. The symbol ‘7’ at position j indicates that PD refuses to decrypt most
valid ciphertexts created for coordinate j. We know nothing about A’s knowledge of keys at this
position.

The codeword w* satisfies two important properties: First, with high probability (i.e. prob-
ability at least 1 — f(\) for some negligible function f), the fraction of ‘7’ symbols in w* is at
most

& :=6/(1—2/VN\). (7)

The proof is via a standard probabilistic argument showing that otherwise PD will incorrectly
decrypt more than a ¢ fraction of well-formed ciphertexts: g; is a good approximation to the actual

probability ¢; that when the jth coordinate is used PD decrypts correctly. If ¢; > % then the

e 1 - ~ 2
probability that ¢; < 7y s negligible. Now, if ¢’ is the fraction of locations where ¢; < 7 then

PD’s error rate is at least ¢'(1— %) which must be less than ¢. Soving for ¢’ gives (7). (We assume
that A is sufficiently large to ensure that ¢’ < 1.)

Second, one can show an analogue of Lemma 2. Let C be the set of codewords corresponding
to the set of private keys in the adversary’s possession. Then semantic security of £ implies that
w* is contained in F7(C), with high probability. To see this we have to consider two cases: the
probability that p; > 0 when the adversary does not possess sk[j, 1], which is negligible, and the
probability the adversary has of making p; = 0 but ¢; > % when not possessing sk[j, 1]. If we
replace in the first step of RobustTR; the encryption of 0 with m, then the adversary’s chance of
success is exponentially small. If now for the original RobustTR; the probability of this event is not
negligible, then we have a distinguisher for encryptions of a collection of random messages from
encryptions of the all 0 collection, violating the semantic security of £.

These two facts show that if the underlying fingerprinting code is §’-robust then applying the
fingerprinting tracing algorithm to the codeword w* will identify a non-empty subset of keys in the
adversary’s possession, with high probability. In summary, the modified tracing algorithm works
as follows:

11

1. For each j in {1,...,¢} run experiment RobustTR; and define the word w* as in (6).
2. Output Ty (w*, tk).

We argued that tracing succeeds as long as the underlying fingerprinting code is ¢’-robust.

4.3 Constructing robust fingerprinting codes

It remains to construct a d-robust code to be used in the traitor tracing system of Section 3. We
extend the Boneh-Shaw fingerprinting code [4] to make it J-robust for any fixed § € [0,1). We
note that Sirvent [31] recently presented a related construction. Constructing these codes is purely
combinatorial and does not depend on complexity assumptions.

The Boneh-Shaw codes

We begin with a brief review of the Boneh-Shaw code. The fully collusion resistant code for n users
is built from the following set of n words I'g, where each word consists of n + 1 blocks and each
block is d-wide:

block 0 cee block n
word 1: 0000 1111 1111 1111 1111
word 2: 0000 0000 1111 --- 1111 1111
word 3: 0000 0000 0000 1111 1111 (8)
word n: 0000 0000 0000 --- 0000 1111

The total codeword length is ¢ = d(n + 1). The code generator G picks a random permutation 7
on (1,...,¢) and permutes the columns of I'y according to 7. It outputs the resulting n codewords
as the code I' with tracing-key tk := 7.

For notational convenience we will occasionally ignore the permutation 7 and use the term
“block 7 of I or “block i of a codeword w” to mean the set of coordinates that correspond (via
771) to block number 4 in Tg.

Let W be a subset of codewords in I' that does not include codeword number i. Observe that
an adversary A who is given W, cannot distinguish columns from block number ¢ — 1 from columns
belonging to block number i. Therefore, one expects that the codeword w* generated by A contains
roughly the same number of ‘1’s in block ¢ — 1 as in block 4. In fact, if block ¢ in @w* contains many
more ‘1’s than block ¢ — 1, then we can conclude that A can distinguish block i from i — 1 and
therefore A is in possession of codeword number 3.

Suppose A is given words W C I' and let w* € F(W) be a codeword generated by A. For
i = 0,...,n let a; be the weight of the ith block of w*, namely the number of 1s in block i.
Computing the quantities ag, ..., a, requires the tracing-key tk to undo the random permutation
w. Boneh and Shaw show that if there is a gap between block ¢ and i — 1, namely

a; —aji—1 > A where A = \/d-logy(2n/€) 9)

then A is in possession of codeword number i with probability at least 1 — (¢/n) (they actually
prove a stronger statement, but that is not needed for our discussion).

Equation (9) gives a tracing algorithm that accuses an innocent ¢ with probability at most e:
output all 1 < i < n such that a; — a;_1 > A. However, we must ensure that there is always some
i that satisfies (9). Since w* € F(W) we know that ap = 0 and a,, = d and therefore there is some

12

1 <i <mn for which a; — a;—1 > d/n. If we ensure that d/n > A then equation (9) will be satisfied
for some 1 < i < n, as required. To ensure d/n > A we solve for d and obtain:

d > duiy = 21> logy(2n/¢€)

implying that the code length is £ = dpin - (n + 1) = O(n3log(n/e)).
Overall, we trace w* to some codeword used to create it and our tracing algorithm never outputs
an empty set.

A é-robust variant of Boneh-Shaw

We show that to make the code §-robust it suffices to increase the block width dy;, to

4n?
min ‘= -1 2

Suppose A is given words W C I" and let w* € F»(W) be a codeword generated by A that contains
at most ¢ - £ symbols ‘?’. For i =0,...,n let b; be the number of ‘?” symbols in block i of w*. Let
a; be the number of ‘1’s in block ¢ of w*.

We modify the original Boneh-Shaw tracing algorithm as follows.

Step 1: use the tracing-key tk to compute a; and b; for all i = 0,...,n;
Step 2: output all 1 <4 <n such that air1—a; > A or by —b > A

The same logic as in the original algorithm shows that this tracing algorithm accuses an innocent
party with probability at most 2¢. To see why, we re-iterate that without codeword number i the
adversary cannot distinguish columns in block ¢ from columns in block ¢ — 1 and therefore cannot
create a large gap between a; and a;_1 or between b; and b;_1. Therefore, the existence of a gap
indicates that codeword ¢ was used to create w*.

More precisely, we argue that if user 4 is not a member of W then

Pr[aiH —a; > A or b¢+1 — bz > A] < 26/n
By the union bound it suffices to show that

Prla;41 —a; > A] <e/n and (10)
Pr[bH_l —b; > A] < 6/71 (11)

Let A :=a;41 +a; and B := b;11 + b;. Since the columns in blocks ¢ — 1 and ¢ all look the same to
A we can bound the quantity Prla;+; — a; > A] using the following balls and bins experiment: the
adversary throws A blue balls (corresponding to "1’ symbols) and B red balls (corresponding to ‘7’
symbols) at random into 2d bins, with one ball per bin. Let x; be the random variable indicating
the number of blue balls in the left d bins and x;41 be the number of blue balls in the right d bins.
For any 0 < k < d we have

(Z)) (Ad—k)) (QdEA) _ (i)) (Aik)

G- G

Pr[aci = k and Ti+1 = A— k] =

13

This hyper-geometric distribution is the one analyzed in [4, Lemma 5.2] where they showed that
Pr[zit1 —xi > Al <e¢/n

which gives us the bound (10). The bound (11) follows similarly.

It remains to ensure that the modified tracing algorithm will not output the empty set. The
algorithm will output the empty set only if

ai+1—ai§A and bi+1—bi§A forallizl,...,n (12)
Moreover, we have the following facts:

e Since w* € Fo(W) we know that ap = 0 (i.e. there can be no 1 in block 0) and a,, + b, = d
(i.e. there can be no 0 in block n).

e Since w* contains at most ¢ symbols ‘7°, there must be some block 0 < j < n such that
b; <6¢/(n+1). Since ¢ = (n + 1)d we obtain b; < éd.

Using (12) and a9 = 0 we deduce that a, < A-n. Using (12) and b; < 0d we deduce that
bp, < dd+ A - n. Therefore, if (12) holds then it must be that:

d=an+b, <2An+6d = 2n+/d -logy(2n/e) + dd (13)

If we choose d sufficiently large so that (13) is false then (12) cannot hold and the tracing algorithm
will output a non-empty set. Solving for d we obtain

4n?
dmin > m -log(2n/€)

which leads to a code of length
0= dpin - (n+1) =0((n*/(1 = 6)?) - log(2n/e)).

We obtain a d-robust fingerprinting code for any § € [0,1). This in turn leads to a fully
collusion-resistant traitor-tracing system with constant size ciphertext and private keys of size £.
The tracing algorithm works by constructing w* using experiments RobustTR; and then running
the robust fingerprint tracing algorithm on w*.

Sirvent [31, Section 4.3] shows that the method in [4] can be used to extend a d-robust fully
collusion resistant code to a ¢’-robust t-collusion resistant code (for some §’ < §), where the length
of the code grows with t*log n rather than with n3. For small collusions this shrinks the code length
which in turn shrinks the size of secret keys in our system.

5 Conclusions

We constructed a t-collusion resistant traitor tracing system where ciphertext size is independent of
n or t. The system makes use of advances in fingerprinting codes. For full collusion resistance one
can take t = n, without increasing the ciphertext size. Although ciphertexts are short, private-key
size is quadratic in t. Our tracing algorithm is blackbox and is based on repeated sampling of

14

the pirate decoder. Tracing a perfect decoder requires about O(t?)\) interactions with the pirate
decoder.

Our tracing algorithm can trace both perfect and imperfect pirate decoders. To trace decoders

with error-rate less than d in [0, 1) we need to increase the size of the secret key to about O(n3\/(1—
5)?). The ciphertext is still constant size. Tracing is done using 6-robust fingerprinting codes which
we construct from the Boneh-Shaw code. It is likely that the fingerprinting code of Tardos [35] can
also be made robust, but we leave this for future work.

References

1]

2]

O. Berkman, M. Parnas, and J. Sgall. Efficient dynamic traitor tracing. In Proceedings of
SODA 00, 2000.

Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing scheme. In
CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 338-353, London, UK, 1999. Springer-Verlag.

Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In Eurocrypt 06, 2006. Full version available at http:
//eprint.iacr.org/2006/045.

Dan Boneh and James Shaw. Collusion secure fingerprinting for digital data. IEEE Transac-
tions on Information Theory, 44(5):1897-1905, 1998. Extended abstract in Crypto ’95.

Dan Boneh and Brent Waters. A fully collusion resistant broadcast trace and revoke sys-
tem with public traceability. In ACM Conference on Computer and Communication Security
(CCS), 2006.

Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in traitor
tracing schemes. In EUROCRYPT 05, pages 542-558, 2005.

Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO ’94: Proceedings of the
14th Annual International Cryptology Conference on Advances in Cryptology, pages 257-270,
London, UK, 1994. Springer-Verlag.

Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE Transactions
on Information Theory, 46(3):893-910, 2000.

Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In Public Key Cryptography - PKC 2003, volume 2567 of LNCS,
pages 100-115, 2003.

N. Fazio, A. Nicolosi, and D. Phan. Traitor tracing with optimal transmission rate. In Pro-
ceedings of ISC’07, volume 4779 of LNCS, pages 71-88. springer, 2007.

Amos Fiat and T. Tassa. Dynamic traitor tracing. In Proceedings of Crypto ’99, volume 1666
of LNCS, pages 354-371, 1999.

15

[12]

[20]

[21]

22]

[24]

[25]

[26]

Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating traceability
and broadcast encryption. In CRYPTO ’99: Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, pages 372-387, London, UK, 1999. Springer-
Verlag.

M. T. Goodrich, J. Z. Sun, , and R. Tamassia. Efficient tree-based revocation in groups of
low-state devices. In Proceedings of Crypto 04, volume 2204 of LNCS, 2004.

H. Guth and B. Pfitzmann. Error- and collusion-secure fingerprinting for digital data. In
Information Hiding ’99, volume 1768 of LNCS, pages 134—145, 1999.

D. Halevy and A. Shamir. The Isd broadcast encryption scheme. In Proceedings of Crypto 02,
volume 2442 of LNCS, pages 47-60, 2002.

Jon Johansen. DeCSS, 1999. http://en.wikipedia.org/wiki/DeCSS.

Aggelos Kiayias and Moti Yung. On crafty pirates and foxy tracers. In ACM Workshop in
Digital Rights Management — DRM 2001, pages 22-39, London, UK, 2001. Springer-Verlag.

Aggelos Kiayias and Moti Yung. Breaking and repairing asymmetric public-key traitor tracing.
In Joan Feigenbaum, editor, ACM Workshop in Digital Rights Management — DRM 2002,
volume 2696 of Lecture Notes in Computer Science, pages pp. 32-50. Springer, 2002.

Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate. In FURO-
CRYPT ’02: Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, pages 450465, London, UK, 2002. Springer-Verlag.

K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes. In Proceed-
ings of Furocrypt '98, pages 145-157, 1998.

T. Matsushita and H. Imai. A public-key black-box traitor tracing scheme with sublinear
ciphertext size against self-defensive pirates. In Proc. Asiacrypt’04, pages 260275, 2004.

Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE Trans.
Fundamentals, E85-A(2):481-484, 2002.

Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing schemes for stateless
receivers. In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 41-62, London, UK, 2001. Springer-Verlag.

Moni Naor and Benny Pinkas. Threshold traitor tracing. In CRYPTO ’98: Proceedings of the
18th Annual International Cryptology Conference on Advances in Cryptology, pages 502-517,
London, UK, 1998. Springer-Verlag.

Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In FC ’00: Proceedings of
the 4th International Conference on Financial Cryptography, pages 1-20, London, UK, 2001.
Springer-Verlag.

B. Pfitzmann. Trials of traced traitors. In Proceedings of Information Hiding Workshop, pages
49-64, 1996.

16

[27] B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger collusions. In Proceedings
of the ACM Conference on Computer and Communication Security, pages 151-160, 1997.

[28] D. Phan. Traitor tracing for stateful pirate decoders with constant ciphertext rate. In Pro-
ceedings of Vietcrypt’06, pages 354-365, 2006.

[29] Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. In Proceedings of Crypto
’00, volume 1880 of LNCS, pages 316-332, 2000.

[30] Alice Silverberg, Jessica Staddon, and Judy L. Walker. Efficient traitor tracing algorithms
using list decoding. In Proceedings of ASIACRYPT ’01, volume 2248 of LNCS, pages 175-192,
2001.

[31] T. Sirvent. Traitor tracing scheme with constant ciphertext rate against powerful pirates. In
Workshop on Coding and Cryptography, 2007. Available at http://eprint.iacr.org/2006/
383.pdf.

[32] Jessica N. Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial properties of
frameproof and traceability codes. Cryptology ePrint 2000/004, 2000.

[33] D. Stinson and R. Wei. Combinatorial properties and constructions of traceability schemes
and frameproof codes. SIAM Journal on Discrete Math, 11(1):41-53, 1998.

[34] D. Stinson and R. Wei. Key preassigned traceability schemes for broadcast encryption. In
Proceedings of SAC ’98, volume 1556 of LNCS, 1998.

[35] Gabor Tardos. Optimal probabilistic fingerprint codes. Journal of the ACM, 55(2), 2008.
Extended abstract in STOC ’2003.

[36] V. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear map. In
Proceedings of 2008 DRM Workshop, 2003.

[37] Yuji Watanabe, Goichiro Hanaoka, and Hideki Imai. Efficient asymmetric public-key traitor
tracing without trusted agents. In Proceedings CT-RSA 01, volume 2020 of LNCS, pages
392-407, 2001.

A Tracing Traitors: definition

Initially, we view a pirate decoder PD as a probabilistic circuit that takes as input a ciphertext C
and outputs some message m or L. A Traitor-Tracing system, then, consists of the following four
algorithms:

Setup(n,) The setup algorithm takes as input n, the number of users in the system, and the
security parameter A\. The algorithm outputs a public key bk, a secret tracing key tk, and
private keys sk1, ..., sky,, where sk, is given to user u.

Encrypt(bk, m) Encrypts m using the public broadcasting key bk and outputs ciphertext C.

Decrypt(j, skj, C) Decrypt C using the private key sk; of user j. The algorithm outputs a mes-
sage m or L.

17

Trace’™” (tk) The tracing algorithm is an oracle algorithm that is given as input the tracing key
tk. The tracing algorithm queries the pirate decoder PD as a black-box oracle. It outputs a
set S which is a subset of {1,2,...,n}.

All these algorithms must run in polynomial time in A and n. Moreover, the system must satisfy
the following correctness property:
for all j € {1,...,n} and all messages m:

Let (bk, th, (sk1,. .., skn)) & Setup(n,)
and C & Encrypt(bk, m).

Then Decrypt(j, sk, C) = m.

Security

We define security of the traitor tracing scheme in terms of the following two natural games, called
message-hiding and traceability.

Game 1

The first game is the standard Semantic Security Game. It says that the system is semantically
secure to an outsider who does not possess any of the private keys. Since this is a standard notion
we do not give the game details here. We denote the advantage of adversary A in winning this
message hiding game as MH Adv[A, TT (n)](\).

Game 2

The second game captures the notion of Traceability against t-collusion. For a given n,t, A,
the game proceeds as follows (both challenger and adversary are given n,t, and X as input):
1. The adversary A outputs a set T' = {u1,us,...,u;} C {1,...,n} of at most ¢ colluding users.

2. The challenger runs Setup(n, \) and provides bk and sk, . . ., sky, to A. It keeps tk to itself.
3. The adversary A outputs a pirate decoder PD.

4. The challenger now runs Trace’? (tk) to obtain a set S C {1,...,n}. Note that Trace is only
given black-box oracle access to PD.

We say that the adversary A wins the game if the following two conditions hold:

e The decoder PD is perfect. That is, for a randomly chosen m in the finite message space, we
have that

Pr[PD(Encrypt(bk,m)) =m] =1 (14)

e The set S is either empty, or is not a subset of 7.
We denote by TR Adv[A, TT(n,t)](\) the probability that adversary A wins this game.

Definition 3. We say that a Traitor Tracing system TT is t-collusion resistant if for alln >t and
all polynomial time adversaries A we have that MH Adv[A, TT(n)](\) and TR Adv[A, TT(n,t)]()\)
are negligible functions of A.

18

In Game 2 we require the pirate decoder PD to be perfect and decrypt all well-formed cipher-
texts. We discuss imperfect pirate decoders in Section 4. Definition 3 easily generalizes to handle
non-perfect decoders as in [3]: simply change (14) to

Pr[PD(Encrypt(bk,m)) =m] >1—-46

for some pre-agreed § € [0,1) given to both the challenger and the adversary.
Also note that we are modeling a stateless (resettable) pirate decoder — the decoder is just an
oracle and maintains no state between activations. Non stateless decoders were studied in [17].

Minimal access decoders

The black-box tracing model described above is often called the full access model — the tracer is
given the decryptions output by PD. When the decoder PD is a tamper resistant box, such as
a music player, the tracer does not get direct access to decryptions; it only sees whether a given
ciphertext results in music being played or not. To address this issue we define a more restricted
black-box tracing model called minimal access tracing. This model is similar to the game above
with the exception that the challenger presents the tracing algorithm with a more restricted oracle
P(-,-) which takes a message-ciphertext pair as input and outputs:

1 if PD(c) =m
P(m,c) = { 0 otherwise
We then modify Step 4 of Game 2 above so that challenger runs Trace” (tk,€) to obtain a set
S C{1,...,n}. Consequently, in the minimal access game the tracing algorithm is given far more
restricted access to PD. One can argue [2] that this model accurately captures the problem of
tracing a stateless tamper resistant decoder. It is not difficult to see that our tracing algorithm
works in the minimal access model.

19

