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Abstract

We construct an algebraic pseudorandom function (PRF) that is more efficient than the classic Naor-
Reingold algebraic PRF. Our PRF is the result of adapting the cascade construction, which is the basis of
HMAC, to the algebraic settings. To do so we define an augmented cascade and prove it secure when the
underlying PRF satisfies a property called parallel security. We then use the augmented cascade to build
new algebraic PRFs. The algebraic structure of our PRF leads to an efficient large-domain Verifiable
Random Function (VRF) and a large-domain simulatable VRF.

1 Introduction

Pseudorandom functions (PRFs), first defined by Goldreich, Goldwasser, and Micali [GGM86], are a fun-
damental building block in cryptography and have numerous applications. They are used for encryption,
message integrity, signatures, key derivation, user authentication, and many other cryptographic mecha-
nisms. Beyond cryptography, PRFs are used to defend against denial of service attacks [Ber96, CW03] and
even to prove lower bounds in learning theory.

In a nutshell, a PRF is indistinguishable from a truly random function. We give precise definitions in the
next section. The fastest PRFs are built from block ciphers like AES and security is based on ad-hoc inter-
active assumptions. In 1996, Naor and Reingold [NR97] presented an elegant PRF whose security can be
deduced from the hardness of the Decision Diffie-Hellman problem (DDH) defined in the next section. The
Naor-Reingold PRF takes as input an m-bit string b = b1 . . . bm ∈ {0, 1}m and a secret key (h, x1, . . . , xm)
and outputs

FNR
(

(h, x1, . . . , xm)︸ ︷︷ ︸
key

, (b1 . . . bm)︸ ︷︷ ︸
input

)
:= hw where w :=

m∏
i=1

xbii . (1)
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We define this PRF more precisely in Section 4.1. Evaluating this PRF amounts to m modular multiplica-
tions plus one exponentiation. This PRF was recently generalized by Lewko and Waters [LW09] to work in
groups where DDH may be easy, but where a weaker assumption called k-linear may hold. While this has
clear security benefits, there is a cost in performance compared to Naor-Reingold.

The algebraic structure of the Naor-Reingold PRF leads to several beautiful applications that are much
harder to construct with generic PRFs built from block ciphers. Some examples include Verifiable Random
Functions (VRFs) [HW10], oblivious PRFs (used for private keyword search [FIPR05] and secure com-
putation of set-intersection [JL09]), and distributed PRFs [NR97], to name a few. Another algebraic PRF
due to Dodis and Yampolskiy [DY05] (based on the signature scheme from [BB04c]) also has many useful
applications. However, this PRF is only known to be secure when the domain is small (i.e. polynomial size).

Our results. We describe a new algebraic PRF that has the same domain as Naor-Reingold, but requires
fewer multiplications to evaluate and uses shorter private keys. For parameters ` and n our PRF takes inputs
(u1, . . . , un) in Zn` along with a key (h, x1, . . . , xn) and outputs

F
(

(h, x1, . . . , xn), (u1 . . . un)
)

:= h1/w where w :=
n∏
i=1

(xi + ui) . (2)

For a domain of size 2m we have n = m/ log2 ` and therefore evaluating this PRF requires a factor of log2 `
fewer multiplications than (1) to compute w. Since computing w often takes roughly the same time as the
final exponentiation, evaluating this PRF is about twice as fast as evaluating the Naor-Reingold PRF. The
secret key is shorter by a factor of log2 `. We prove security of this PRF from the `-DDH assumption defined
in the next section. The larger ` gets the stronger the assumption becomes and therefore one should keep `
small. Setting ` = 16 or 256 for example is a reasonable choice.

Techniques. We prove security of the PRF by developing a PRF composition theorem that generalizes the
classic cascade construction of Bellare, Canetti and Krawczyk [BCK96b]. The cascade construction, shown
in Figure 1(a), constructs a PRF with a large domain from a PRF with a small domain and is the basis for
the NMAC and HMAC PRFs [BCK96a, Bel06].

Unfortunately, the cascade construction is insufficient for our purposes because it requires the output
of the underlying PRF to be at least as long as the secret key. We therefore define the augmented cascade,
shown in Figure 1(b), which eliminates this requirement by using supplemental secret information in every
block. The augmented cascade can be applied directly to PRFs whose output is much smaller than the secret
key. Suprisingly, security of the augmented cascade does not follow from security of the underlying PRF. We
therefore develop a sufficient condition on the underlying PRF, called parallel security, that implies security
of the augmented cascade.

Armed with the augmented cascade theorem, we build our large-domain PRF by plugging the Dodis-
Yampolskiy small-domain PRF [DY05] into the augmented cascade. To prove security, we prove that the
Dodis-Yampolskiy PRF is parallel secure. As a short aside, we show the power of the augmented cascade
theorem by using it to quickly prove security of the Naor-Reingold and Lewko-Waters PRFs.

Verifiable Random Functions. The algebraic structure of the PRF in (2) enables many of the same ap-
plications as the Naor-Reingold PRF. In Sections 6.2 and 7 we show how to convert this PRF into an
efficient Verifiable Random Function (VRF) with a large domain in groups with a bilinear map. A VRF,
as defined in [MRV99], is a PRF that also outputs a proof that it was evaluated correctly. VRFs give sig-
nature schemes where every message has a unique signature. They were also used to construct e-cash
schemes [BCKL09, ASM07].
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Hohenberger and Waters [HW10] recently constructed an elegant VRF with a large domain. Our VRF
is a little less efficient, but surprisingly is based on a weaker assumption. Their construction requires an
assumption where the problem instance has size O(mQ) where 2m is the size of the domain and Q is the
number of adversarial queries. We only require a problem instance of size O(m). Our security proof makes
use of admissible hash functions as in [BB04b]. We also describe a large-domain simulatable VRF, as
defined in [CL07].

2 Preliminaries

2.1 Pseudorandom Functions

We begin by reviewing the definition of pseudorandom functions [GGM86]. Informally, a pseudorandom
function is an efficiently computable function such that no efficient adversary can distinguish the function
from a truly random function given only black-box access.

More precisely, a PRF is an efficiently computable function F : K ×X → Y where K is called the key
space,X is called the domain, and Y is called the range. Security for a PRF is defined using two experiments
between a challenger and an adversary A. For b ∈ {0, 1} the challenger in Expb works as follows.

When b = 0 the challenger chooses a random key k ∈ K and sets f(·) := F (k, ·).
When b = 1 the challenger chooses a random function f : X → Y .
The adversary (adaptively) sends input queries x1, . . . , xq in X to the challenger and the challenger
responds with f(x1), . . . , f(xq). Eventually the adversary outputs a bit b′ ∈ {0, 1}.

For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb.

Definition 1. A PRF F : K ×X → Y is secure if for all efficient adversaries A the quantity

PRFadv[A, F ] := |W0 −W1|

is negligible.

As usual, one makes the terms “efficient” and “negligible” precise using asymptotic notation by equating
efficient with probabilistic polynomial time and equating negligible with functions smaller than all inverse
polynomials. Here, we use non-asymptotic language to simplify the notation.

2.2 Complexity assumptions

Notation. In this section and in Section 4.2 it is convenient to use vector notation defined as follows. Let G
be a group of prime order p with generator g.

• for vectors ḡ = (g1, . . . , gn) ∈ Gn and x̄ = (x1, . . . , xn) ∈ Znp define ḡx̄ :=
(
gx11 , . . . , gxnn

)
∈ Gn.

For a scalar g ∈ G define gx̄ := (gx1 , . . . , gxn).

• for a matrix A = (ai,j) ∈ Zn×mp and a vector ḡ ∈ Gm define

A · ḡ := h̄ ∈ Gn where hi :=
m∏
j=1

g
ai,j
j for i = 1, . . . , n.

and for a scalar g ∈ G define gA := (g(ai,j)) ∈ Gn×m.
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We also use [k] to denote the set {1, . . . , k}.
The k-linear assumption. Let Vk be the linear subspace of Zk+1

p containing all vectors orthogonal to
(−1, 1, 1, . . . , 1); its dimension is k. A vector v = (v0, . . . , vk) is in Vk if v0 is the sum of the remaining
coordinates. When k = 1 a vector v = (v0, v1) is in V1 if and only if v0 = v1.
For an algorithm A define

LIN(k)
adv[A,G] :=

∣∣Pr[A(ḡ, ḡx̄) = 1]− Pr[A(ḡ, ḡȳ) = 1]
∣∣

where ḡ is uniform in Gk+1, x̄ is uniform in Vk, and ȳ is uniform in Zk+1
p .

Definition 2. For k ≥ 1 we say that the k-linear assumption holds for the group G if for all efficient
algorithms A the advantage LIN(k)

adv[A,G] is negligible.

The 1-linear assumption is identical to the standard Decision Diffie-Hellman (DDH) problem in G and
we write DDHadv[A,G] to denote LIN(1)

adv[A,G]. For k = 2 we obtain the decision linear assumption defined
in [BBS04]. For larger k we obtain the generalized linear assumption defined in [Sha07, HK07].

It is not difficult to show that if the k-linear assumption holds for G then so does the `-linear assumption
for all ` > k. It is believed that the larger k is the weaker the assumption becomes. In particular, the 2-linear
assumption may hold in groups where the 1-linear assumption (a.k.a DDH) is false.

The k-DDH assumption. For x ∈ Zp let pow(x, k) be the vector (1, x, x2, . . . , xk) ∈ Zk+1
p . The k-

DDH assumption states that g1/x is indistinguishable from a random group element given gpow(x,k). More
precisely, for an algorithm A define

DDH(k)
adv[A,G] :=

∣∣Pr[A(gpow(x,k), g1/x) = 1]− Pr[A(gpow(x,k), h) = 1]
∣∣

where g, h are uniform in G and x is uniform in Zp. When x = 0 we define g1/x to be 1 in G.

Definition 3. For k ≥ 1 we say that the k-DDH assumption holds for the group G if for all efficient
algorithms A the advantage DDH(k)

adv[A,G] is negligible.

This assumption was previously used in [BB04a, DY05] where it was called k-DDHI. The 1-DDH
assumption implies the standard DDH assumption. Moreover, for k > 1 the k-DDH assumption implies the
`-DDH assumption for ` < k.

A hierarchy. From the facts stated above we obtain a hierarchy of complexity assumptions from the k-linear
and k-DDH assumptions:

. . . ≤ k-lin ≤ . . . ≤ 1-lin ≡ DDH ≤ 1-DDH ≤ . . . ≤ k-DDH ≤ . . .

The assumptions becomes stronger as one moves from left to right. In the generic group model this hierarchy
can be shown not to collapse [BBG05].

A useful lemma. We will need the following lemma from [BHHO08] (Lemma 1). Let Zn×mp be the set of
n×m matrices over Zp and let Rk1(Zn×mp ) be the set of matrices in Zn×mp of rank 1.

Let G be a group of order p with generator g. Let A0 be uniform in RK1(Zn×mp ) and A1 be uniform in
Zn×mp . For an algorithm A : Gn×m → {0, 1} define

adv[A] :=
∣∣Pr[A(g(A0)) = 1]− Pr[A(g(A1)) = 1]

∣∣
The following lemma shows that when DDH is hard in G, no efficient adversary can distinguish a rank 1

matrix in the exponent from a random matrix in the exponent.
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F F F

x1 x2 xn

Outputk ........

(a) The cascade construction, key = k

F F F

x1 x2 xn

Output

s1 sns2

k ........

(b) The augmented cascade, key = (s1, . . . , sn, k)

Figure 1: Cascade and augmented cascade

Lemma 1. For every algorithm A there exists an algorithm B with about the same running time as A so
that

adv[A] ≤ min(m,n) · DDHadv[B,G]

2.3 Bilinear maps

We briefly review the necessary facts about bilinear maps and bilinear map groups [Mil04]. Let G and GT

be two (multiplicative) cyclic groups of prime order p and let g be a generator of G. A bilinear map is a
map e : G×G→ GT with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) 6= 1.
We say that G is a bilinear group if the group action in G can be computed efficiently and there exists

a group GT and an efficiently computable bilinear map e : G × G → GT as above. Note that e(·, ·) is
symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

The k-BDH assumption. For x ∈ Zp, let gpow(x,k) be the vector (g, gx, . . . , g(xk)). The k-BDH assumption
states that e(g, u)1/x is indistinguishable from a random group element in GT given u and gpow(x,k). More
precisely, for an algorithm A define

BDH(k)
adv[A,G] :=

∣∣Pr[A(u, gpow(x,k), e(g1/x, u)) = 1]− Pr[A(u, gpow(x,k), γ) = 1]
∣∣

where g, u are uniform in G, x is uniform in Zp, and γ is uniform in GT .

Definition 4. For k ≥ 1, we say that the k-BDH assumption holds for the group G if for all efficient
algorithms A, the advantage BDH(k)

adv[A,G] is negligible.

3 The Augmented Cascade

3.1 The cascade PRF

The cascade pseudorandom function, defined in [BCK96b], constructs a secure PRF with domain Xn from
a secure PRF with domain X . The cascade construction is shown in Figure 1(a). More precisely, let
F : K ×X → K be a secure PRF. We define the cascade of F denoted F ∗n : K ×Xn → K as:

input: key k0 ∈ K, and (x1, . . . , xn) ∈ Xn
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for i = 1, . . . , n do:
ki ← F (ki−1, xi)

output kn

Here the output range of F must equal the key space K.
Cascade is the basis for the NMAC and HMAC message authentication codes [BCK96b, Bel06]. Cas-

cade is a generalization of the GGM PRF [GGM86], which can be viewed as a method to convert a PRF
with a 1-bit domain into a PRF with an n-bit domain. The security of the cascade construction is stated
concretely in the following theorem, which is shown in [BCK96b].

Theorem 2. For every q-query PRF adversary A attacking F ∗n there exists a q-query PRF adversary B
attacking F such that

PRFadv[A, F ∗n] ≤ nq · PRFadv[B, F ]

where B runs in about the same time as A.

3.2 Augmented Cascade PRF

The cascade construction works with a PRF F whose output is as long as the PRF key. When constructing
algebraic PRFs, the starting point is often a PRF F whose output is shorter than required for cascade. We
therefore need to augment the output of F so that its output is a valid key for F . Consider a PRF F operating
on the following spaces:

F : (S ×K)︸ ︷︷ ︸
key

×X → K

Notice that the key for F is a pair in (S,K) while the output is in K and therefore not a complete key. In
the augmented cascade we append a fresh random string to the output to make it into a valid key.

We define the augmented cascade, denoted F̂ ∗n, as a function

F̂ ∗n : (Sn ×K)︸ ︷︷ ︸
key

×Xn → K

The function’s domain is Xn and its keys are tuples of the form (s1, . . . , sn, k) ∈ Sn ×K. The augmented
cascade is shown in Figure 1(b) and is defined as follows:

input: key (s1, . . . , sn, k0) ∈ Sn ×K, and
value (x1, . . . , xn) ∈ Xn

for i = 1, . . . , n do:
ki ← F ( (si, ki−1), xi)

output kn

Security. Unfortunately, the augmented cascade can be insecure even if the underlying function F is a
secure PRF. For example, F can be a secure PRF even if it ignores the part of the key in K (i.e. F only uses
the part of the key in S). In this case, since we ignore ki (for all i), the last block of the augmented cascade
construction is evaluated independently of the first n − 1 blocks. Thus, the resulting augmented cascade
construction F̂ ∗n ignores the first n − 1 input blocks and hence cannot be a secure PRF. In the next two
sections we establish sufficient conditions for security of the augmented cascade.
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3.3 Parallel composition security

In Theorem 3 below we will show that the augmented cascade is a secure PRF provided that the underlying
function F satisfies a property we call parallel security. This property says that F remains a secure PRF
when the adversary has access to multiple instances of the function with different but related keys.

For a function F : (S×K)×X → K and an integer q > 0 we define q related keys (s, k1), . . . , (s, kq)
where s ∈ S and k1, . . . , kq ∈ K. These keys are related since they all share the same s. We say that
the function F is q-parallel secure if the resulting set of q functions is indistinguishable from q random
independent functions.
More precisely, let F (q) be the function: F (q) : (S ×Kq)×

(
X × [q]

)
→ K defined by

F (q)
(

(s, k1, . . . , kq)︸ ︷︷ ︸
key

, (x, i)︸ ︷︷ ︸
input

)
:= F

(
(s, ki) , x

)
Here i ∈ [q] selects the key (s, ki) to be used in the function F . Thus, F (q) emulates q functions F whose
keys are (s, ki) for i = 1, . . . , q.

Definition 5. We say that F : (S ×K)×X → K is a q-parallel secure PRF if F (q) is a secure PRF.

The function F need not be q-parallel secure even if it is secure as a PRF. For example, as above, a
secure PRF F : (S ×K) ×X → K that ignores the part of the key in K (i.e. only uses the S part of the
key) is clearly not 2-parallel secure. Even when S is small (e.g. S = {0, 1}) the function F may not be
2-parallel secure even though F is a secure PRF.

3.4 Security of the augmented cascade

We now prove security of the augmented cascade provided that the underlying PRF is parallel-secure.

Theorem 3. If F is q-parallel secure then the augmented cascade F̂ ∗n is a secure PRF against q-query
adversaries.

In particular, for every q-query PRF adversaryA attacking F̂ ∗n there is a q-query PRF adversary B attack-
ing F (q) such that

PRFadv[A, F̂ ∗n] ≤ n · PRFadv[B, F (q)]

where B runs in about the same time as A.

The proof uses a hybrid argument similar to the proof of the original cascade [BCK96b], but is suffi-
ciently different to require its own proof.

Proof of Theorem 3. Given an adversary A we construct an adversary B as required. The intuition for the
construction of B comes from the following sequence of n + 1 hybrid experiments between a challenger
and adversaryA. In hybrid i, the challenger replaces the first i stages of the augmented cascade with a truly
random function, while the last n− i stages are carried out as in the standard augmented cascade.

More precisely, for i = 0, . . . , n define the challenger in hybrid experiment Pi as follows:

setup: the challenger chooses a random function f : Xi → K and random keys s1, . . . , sn in S.

queries: to respond to a query (x1, . . . , xn) ∈ Xn from A do:
let ki ← f(x1, . . . , xi) ∈ K
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for j = i+ 1, . . . , n do:
kj ← F ( (sj , kj−1), xj)

send kn to A

For i = 0, . . . , n, let Wi be the probability that A outputs 1 in hybrid number i. Observe that in hybrid
P0 the adversaryA interacts with the function F̂ ∗n while in hybrid Pn the adversary interacts with a random
function f : Xn → K. Therefore,

PRFadv[A, F̂ ∗n] = |Wn −W0|

It follows by the standard hybrid argument that there exists a t ∈ [1, n] such that

PRFadv[A, F̂ ∗n] ≤ n · |Wt−1 −Wt| (3)

We construct a q-query PRF adversary B such that

PRFadv[B, F (q)] = |Wt−1 −Wt| (4)

Combining (3) and (4) proves the theorem.
Adversary B emulates the challenger in hybridPt orPt+1. This requires B to emulate a random function

f : Xt → K. To do so, it is convenient to describe B using an associative array T that maps elements of Xt

to numbers in {1, . . . , q}. Initially the array T is empty.

Adversary B interacts with its F (q) challenger and emulates a F̂ ∗n challenger for A. B works as follows:

setup: T ← ∅, ctr← 0, choose random st+2, . . . , sn in S

queries: to respond to a query for (x1, . . . , xn) ∈ Xn from A do:

if T [x1 . . . xt] = ⊥ (i.e. x1 . . . xt is a new prefix)
increment ctr by 1 and set T [x1 . . . xt] := ctr

let u← T [x1 . . . xt] ∈ {1, . . . , q}
B queries its F (q) challenger at (xt+1, u) and obtains some kt+1 ∈ K

note: kt+1 is either random in K or is equal to F ((s, k∗u), xt+1) for some random key (s, k∗u)
chosen by B’s challenger.

for j = t+ 2, . . . , n do: (finish the cascade)
kj ← F ( (sj , kj−1), xj)

send kn to A

eventually A outputs a bit b′ ∈ {0, 1}. B outputs the same bit and terminates.

Since A makes at most q queries the variable u is always in the range [1, q] and therefore all of B’s queries
to its challenger are in the proper range.

When B’s challenger emulates a random function then B emulates a Pt+1 challenger to adversary A.
When B’s challenger emulates F (q) then B emulates a Pt challenger to adversary A. Therefore (4) holds
which completes the proof of the theorem.
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4 Existing Algebraic PRFs

We briefly review two existing algebraic PRFs in the literature and explain how their security neatly follows
from the security of the augmented cascade construction.

4.1 The Naor-Reingold PRF

We start with the Naor-Reingold PRF [NR97]. Let G be a group of order p and let f : (Zp×G)×{0, 1} → G
be the function

f
(
(x, h), b

)
:= h(xb) =

{
h if b = 0
hx if b = 1

(5)

Plugging f into the augmented cascade we obtain the following PRF whose domain is {0, 1}n and range is
G:

FNR := f̂∗n
(

(x1, . . . , xn, h)︸ ︷︷ ︸
key

, (b1 . . . bn)︸ ︷︷ ︸
input

)
= h

(
x
b1
1 ···x

bn
n

)

To show that FNR is a secure PRF it suffices to show that f is parallel secure. Naor and Reingold do so
implicitly in their proof. We state this in the following lemma.

Lemma 4. If the DDH assumption holds for the group G then the function f defined in (5) is q-parallel
secure for all q polynomial in the security parameter.

Proof. To prove that f is q-parallel secure we need to show that f (q) is a secure PRF. The function f (q) has
domain {0, 1} × [q] which is a set of size 2q. Hence, it suffices to show that enumerating the 2q outputs of
f (q) gives a secure pseudorandom generator. In particular, all we need to show is that

G(x, h1, . . . , hq) := (h1, h
x
1 , . . . , hq, h

x
q )

is a secure PRG, assuming DDH holds in G. This is a direct application of the random self reduction of
DDH [NR97]. For completeness, we briefly review the reduction.

Let A be an algorithm that distinguishes the output of G on a random seed from a random tuple in G2q.
We build an algorithm B that breaks DDH in G. Given a tuple (g, h, u, v) as input, algorithm B chooses
random a1, . . . , aq and b1, . . . , bq in Zp and computes(

ga1ub1 , ha1vb1 , . . . , gaqubq , haqvbq
)
∈ G2q (6)

Naor and Reingold show that if (g, h, u, v) is a DDH tuple then (6) is distributed as the output of G on
a random seed. If (g, h, u, v) is a random tuple then (6) is random in G2q. Algorithm B runs A on the
tuple (6) and outputs whateverA outputs. Then DDHadv[B,G] = PRFadv[A, f (q)] as required. The running
time overhead of B is polynomial in q.

Combining Theorem 3 with Lemma 4 proves that the function FNR is a secure PRF whenever DDH
holds in G.
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4.2 The Lewko-Waters PRF

Lewko and Waters construct a PRF from the k-linear assumption [LW09]. While their PRF is not as efficient
as the PRF of Naor and Reingold, their construction can remain secure in groups where DDH is false.

Let G be a group of order p. Let k > 0 be a parameter and define f : (Zk×kp × Gk) × {0, 1} → Gk as
the function

f
(
(A, h), b

)
:= Ab · h =

{
h if b = 0
A · h if b = 1

(7)

Recall that the notation A · h is defined in Section 2.2. Plugging f into the augmented cascade we obtain
the following PRF whose domain is {0, 1}n:

FLW := f̂∗n
(
(A1, . . . , An, h), (b1 . . . bn)

)
= (Ab11 · · ·A

bn
n ) · h ∈ Gk

To show that FLW is a secure PRF it suffices to show that f is parallel secure. Lewko-Waters do so implicitly
in their proof. We state this in the following lemma.

Lemma 5. If the k-linear assumption holds for the group G, then the function f with parameter k defined
in (7) is q-parallel secure for all q polynomial in the security parameter.

Proof sketch. As in the proof of Lemma 4, it suffices to show that

G(A, h1, . . . , hq) := (h1, A · h1, . . . , hn, A · hn)

is a secure pseudorandom generator, assuming k-linear holds in G. To prove this, one first shows that this G
is a secure PRG when A is a random row vector in Zkp . This uses the random self reduction of the k-linear
problem described in [LW09]. Then one extends this to a k × k matrix using a hybrid argument over the k
rows of the matrix A. Both ingredients are given in the Lewko-Waters proof of security.

Combining Theorem 3 with Lemma 5 proves that the function FLW with parameter k is a secure PRF
whenever the k-linear assumption holds in G.

5 A New Algebraic PRF

Our starting point is a secure PRF due to Dodis and Yampolskiy [DY05] with a domain of size ` for some
small `. The PRF is proven secure under the `-DDH assumption. Recall that we use [`] to denote the set
{1, . . . , `} and consider the PRF f : (Zp ×G)× [`]→ G defined as follows:

f( (s, h)︸ ︷︷ ︸
key

, x ) := h1/(s+x) (8)

As before we define h1/0 = 1. Dodis and Yampolskiy prove the following theorem.

Theorem 6 ([DY05]). Suppose the `-DDH assumption holds in G. Then f is a secure PRF provided the
domain size ` is polynomial in the security parameter.

In particular, for every PRF adversary A there is an `-DDH algorithm B such that

PRFadv[A, f ] = DDH(`)
adv[B,G] and time(B) = time(A) +O(` · T )

where T is the maximum time for exponentiation in G.
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Plugging f into the augmented cascade we obtain a PRF whose domain [`]n has exponential size. The
resulting PRF is defined as follows:

F := f̂∗n( (s1, . . . , sn, h)︸ ︷︷ ︸
key

, (x1, . . . , xn)︸ ︷︷ ︸
input

) := h[1/
∏n

i=1(si+xi)] (9)

As discussed in the introduction, this PRF is more efficient than the Naor-Reingold PRF since it processes
log2 ` bits per block rather than just one bit per block. The cost of this increased efficiency is reliance on a
stronger assumption, namely `-DDH.

Theorem 7. The PRF defined in (9) is secure assuming the `-DDH assumption holds in G.

To prove the theorem it suffices to show that f defined in (8) is parallel secure; namely that f (q) is a
secure PRF for all polynomial q. We state this in the following lemma.

Lemma 8. If the function f defined in (8) is a secure PRF and the DDH assumption holds in G then f is
q-parallel secure for all q polynomial in the security parameter.

In particular, for every PRF adversary A there are adversaries B1 and B2, whose running time is about the
same as A’s up to a polynomial factor, such that

PRFadv[A, f (q)] ≤ PRFadv[B1, f ] + q · DDHadv[B2,G]

Note that the DDH assumption is implied by the k-DDH assumption and hence the DDH assumption
used in Lemma 8 does not add an assumption beyond the one already used to prove that the underlying f is
a secure PRF.

Proof of Lemma 8. Our goal is to show that f (q) is a secure PRF. We present the proof as a sequence of
three games between a challenger and a PRF adversary A that attacks f (q). For i = 0, 1, 2, let Wi be the
probability that A outputs 1 at the end of Game i.

Game 0. The challenger in this game behaves as a standard challenger presenting the adversary with an
oracle for the pseudorandom function f (q) with a random key (s, h1, . . . , hq).

Game 1. The challenger in this game chooses a random function u : [`] → G. It also chooses random
r1, . . . , rq in Zp. Now, given a query (x, i) ∈ [`] × [q] from the adversary, the challenger responds with
u(x)ri .

We show that Games 0 and 1 are indistinguishable, assuming f is a secure PRF. In particular, there is a
PRF adversary B1, whose running time is about the same as A’s, such that

|W0 −W1| = PRFadv[B1, f ] (10)

Adversary B1 interacts with a PRF challenger for f and plays the role of an f (q) PRF challenger for A.
Adversary B1 works as follows:

choose random r1, . . . , rq in Zp.

given a query (x, i) ∈ [`]× [q] from A do:
issue a query to B1’s challenger with input x and

obtain y in response.
respond on A with yri .

finally, output whatever A outputs.
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When B1’s challenger emulates an oracle for the function f with random key (s, h) it responds to query
x with y = h1/(s+x). For i = 1, . . . , q define hi := hri . Then B1’s response to A’s query for (x, i) is
simply h1/(s+x)

i which is precisely f (q)( (s, h1, . . . , hq), (x, i) ). Hence, in this case B1 emulates a Game 0
challenger for A.

When B1’s challenger emulates a random function u : [`] → G then B1’s response to A’s query for
(x, i) is simply u(x)ri which is precisely how a Game 1 challenger would respond. These two arguments
prove (10), as required.

Game 2. The challenger presents the adversary with an oracle for a random function w : [`]× [q]→ G.

We use Lemma 1 to argue that Games 1 and 2 are indistinguishable assuming the DDH assumption
holds in G. In particular, there is a DDH algorithm B2 such that

|W1 −W2| ≤ q · DDHadv[B2,G] (11)

Let (x1, i1), . . . , (xq, iq) be A’s queries to its challenger. Recall that in Game 1 the challenger responds to
A’s queries using a random function u : X → G and random r1, . . . , rq ∈ Zp. Let A ∈ Zq×qp be the matrix
A := (risj)1≤i,j≤q. Clearly A has rank 1.

In Game 1 the adversary is given q entries in the matrix gA ∈ Gq×q. In Game 2 the adversary is given
q random values in G which we treat as q entries in a random q × q matrix in G. By Lemma 1 there is an
algorithm B2 that satisfies (11), as required.

Summary. Combining (10) and (11) shows that

PRFadv[A, f (q)] = |W0 −W2| ≤ |W0 −W1|+ |W1 −W2| ≤ PRFadv[B1, f ] + q · DDHadv[B2,G]

which completes the proof of the theorem.

The proof of Theorem 7 follows by combining Theorem 3 with Lemma 8, which shows that the function
F with parameter ` is a secure PRF whenever the `-DDH assumption holds.

6 Verifiable Random Functions

Verifable Random Functions, introduced by Micali, Rabin, and Vadhan [MRV99], are PRFs where the party
holding the secret key can produce a non-interactive proof that the PRF was evaluated correctly. The proof
should not interfere with the pseudorandom properties of the PRF.

We give two VRF constructions from the augmented cascade. In this section, for a parameter `, we
use the Dodis-Yampolskiy small-domain VRF to construct VRFs for a domain of size `n for constant n.
Security is based on the n`-BDH assumption in bilinear groups. In comparison, the core Dodis-Yampolskiy
construction requires the `n-BDH assumption for a VRF on a domain of size `n.

In Section 7 we construct a VRF for a domain of size 2m for arbitrary m from the O(m)-BDH assump-
tion. Our construction makes use of admissible hash functions introduced in [BB04b].

Hohenberger and Waters [HW10] recently constructed an elegant large domain VRF from the Naor-
Reingold PRF for a domain of size 2m for arbitrary m. Security against a Q-query adversary relies on the
O(mQ)-BDHE assumption, where t-BDHE is an assumption of the same flavor as the t-BDH assumption.
While the efficiency of our VRF is worse than that of Hohenberger and Waters, the required complexity
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assumption is weaker: O(m) vs. O(mQ). The proof techiques for the two constructions are quite differ-
ent. Hohenberger and Waters use the pile-up approach of Waters [Wat05] while we use admissible hash
functions [BB04b].

Other VRFs include Abdalla et al. [ACF09] who give a construction using the m-wBDH assumption
in blinear groups for a domain of size 2m. The construction is limited to polynomial size domains since
security degrades exponentially in m. Early VRFs outputting one bit were given by Lysyanskaya [Lys02]
and Dodis [Dod03] based on stronger assumptions.

6.1 Definition of VRFs

A VRF is an efficiently computable function F : K ×X → Y equipped with three algorithms:

• Gen(1λ) outputs a pair of keys (pk, sk) for a security parameter λ.

• Prove(sk, x) outputs
(
F (sk, x), π

)
, where π = π(sk, x) is a proof of correctness.

• Verify(pk, x, y, π) verifies that y = F (sk, x) using the proof π, and outputs 0 or 1 accordingly.

Security for a VRF is defined using two experiments, Exp0 and Exp1, that interact with an adversary
A = (A1,A2). For b ∈ {0, 1}, experiment Expb is defined as:

(pk, sk)←R Gen(1λ)

(x∗, state)←R AO(·)
1 (pk)

y0 ← F (sk, x∗), y1 ←R Y

b′ ←R AO(·)
2 (yb, state)

output b′

where the oracle O(x), for x ∈ X , is defined as O(x) := Prove(sk, x). Moreover, A must never query O
at x∗. For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb.
Define VRFadv[A, F ] := |W0 −W1|.

Definition 6. A VRF is said to be secure if it satisfies the following properties.

1. Pseudorandom: For every efficient adversary A, VRFadv[A, F ] is a negligible function of λ.

2. Correct: For all x ∈ X , if (pk, sk)←R Gen(1λ) and (y, π)←R Prove(sk, x) then
Pr
[
Verify(pk, x, y, π) = 1

]
= 1.

3. Unique: no values of (pk, x, y1, y2, π1, π2) satisfy Verify(pk, x, y1, π1) = Verify(pk, x, y2, π2) = 1
for y1 6= y2.

6.2 Building a VRF using the augmented cascade

We construct a secure VRF with domain of size `n using the n`-BDH assumption and the augmented cas-
cade. Evaluating the VRF takes n multiplications and one exponentiation. Our VRF is built from the
augmented cascade using the Dodis-Yampolskiy VRF as the underlying function. The Dodis-Yampolskiy
VRF uses pairings and outputs elements in GT while its key uses elemets in G. We therefore need to slightly
tweak the augmented cascade to compensate for the difference between GT and G, but this is easily done.

The VRF is parameterized by two positive integers n and `, has domain [`]n, and is defined as follows:
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Algorithm Gen(1λ): Fix a group G of prime order p with a bilinear pairing. Choose random generators
g, u ∈ G and random values s1, s2, . . . , sn ←R Zp. Set ti := gsi for i = 1, . . . , n and output the keys

pk = (g, u, t1, . . . , tn), sk = (g, u, s1, . . . , sn).

Function F : (G2 × Znp )× [`]n → GT. On input sk and x = (x1, . . . , xn) ∈ [`]n output

F (sk,x) := e( g[1/
∏n

i=1(xi+si)], u) .

Algorithm Prove(sk,x): This algorithm outputs F (sk,x) along with a proof π as follows: for i = 1 to n,
compute πi = g[1/

∏i
j=1(xj+sj)] ∈ G and output the proof π := (π1, π2, . . . , πn) ∈ Gn .

Algorithm Verify(pk,x, y, π): First verify that the proof π contains legal encodings of elements in G. Next,
check that

e(πi, g
xi ti) = e(πi−1, g) for i = 1, . . . , n,

where π0 := g. Finally, check that e(πn, u) = y, where y is the output of the VRF. Verify returns 1 iff all
the checks are satisfied.

6.3 Proof of VRF security

We prove security for a polynomial size domain. For a domain of size `n we use the n`-BDH assumption.

Theorem 9. Let G be a bilinear group of order p, and let n, ` be positive integers with 2 ≤ ` < p. If
the n`-BDH assumption holds in G, and `n is polynomial in the security parameter, then the VRF defined
in Section 6.2 is secure. In particular, for every VRF adversary A there is a n`-BDH algorithm B, whose
running time is about the same as A’s, such that

VRFadv[A, F ] ≤ `n · BDH(n`)
adv [B,G].

Proof. Correctness of the VRF is straightforward. Uniqueness follows from the group structure: for any
input there is only one group element in G that is a valid output, and moreover, it is not possible (even for an
unbounded adversary) to devise a valid proof for another element. It remains to prove pseudorandomness.

Intuition. B chooses a random b∗ = (b∗1, . . . , b
∗
n) ∈ [`]n. Consider the n× ` matrix where the (i, j)th entry

holds some polynomial in Zp[z]. A query b ∈ [`]n from the adversary defines a path through this matrix that
visits exactly one cell in every row (corresponding to each coordinate of b). The random vector b∗ defines n
special cells called “mines,” one mine per row. Then B constructs a public key that lets it answer all queries
from the adversary that do not visit all n mines. If the adversary’s challenge query hits each and every mine
— which happens with probability `−n — then B can use the adversary to solve the given n`-BDH instance.
We now formalize this intuition.

LetA be a VRF adversary attacking F . We construct the following algorithm B that breaks the n`-BDH
assumption in G with advantage VRFadv[A, F ]/`n.

Input: Algorithm B is given a tuple (g, u, gx, . . . , g(xn`), y) ∈ Gn`+2 × GT and is to determine if y is
e(g, u)1/x or drawn randomly from GT.
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Key generation: Algorithm B begins by choosing a random b∗ = (b∗1, . . . , b
∗
n) ←R [`]n and random

r1, . . . , rn ←R Z∗p. It constructs an instance of the VRF as follows: First, B constructs the polynomials

pi(z) =
∏
a∈[`]

(riz + a− b∗i ) and p(z) = z−1
n∏
i=1

pi(z)

in Zp[z]. Observe that every pi(z) is divisible by riz, and therefore the product of all pi(z) is divisible by
zn. Hence, p(z) is in Zp[z] and is divisible by zn−1. Moreover, p(z) is not divisible by zn. Write

p(z) =

n`−1∑
j=0

cj · zj

for some cj in Zp. B then constructs the generator h as:

h = gp(x) =

n`−1∏
j=0

(
g(xj)cj

)
∈ G.

Next, for i = 1, . . . , n, algorithm B constructs the public key values

ti = h(rix−b∗i ) = gp(x)(rix−b∗i ) =
n∏̀
j=0

(
g(xj)

)dj
where p(z)(riz − b∗i ) =

∑n`
j=0 djz

j . It sends the public key pk = (h, u, t1, . . . , tn) to A. The secret key
values s1, . . . , sn ∈ Zp corresponding to this public key (and are unknown to B) are:

si := rix− b∗i for i = 1, . . . , n.

These values are statistically close to uniform in Zp thanks to the random choice of r1, . . . , rn in Z∗p. Hence
pk is indistinguishable from a random public key in the real scheme.

Responding to Oracle Queries: Consider a query from A for some input b = (b1, . . . , bn) ∈ [`]n. If b =
b∗, algorithm B aborts the simulation and outputs ⊥. We show that when b 6= b∗, our B can successfully
answer the query. First B constructs n polynomials, p(1), . . . , p(n) ∈ Zp[z] as

p(j)(z) =
p(z)

(r1z + b1 − b∗1) · · · (rjz + bj − b∗j )
=

n`−j−1∑
k=0

dj,k · zk ∈ Zp[z] (12)

for some constants dj,k ∈ Zp, j = 1, . . . , n. This p(j)(z) is a polynomial in Zp[z] because p(z) is divisible
by the denominator in (12), unless the denominator is a multiple of zn, which only happens when b = b∗.

Now, for j = 1, . . . , n our B computes

πj = h1/
∏j

k=1(sk+bk) = gp
(j)(x) =

n`−j−1∏
k=0

(
g(xj)

)dj,k
∈ G.

Let π := (π1, . . . , πn). Observe that

e(πn, u) = e
(
h1/[

∏n
k=1(sk+bk)], u

)
= F (sk,b)
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and hence e(πn, u) is the value of the functionF (sk, ·) at the input b. It sends toA the response
(
e(πn, u), π

)
.

Challenge: Eventually, A outputs an input b̂ ∈ [`]n on which it wants to be challenged. If b̂ 6= b∗, then B
aborts and outputs ⊥. If b̂ = b∗, then B proceeds as follows.

Since A is a VRF adversary, it can distinguish between

F (sk,b∗) = e(h, u)1/
∏n

i=1(si+b
∗
i ) = e(h, u)1/xn

∏n
i=1 ri ∈ GT

and a random element in GT with advantage VRFadv[A, F ]. Now, recall that p(z) is divisible by zn−1 but
not by zn. Therefore, there are scalars ρ 6= 0 and ρ0, . . . , ρn`−n−1 in Zp such that:

s(z) :=
p(z)

zn
∏n
i=1 ri

=
1

z
·
[

p(z)

zn−1
∏n
i=1 ri

]
︸ ︷︷ ︸

in Zp[z]

=
ρ

z
+
n`−n−1∑
j=0

ρjz
j .

Now, using the challenge y ∈ GT, algorithm B computes:

y∗ := yρ ·
n`−n−1∏
j=0

e
(
g(xj))ρj , u

)
∈ GT.

If y ←R GT, then y∗ is random in GT because ρ 6= 0. However, if y = e(g, u)1/x then y∗ satisfies

y∗ = e(g, u)s(x) = e(h, u)1/xn
∏n

i=1 ri = F (sk,b∗).

Now B responds to A’s challenge query with y∗.

Guess: If needed, algorithm A makes more queries at inputs different from b∗, to which B responds as
before. Finally, A outputs a guess bit b′ ∈ {0, 1}. B outputs b′ as its guess.

Success probability. The running time of B is dominated by responding to oracle queries. Its running time
is at most a polynomial factor beyond the running time of A.

If A’s challenge query is b∗, then B solves the given n`-BDH challenge with the same advantage as
adversary A has against the VRF. Moreover, a response to an adversary oracle query for b ∈ [`]n reveals
nothing about b∗ other than b 6= b∗. Then, a standard argument shows that A’s challenge query is b∗ with
probability `−n. Hence,

BDH(n`)
adv [B,G] ≥ VRFadv[A, F ]/`n

which completes the proof of the theorem.

7 VRFs with large input domains

In this section, we show how to construct a secure VRF with an input domain of {0, 1}m for arbitrary m.
Security depends on the O(m)-BDH assumption. Evaluating the VRF requires about O(m) multiplications
and one exponentiation. Our construction uses error correcting codes with a large minimum distance, also
known as low rate codes.
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Definition 7. A (m,n, d)`-error correcting code is an injective function H : {0, 1}m → [`]n such that for
all distinct c1, c2 ∈ {0, 1}m we have:

HDist (H(c1), H(c2)) ≥ d,

where HDist(·, ·) denotes the hamming distance between the codewords (the number of coordinates where
the two codewords differ). We say that an error-correcting code is efficient if the function H is efficiently
computable.

Let Bin(n, p) be a Binomial random variable with parameters n and p. The Gilbert-Varshamov bound
proves the existence of codes with a large minimum distance d, and a positive rate, as long as d < n(1−1/`).

Lemma 10. For all integers n, ` ≥ 2, and 0 ≤ d < n(1 − 1/`), there exists a (m,n, d)`-error correcting
code with m ≥ − log2(Pr

[
Bin(n, 1/`) ≥ n− d

]
).

The following corollary states the existence of large minimum distance code more explicitly.

Corollary 11. Let ` ≥ 2 be an integer and ε ∈ (1
` , 1). Then there is a constant c = c(ε) such that for all

m ≥ 1 and n ≥ cm, there is a (m,n, d)`-error correcting code with d ≥ n(1− ε).

We will use the fact that n = O(m) is sufficient for the existence of a (m,n, d)`-error correcting code
with d ≥ n(1 − ε). Concretely, it suffices to use a VRF with a 256-bit domain so that a large input can be
hashed with SHA256 into this domain. As an example instantiation of Lemma 10, the Gilbert-Varshamov
bound shows that there is a (256, n, d)128-error correcting code with n = 1024 and d ≥ 0.9n. Other
examples are listed in Table 1.

We will need the function H defining the error-correcting code to be efficiently computable. We can
do so using an appropriate pseudorandom function, or by using an explicit low rate error-correcting code
from [ABN+92].

7.1 VRF construction

We now describe a VRF with input domain {0, 1}m. The construction uses an efficient (m,n, d)` error
correcting code H : {0, 1}m → [`]n with a minimum distance d ≥ n(1− ε), for some parameters n, `, and
ε ∈ (1

` , 1). The value of ε will affect the tightness of the security reduction. The smaller ε is the tighter the
reduction. Recall that n = O(m).

Algorithm Gen(1λ): Fix a group G of prime order p with a bilinear pairing. Select random generators
g, u ∈ G, random values s1, s2, . . . , sn ∈ Zp, and set ti = gsi . Output the keys:

pk = (g, u, t1, . . . , tn), sk = (g, u, s1, . . . , sn).

Function F : (G2 × Znp )× {0, 1}m → GT. On input sk and x ∈ {0, 1}m, output:

F (sk, x) := e
(
g[1/

∏n
i=1(H(x)i+si)], u

)
where H(x)i refers to the ith coordinate of H(x) ∈ [`]n.

Algorithm Prove(sk, x): On input sk and x, output F (sk, x) along with a proof π as follows. For i =

1, . . . , n compute πi = g[1/
∏i

j=1(H(x)j+sj)]. Output the proof:

π := (π1, π2, . . . , πn) ∈ Gn .
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multiplier of BDH(n`)
adv [B,G] in (13)

` ε nmin n w (smaller is better)
128 0.1 1022 1024 46 219Q

256 0.1 732 768 31 225Q

256 0.05 2081 2112 44 212Q

Table 1: Concrete bounds for the tightness of the reduction in (13) for different values of n, ` and ε, using
m = 256 and Q = 248. The scheme uses a (m,n, d)` error correcting code with d ≥ n(1 − ε). The nmin
column is the smallest n for which such a code exists by the Gilbert-Varshamov bound (Lemma 10). The n
column is the value of n used to compute the right most column. The w column refers to a parameter used
in the proof of Theorem 12.

Algorithm Verify(pk, x, y, π): First verify that π contains legal encodings of elements in G. Next, check
that:

e(πi, g
H(x)i · ti) = e(πi−1, g),

where π0 := g. Finally, check that e(πn, u) = y, where y is the output of the VRF. Verify returns 1 iff all
the checks are true.

Security. The scheme above is the same as the scheme in the previous section, where the input x to the
function is replaced by H(x) ∈ [`]n. Hence, correctness and uniqueness follow in the same way. We next
prove that it is pseudorandom.

Theorem 12. Let ε ∈ (1
` , 1) and let Q and ` ≥ 2 be integers. Then there are constants c = c(`, ε,Q),

m0 = m0(`, ε,Q), and τ = τ(ε) ≥ 1, such that for all m ≥ m0 and n ≥ cm,

• there is an (m,n, d)`-error correcting code H : {0, 1}m → [`]n with d > n(1− ε), and

• the VRF constructed in Section 7.1 is secure under the n`-BDH assumption. In particular, for every
VRF adversary A that makes at most Q queries, there is an n`-BDH algorithm B such that

VRFadv[A, F ] ≤ (Qn)τ · BDH(n`)
adv [B,G]. (13)

Our security proof introduces a factor of (Qn)τ to the success probability of breaking the hardness
assumption. The smaller ε is, the smaller τ becomes, but τ is always greater than 1. A factor of at least Q is
necessary to prove the security of any VRF (or a unique signature scheme) with an exponential size domain
based on a non-interactive assumption, as shown in [BJLS16, HJK12, Cor02].

Table 1 gives concrete bounds for the tightness of the reduction in (13) for different values of n, ` and ε,
using m = 256 and Q = 248. The quantity in the right most column replaces the multiplier (Qn)τ in (13).
The table is calculated using expressions derived in Appendix A.
Proof intuition. Recall the intuition behind the proof of Theorem 9. In the proof of Theorem 9 algorithm
B chose n random cells, called mines, in an n × ` matrix, one mine per row. B then constructed public
parameters that enable it to answer any query that does not visit all nmines. We showed that an adversaryA
whose challenge query visits all n mines can be used to solve the given n`-BDH instance. Since the fraction
of challenge queries that do not cause the adversary to abort is exponentially small in n (i.e. `−n), this proof
technique works only for small n.
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In this proof, algorithm B first sets a parameter w that is close to n/`. It then lays n random mines in an
n × ` matrix, as before, one mine per row. However, here B constructs public parameters that let it answer
any query from A that visits fewer than w mines (instead of fewer than n mines). This means that it can
answer fewer adversary queries than before. However, an adversary whose challenge query visits exactly w
(rather than all n) mines, can be used to solve the given n`-BDH instance. This means that B is more likely
to be able to use the adversary’s challenge query compared to before. Since non of A’s queries should visit
w or more mines, w is chosen so that this condition holds with probability about (1/Q). The purpose of
the code H is to mitigate against an adversary A that forces B to abort by constructing highly correlated
queries.

Proof. Let A be an adversary that distinguishes the VRF from a random function with non-negligible prob-
ability. We construct an algorithm B that solves the n`-BDH instance.

Input: Algorithm B is given a tuple (g, u, gx, . . . , g(xn`), y) ∈ Gn`+2 × GT and needs to determine if y is
e(g, u)1/x or y is random in GT.

Key generation: B sets w := bn/` + ∆
√
n/` c, where ∆ := 3

1−ε
√

ln(2Qn). It then constructs the
VRF parameters as follows. B begins by choosing a random b∗ = (b∗1, . . . , b

∗
n) ←R [`]n, and random

r1, . . . , rn ←R Z∗p. It constructs the VRF public parameters by first constructing the polynomials

pi(z) =
∏
a∈[`]

(riz + a− b∗i ) and p(z) = z−(n−w+1)
n∏
i=1

pi(z) =

n`−(n−w+1)∑
j=0

cj · zj ,

for some coefficients cj in Zp. As in the proof of Theorem 9, the product of all the pi(z) is divisible by zn.
Therefore p(z) is in Z[z], and is divisible by zw−1, but is not divisible by zw. This will ensure that B cannot
answer a query that matches b∗ at w or more positions. B then computes the VRF public parameters h and
t1, . . . , tn as in the proof of Theorem 9. For i = 1, . . . , n:

h := gp(x) =

n`−(n−w+1)∏
j=0

(
g(xj)cj

)
∈ G

ti := h(rix−b∗i ) = gp(x)(rix−b∗i ) =
n`−n+w∏
j=0

(
g(xj)

)dj
∈ G where

n`−n+w∑
j=0

djz
j = p(z)(riz − b∗i ).

It sends the public key pk = (h, u, t1, . . . , tn) to A. The secret keys s1, . . . , sn ∈ Zp (unknown to B) that
correspond to pk are si := rix− b∗i ∈ Zp, for i = 1, . . . , n.

Responding to Oracle Queries: B responds to queries in a manner almost identical to the one in the proof
of Theorem 9. Let q ∈ {0, 1}m be a query from A. Our B first computes b := H(q). If HDist(b,b∗) ≤
(n− w), meaning that the two vectors agree on w or more coordinates, then B cannot answer the query. In
this case B aborts the simulation and outputs a random bit in {0, 1}. Otherwise, B evaluates the function
and responds to A in a manner identical to the one in the proof of Theorem 9.

Challenge: Eventually, A outputs a point q∗ ∈ {0, 1}m on which it wants to be challenged.

If HDist(H(q∗),b∗) 6= (n− w), B aborts the simulation and outputs a random bit as its guess.
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Otherwise, HDist(H(q∗),b∗) = (n−w). Let S ⊆ [n] be the set of w coordinates where H(q∗) and b∗

match. Define

v(z) :=
∏
i∈S

ri ·

∏
i 6∈S

(riz − b∗i +H(q∗)i)

 ∈ Zp[z]

of degree (n− w). Note that v(z) is not divisible by z. Then since A is a VRF adversary, it can distinguish
between

F (sk, q∗) = e(h, u)1/[
∏n

i=1(si+H(q∗)i)] = e(h, u)1/(xw·v(x))

and a random element in GT with advantage VRFadv[A, F ].
Recall that p(z) is divisible by zw−1 but not by zw. Thus, there are scalars ρ 6= 0 and ρ0, . . . , ρn`−2n+2w−1

in Zp such that:

s(z) :=
p(z)

zw · v(z)
=

1

z
·
[

p(z)

zw−1 · v(z)

]
︸ ︷︷ ︸

in Zp[z]

=
ρ

z
+
n`−2n+2w−1∑

j=0

ρjz
j ∈ Zp[z].

Now, using the BDH challenge y, algorithm B computes:

y∗ = yρ ·
n`−2n+2w−1∏

j=0

e
(

(g(xj))ρj , u
)
∈ GT.

Now, if y ←R GT, then y∗ is distributed randomly in GT because ρ 6= 0. However, if y = e(g, u)1/x, then

y∗ = e(g, u)s(x) = e(g, u)p(x)/(xw·v(x)) = e(h, u)1/(xw·v(x)) = F (sk, q∗).

Now, B responds to A with the value y∗ as computed above.

Guess: If needed, algorithm A makes more queries at inputs different from b∗, to which B responds as
before. Finally, A outputs a guess bit b′ ∈ {0, 1}. B outputs this b′ as its guess.

Success Probability. Let q = (q1, . . . , qQ, q
∗) be the tuple ofQ+1 queries fromA. To bound the probability

that B aborts during the simulation, we can delay the choice of b∗ = (b∗1, . . . , b
∗
n) in [`]n to the end of the

simulation, and analyze the probability that a random b∗ would have caused an abort given the observed
query tuple q from the adversary.

Define the abort indicator function:

abort(q,b∗) =

{
1 if HDist(H(q∗),b∗) 6= n− w

∨Q
i=1 (HDist(H(qi),b

∗) ≤ (n− w)) ;

0 otherwise.

The function abort(q,b∗) evaluates to 0 if the queries q will not cause a regular abort for the given choice
of b∗. Define the success probability over all possible choices of b∗ ∈ [`]n as

ζ(q) := Pr
b∗

[
abort(q,b∗) = 0

]
.

Let ζmin := minq[ζ(q)]. We prove the following bound on ζmin.

Lemma 13. Under the assumptions of Theorem 12, for all query tuples q we have ζ(q) ≥ ζmin ≥ (1/Qn)τ

for some constant τ = τ(ε).
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Proof. The proof is given in Appendix A.

If B does not abort, then A’s final output lets B solve the n`-BDH problem with the same advantage
as A. However, to complete the analysis we need to introduce a standard artificial abort condition, as
in [Wat05, HW10]. This is needed to ensure that the probability that B does not abort is about the same for
every choice of adversary query tuple q. We refer to [Wat05, HW10] for the details.

The end result is that

BDH(n`)
adv [B,G] ≥ ζmin · VRFadv[A, F ] ≥ (1/Qn)τ · VRFadv[A, F ]

which completes the proof of Theorem 12.

7.2 Simulatable VRFs

Chase and Lysyanskaya [CL07] introduced simulatable VRFs (sVRF), which they used to convert single-
theorem non-interactive zero knowledge (NIZK) to many-theorem NIZK. Their simulatable VRF, secure
under the k-BDH assumption and the subgroup decision assumption (SDA), has a polynomial size domain.
We briefly outline how the augmented cascade gives a large-domain sVRF using the same assumptions.

Stated informally, Chase and Lysyanskaya show that by modifying the proof π of the Dodis-Yampolskiy
VRF, there exist algorithms (SimG, SimSample,SimProve) (analogous to (Gen, F,Prove) in the definition
of VRFs) and a way to simulate parameters SimParam with the following properties:

1. SimSample, using the parameters output by SimParams, produces a random distribution (that is
indistinguishable from the distribution of the outputs of F , since F is a sVRF).

2. SimProve is able to simulate proofs for these random outputs that are indistinguishable from proofs
produced by Prove, and any adversary that is able to distinguish between the simulated proofs and
real proofs can be used to break SDA.

The augmented cascade theorem generalizes to sVRFs and can be used to construct large-domain sVRFs
from small-domain ones, provided the underlying sVRF has parallel-security. The simulatability of the
sVRF makes it possible to push the hybrid proof of the augmented cascade (Theorem 3) to the settings
of sVRFs. We note that this was not possible for VRFs since the simulator cannot provide proofs in the
hybrid experiments. Now, plugging the Chase-Lysyanskaya sVRF into this augmented cascade, we obtain a
large-domain sVRF.

8 Conclusions

We presented a generalization of the cascade construction called the augmented cascade. We used the
augmented cascade to construct large-domain PRFs from small-domain algebraic PRFs. The augmented
cascade provides a unified framework for analysing the constructions of Naor-Reingold and Lewko-Waters.
We used the augmented cascade to extend the Dodis-Yampolskiy PRF to a PRF on large domains, resulting
in the most efficient algebraic PRF to date.

The new large-domain PRF can be converted into a large-domain VRF in a bilinear group and proven
secure based on the m-BDH assumption for some parameter m that depends on the domain size. For small
domains the resulting VRF uses a weaker assumption than its Dodis-Yampolskiy origin. We obtain an
efficient large domain VRF using error correcting codes. The algebraic structure of these constructions will
likely find many applications, as was the case for the Naor-Reingold PRF. As an example, we briefly noted
a simulatable-VRF for large domains.
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A Proof of Lemma 13

Proof. Let q be some fixed query tuple from the adversary. Suppose b∗ ∈ [`]n is chosen uniformly at
random at the end of the simulation. In this probability space, let Ai be the event that query number i issued
by the adversary, for i = 1, . . . , Q, cannot be answered by algorithm B. Let A∗ be the event that B does not
abort on the challenge query. Then the probability that B does not abort is

Pr[Success] = ζ(q,b∗) = Pr
[
Ā1 ∧ . . . ∧ ĀQ ∧A∗

]
.

We can bound this using the inclusion-exclusion principle:

Pr[Success] = Pr
[
Ā1 ∧ . . . ∧ ĀQ ∧A∗

]
≥ Pr [A∗]−

Q∑
i=1

Pr [Ai ∧A∗] . (14)

Our goal is to show that when

w :=
⌈
(n/`) + ∆ ·

√
n/`

⌉
∈ [n] where ∆ :=

3

1− ε
·
√

ln(2Qn), (15)

then for i = 1, . . . , n

Pr [Ai ∧A∗] ≤ (1/2Q) · Pr[A∗], and (16)

Pr[A∗] ≥ (1/Qn)τ for some constant τ > 0. (17)

Then by (14) we get

Pr[Success] ≥ Pr[A∗]−Q · (1/2Q) · Pr[A∗] = Pr[A∗]/2 ≥ 1
2(1/Qn)τ ,

which proves the lemma. Table 1 uses (14) to give concrete bounds on Pr[Success] for various values of
n, ε and w. It does so using the exact bounds on Pr[A∗] and Pr [Ai ∧A∗] in (18) and (19) below.

It remains to prove that (16) and (17) hold when w is as in (15). We start with (17). Let Bin(n, p) be a
Binomial random variable with parameters n and p. First, observe that:

Pr[A∗] = Pr
[
Bin(n, 1/`) = w

]
=

(
n

w

)
·
(

1

`

)w (
1− 1

`

)n−w
. (18)

24

http://eprint.iacr.org/
http://eprint.iacr.org/


By properties of the binomial distribution Bin(n, 1/`), we know that for w in (15) we have

Pr[A∗] ≥ 1√
2n
· e−(∆2) =

1√
2n

(
1

2Qn

)τ ′
where τ ′ := 9/(1− ε)2,

for a sufficiently large n, which proves (17).

Next, we prove (16), which takes a bit more work. Let X be a hypergeometric random variable with
parameters n,w, k, so that for u ∈ {0, . . . , w} we have Pr[X = u] =

(
k
u

)(
n−k
w−u

)
/
(
n
w

)
.

Claim 14. Let t(u) := n− k − (w − u). Then

Pr [Ai ∧A∗] = Pr[A∗] ·
w∑
u=0

Pr
[
X = u

]
· Pr
[
Bin
(
t(u), 1

`−1

)
≥ w − u

]
. (19)

Let’s first prove the claim, and then prove (16).

Proof. Define the following sets:

• I ⊆ [n]: the set of coordinates where qi and q∗ match. Let k := |I|.

• I1 ⊆ [n]: the set of coordinates outside of I where a mine hits q∗.

• I2 ⊆ [n]: the set of coordinates outside of I where a mine hits qi.

Since the code H has minimum distance d > n(1 − ε), for some ε ∈ (1
` , 1), we know that k = |I| ≤ εn.

We also know that I1 and I2 are disjoint.
Both Ai and A∗ occur simultaneously if and only if (i) there are exactly u mines in I for some u ∈

{0, . . . , w}, (ii) there are exactly w−u mines in I1, and (iii) there are at least w−u mines in I2. Recall that
t(u) := n− k − (w − u). Then,

Pr [Ai ∧A∗] =

w∑
u=0

Pr
[
Bin
(
k, 1

`

)
= u

]︸ ︷︷ ︸
part (i)

·
(
n− k
w − u

)
·
(

1

`

)w−u
︸ ︷︷ ︸

part (ii)

·
t(u)∑

v=w−u

(
t(u)

v

)(
1

`

)v (
1− 2

`

)t(u)−v

︸ ︷︷ ︸
part (iii)

=
w∑
u=0

(
k

u

)(
n− k
w − u

)(
1

`

)w (
1− 1

`

)n−w
·

[∑t(u)
v=w−u

(
t(u)
v

) (
1
`

)v (
1− 2

`

)t(u)−v(
1− 1

`

)t(u)

]

=

w∑
u=0

(
k

u

)(
n− k
w − u

)(
1

`

)w (
1− 1

`

)n−w
·

 t(u)∑
v=w−u

(
t(u)

v

)(
1

`− 1

)v (
1− 1

`− 1

)t(u)−v


= Pr[A∗] ·
w∑
u=0

Pr
[
X = u

]
· Pr
[
Bin
(
t(u), 1

`−1

)
≥ w − u

]
and the claim follows.
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Next, let’s prove (16). The two random variables in (19), namelyX and Bin
(
t(u), 1

`−1

)
, are concentrated

around their means, wk/n and (n + u − k − w)/(` − 1), respectively. As we will see, for an appropriate
choice of w, these means are far enough apart so that, for all u ∈ {0, . . . , w} either Pr

[
X = u

]
is small or

Pr
[
Bin
(
t(u), 1

`−1

)
≥ w − u

]
is small. As a result, all the terms in the sum in (19) are small, making the

total sum small, as required.
Concretely, we show that every term in the sum (19) is at most 1/2Qw, from which (16) follows imme-

diately. The standard tail bound for a hypergeometric distribution shows that

Pr
[
X = u

]
≤ e−2α2w for all α > 0 and u ≥ wk/n+ αw.

Therefore, if u ≥ (wk/n) +
√
w ln(2Qw)/2 then Pr

[
X = u

]
< 1/2Qw. Hence, terms in the sum

(19) with u greater than this bound are smaller than 1/2Qw, as required. We know that w from (15)
satisfies w ≤ 2n/`, for a sufficiently large n. Therefore, for convenience, we use the slightly worse bound
u ≥ wk/n+

√
n ln(2Qn)/`.

Let c1 :=
√
n ln(2Qn)/`. Then we know that terms in (19) with u ≥ wk/n + c1 are less than 1/2Qw.

Now, consider terms with u < wk/n+ c1. The standard tail bound for binomials shows that

Pr
[
Bin(t(u), 1

`−1) ≥ w − u
]
≤ e−α2/3 for all α ∈

[
0,
√

t(u)
`−1

]
and w − u ≥ t(u)

`−1 + α
√

t(u)
`−1 .

By the assumption on n in Theorem 12 we know that t(u) ≥ `(3 ln(2Qw)). This implies that α :=√
3 ln(2Qw) ≤

√
t(u)/(`− 1). Therefore,

Pr
[
Bin(t(u), 1

`−1) ≥ w − u
]
≤ 1/2Qw whenever w − u ≥ t(u)

`−1 +
√

3 ln(2Qw) t(u)
`−1 ,

or more simply, whenever

w − u ≥ t(u)

`− 1
+ c2 where c2 :=

√
3n ln(2Qn)/`.

Plugging in the value of t(u) = n− k − (w − u), we see that

Pr
[
Bin(t(u), 1

`−1) ≥ w − u
]
≤ 1/2Qw whenever u ≤ w − n−k

` − c2.

To cover the set of u where u < wk/n+ c1, we want

wk/n+ c1 ≤ w − (n− k)/`− c2

which implies

w ≥ (n/`) +
c1 + c2

1− k/n
.

Since k/n < ε, this bound is satisfied whenever

w ≥ n

`
+
c1 + c2

1− ε
or, after plugging in the values for c1 and c2, whenever

w ≥ n

`
+

3

1− ε

√
n

`
· ln(2Qn).

For such w we know that all the terms in (19) are less than 1/2Qw from which (16) follows immediately.
This completes the proof (16) and of the lemma.
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