
Evaluating 2-DNF Formulas on Ciphertexts

Dan Boneh
dabo@cs.stanford.edu

Eu-Jin Goh
eujin@cs.stanford.edu

Kobbi Nissim
kobbi@cs.bgu.ac.il

April 2, 2006

Abstract

Let ψ be a 2-DNF formula on boolean variables x1, . . . , xn ∈ {0, 1}. We present a homomor-
phic public key encryption scheme that allows the public evaluation of ψ given an encryption of
the variables x1, . . . , xn. In other words, given the encryption of the bits x1, . . . , xn, anyone can
create the encryption of ψ(x1, . . . , xn). More generally, we can evaluate quadratic multi-variate
polynomials on ciphertexts provided the resulting value falls within a small set. We present a
number of applications of the system:

1. In a database of size n, the total communication in the basic step of the Kushilevitz-
Ostrovsky PIR protocol is reduced from

√
n to 3

√
n.

2. An efficient election system based on homomorphic encryption where voters do not need
to include non-interactive zero knowledge proofs that their ballots are valid. The election
system is proved secure without random oracles but still efficient.

3. A protocol for universally verifiable computation.

1 Introduction

Secure computation allows several parties to compute a function of their joint inputs without reveal-
ing more than what is implied by their own inputs and the function outcome. Any polynomial time
functionality can be computed by a secure protocol, requiring polynomial resources [36, 19]. These
seminal results are obtained by a generic transformation that converts an insecure computation of
a functionality to a secure version (often referred to as the ‘garbled circuit’ transformation).

Secure protocols generated from the garbled circuit transformation typically have poor efficiency.
In particular, the communication complexity of the resulting protocols is proportional to the size
of a circuit evaluating the functionality, and hence precludes sub-linear communication protocols.
The result is that unless circuits are very small, the garbled circuit transformation is seldom used
in protocols.

To avoid using the garbled circuit transformation, researchers have sought for tools that give
more efficient protocols for specific functionalities. Homomorphic encryption enables “comput-
ing with encrypted data” and is hence a useful tool for secure protocols. Current homomor-
phic public key systems [20, 13, 28] have limited homomorphic properties: given two ciphertexts
Encrypt(PK, x) and Encrypt(PK, y), anyone can compute either the sum Encrypt(PK, x+y), or the
product Encrypt(PK, xy), but not both.1 The problem of constructing ‘doubly homomorphic’ en-

1An exception is the scheme by Sander et al. [33] that is doubly homomorphic over a semigroup. On the other
hand, the homomorphism comes with the cost of a constant factor expansion per semigroup operation. See also its
comparison with our results in Section 1.1 below.

1

cryption schemes where one may both ‘add and multiply’ is a long standing open question already
mentioned by Rivest et al. [32].

Homomorphic encryption schemes have many applications, such as protocols for electronic vot-
ing schemes [9, 2, 10, 11], computational private information retrieval (PIR) schemes [23], and
private matching [15]. Systems with more general homomorphisms (such as both addition and
multiplication) will benefit all these problems.

1.1 Our results

A homomorphic encryption scheme. We present a homomorphic public key encryption scheme
based on finite groups of composite order that support a bilinear map. Using a construction along
the lines of Paillier [28], we obtain a system with an additive homomorphism. In addition, the
bilinear map allows for one multiplication on encrypted values. As a result, our system supports
arbitrary additions and one multiplication (followed by arbitrary additions) on encrypted data. This
property in turn allows the evaluation of multi-variate polynomials of total degree 2 on encrypted
values. Our applications follow from this new capability.

The security of our scheme is based on a new hardness assumption that we put forward – the
subgroup decision problem. Namely, given an element of a group of composite order n = q1q2, it is
infeasible to decide whether it belongs to a subgroup of order q1.

Applications. As a direct application of the new homomorphic encryption scheme, we construct
a protocol for obliviously evaluating 2-DNFs. Our protocol gives a quadratic improvement in
communication complexity over garbled circuits. We show how to get a private information retrieval
scheme (PIR) as a variant of the 2-DNF protocol. Our PIR scheme is based on that of Kushilevitz-
Ostrovsky [23] and improves the total communication in the basic step of their PIR protocol from√
n to 3

√
n for a database of size n.

As noted above, our encryption scheme lets us evaluate quadratic multi-variate polynomials on
ciphertexts provided the resulting value falls within a small set; in particular, we can compute dot
products on ciphertexts. We use this property to create a gadget that enables the verification that
an encrypted value is one of two ‘good’ values. We use this gadget to construct an efficient election
protocol where voters do not need to provide proofs of vote validity. Finally, we generalize the
election protocol to a protocol of universally verifiable computation.

Comparison to other public-key homomorphic systems. Most homomorphic systems pro-
vide only one homomorphism, either addition, multiplication, or xor. One exception is the system
of Sander et al. [33] that provides the ability to evaluate NC1 circuits on encrypted values. Clearly
their construction also applies to 2-DNF formula. Unfortunately, the ciphertext length in their
system grows exponentially in the depth of the 2-DNF formula when written using constant fan-in
gates. In our system, the ciphertext size is independent of the formula size or depth; this property
is essential for improving the communication complexity basic step of the Kushilevitz-Ostrovsky
PIR protocol.

Organization. The rest of this paper is organized as follows. In Section 2 we review the bilin-
ear groups underlying our construction and put forward our new hardness assumption. Section 3
details the construction of a semantically secure public key encryption scheme, its security and
homomorphic properties. The basic application to 2-DNF evaluation is presented in Section 4, fol-
lowed by the election and universally verifiable computation protocols in sections 5 and 6. Section 7

2

summarizes our results and poses some open problems.

2 Preliminaries

We briefly review the groups underlying our encryption scheme.

2.1 Bilinear groups

Our construction makes use of certain finite groups of composite order that support a bilinear map.
We use the following notation:

1. G and G1 are two (multiplicative) cyclic groups of finite order n.
2. g is a generator of G.
3. e is a bilinear map e : G × G → G1. In other words, for all u, v ∈ G and a, b ∈ Z, we have
e(ua, vb) = e(u, v)ab. We also require that e(g, g) is a generator of G1.

We say that G is a bilinear group if there exists a group G1 and a bilinear map as above. In
the next section we also add the requirement that the group action in G,G1, and the bilinear map
can be computed in polynomial time.

Constructing bilinear groups of a given order n. Let n > 3 be a given square-free integer
that is not divisible by 3. We construct a bilinear group G of order n as follows:

1. Find the smallest positive integer ` ∈ Z such that p = `n− 1 is prime and p = 2 mod 3.
2. Consider the group of points on the (super-singular) elliptic curve y2 = x3 + 1 defined over

Fp. Since p = 2 mod 3 the curve has p + 1 = `n points in Fp. Therefore the group of points
on the curve has a subgroup of order n which we denote by G.

3. Let G1 be the subgroup of F∗p2 of order n. The modified Weil pairing on the curve [25, 22, 4, 26]
gives a bilinear map e : G×G→ G1 with the required properties.

2.2 The subgroup decision problem

We define an algorithm G that given a security parameter τ ∈ Z+ outputs a tuple (q1, q2,G,G1, e)
where G,G1 are groups of order n = q1q2 and e : G × G → G1 is a bilinear map. On input τ ,
algorithm G works as follows:

1. Generate two random τ -bit primes q1, q2 and set n = q1q2 ∈ Z.
2. Generate a bilinear group G of order n as described at the end of Section 2.1. Let g be a

generator of G and e : G×G→ G1 be the bilinear map.
3. Output (q1, q2,G,G1, e).

We note that the group action in G,G1 as well as the bilinear map can be computed in polynomial
time in τ .

Let τ ∈ Z+ and let (q1, q2,G,G1, e) be a tuple produced by G(τ) where n = q1q2. Consider the
following problem: given (n,G,G1, e) and an element x ∈ G, output ‘1’ if the order of x is q1 and
output ‘0’ otherwise; That is, without knowing the factorization of the group order n, decide if an
element x is in a subgroup of G. We refer to this problem as the subgroup decision problem. For an

3

algorithm A, the advantage of A in solving the subgroup decision problem SD-AdvA(τ) is defined
as:

SD-AdvA(τ) =
∣∣∣∣ Pr

[
A(n,G,G1, e, x) = 1 :

(q1, q2,G,G1, e)← G(τ),
n = q1q2, x← G

]
− Pr

[
A(n,G,G1, e, x

q2) = 1 :
(q1, q2,G,G1, e)← G(τ),

n = q1q2, x← G

] ∣∣∣∣.
Definition 2.1. We say that G satisfies the subgroup decision assumption if for any polynomial
time algorithm A we have that SD-AdvA(τ) is a negligible function in τ .

Informally, the assumption states that the uniform distribution on G is indistinguishable from
the uniform distribution on a subgroup of G. Recall that the factorization of the order of G is
hidden so that the order of subgroups of G remains unknown to a polynomial time adversary.

3 A homomorphic public-key system

We can now describe our public key system. The system resembles the Paillier [28] and the
Okamoto-Uchiyama [27] encryption schemes. We describe the three algorithms making up the
system:

KeyGen(τ): Given a security parameter τ ∈ Z+, run G(τ) to obtain a tuple (q1, q2,G,G1, e). Let
n = q1q2. Pick two random generators g, u R← G and set h = uq2 . Then h is a random
generator of the subgroup of G of order q1. The public key is PK = (n,G,G1, e, g, h). The
private key is SK = q1.

Encrypt(PK,M): We assume the message space consists of integers in the set {0, 1, . . . , T} with
T < q2. We encrypt bits in our main application, in which case T = 1. To encrypt a message
m using public key PK, pick a random r

R← {0, 1, . . . , n− 1} and compute

C = gmhr ∈ G.

Output C as the ciphertext.

Decrypt(SK, C): To decrypt a ciphertext C using the private key SK = q1, observe that

Cq1 = (gmhr)q1 = (gq1)m

Let ĝ = gq1 . To recover m, it suffices to compute the discrete log of Cq1 base ĝ. Since
0 ≤ m ≤ T this takes expected time Õ(

√
T) using Pollard’s lambda method [24, p.128].

Note that decryption in this system takes polynomial time in the size of the message space T .
Therefore, the system as described above can only be used to encrypt short messages. Clearly one
can use the system to encrypt longer messages, such as session keys, using any mode of operation
that converts a cipher on a short block into a cipher on an arbitrary long block. We note that
one can speed-up decryption by precomputing a (polynomial-size) table of powers of ĝ so that
decryption can occur in constant time.

4

3.1 Homomorphic properties

The system is clearly additively homomorphic. Let (n,G,G1, e, g, h) be a public key. Given encryp-
tions C1, C2 ∈ G1 of messages m1,m2 ∈ {0, 1, . . . , T} respectively, anyone can create a uniformly
distributed encryption of m1 +m2 mod n by computing the product C = C1C2h

r for a random r
in {0, 1, . . . , n− 1}.

More importantly, anyone can multiply two encrypted messages once using the bilinear map.
Set g1 = e(g, g) and h1 = e(g, h). Then g1 is of order n and h1 is of order q1. Also, write
h = gαq2 for some (unknown) α ∈ Z. Suppose we are given two ciphertexts C1 = gm1hr1 ∈ G and
C2 = gm2hr2 ∈ G. To build an encryption of the product m1 ·m2 mod n given only C1 and C2, do:
1) pick a random r ∈ Zn, and 2) set C = e(C1, C2)hr

1 ∈ G1. Then

C = e(C1, C2)hr
1 = e(gm1hr1 , gm2hr2)hr

1 = gm1m2
1 hm1r2+r2m1+αq2r1r2+r

1

= gm1m2
1 hr̃

1 ∈ G1

where r̃ = m1r2 + r2m1 + αq2r1r2 + r is distributed uniformly in Zn as required. Thus, C is a
uniformly distributed encryption of m1m2 mod n, but in the group G1 rather than G (this is why
we allow for just one multiplication). We note that the system is still additively homomorphic in
G1.

Note. In some applications we avoid blinding with hr, making the homomorphic computation
deterministic.

Quadratic polynomials. Let F (x1, . . . , xu) be a u-variate polynomial of total degree 2. The
discussion above shows that given the encryptions C1, . . . , Cu of values x1, . . . , xu, anyone can
compute the encryption of C = F (x1, . . . , xu). On the other hand, to decrypt C, the decryptor
must already know that the result F (x1, . . . , xu) lies in a certain polynomial size interval.

3.2 Security

We now turn to proving semantic security of the system under the subgroup decision assumption.
The proof is standard and we briefly sketch it here.

Theorem 3.1. The public key system of Section 3 is semantically secure assuming G satisfies the
subgroup decision assumption.

Proof. Suppose a polynomial time algorithm B breaks the semantic security of the system with
advantage ε(τ). We construct an algorithm A that breaks the subgroup decision assumption with
the same advantage. Given (n,G,G1, e, x) as input, algorithm A works as follows:

1. A picks a random generator g ∈ G and gives algorithm B the public key (n,G,G1, e, g, x).
2. Algorithm B outputs two messages m0,m1 ∈ {0, 1, . . . , T} to which A responds with the

ciphertext C = gmbxr ∈ G for a random b
R← {0, 1} and random r

R← {0, 1, . . . , n− 1}.
3. Algorithm B outputs its guess b′ ∈ {0, 1} for b. If b = b′ algorithm A outputs 1 (meaning x

is uniform in a subgroup of G); otherwise A outputs 0 (meaning x is uniform in G).

It is easy to see that when x is uniform in G, the challenge ciphertext C is uniformly distributed in
G and is independent of the bit b. Hence, in this case Pr[b = b′] = 1/2. On the other hand, when x
is uniform in the q1-subgroup of G, then the public key and challenge C given to B are as in a real

5

semantic security game. In this case, by the definition of B, we know that Pr[b = b′] > 1/2 + ε(τ).
It now follows that A satisfies SD-AdvA(τ) > ε(τ) and hence A breaks the subgroup decision
assumption with advantage ε(τ) as required.

We note that if G satisfies the subgroup decision assumption then semantic security also holds
for ciphertexts in G1. These ciphertexts are the output of the multiplicative homomorphism. If
semantic security did not hold in G1, then it would also not hold in G because one can always
translate a ciphertext in G to a ciphertext in G1 by “multiplying” by the encryption of 1. Hence,
by Theorem 3.1, semantic security must also hold for ciphertexts in G1.

4 Two party efficient SFE for 2-DNF

In this section we show how to use our homomorphic encryption scheme to construct efficient
secure function evaluation protocols. Our basic result is a direct application of the additive and
multiplicative homomorphisms of our public key encryption scheme. We consider a two-party
scenario where Alice holds a Boolean formula φ(x1, . . . , xn) and Bob holds an assignment a =
a1, . . . , an. As the outcome, Bob learns φ(a). We restrict our attention to 2-DNF formulas:

Definition 4.1. A 2-DNF formula over the variables x1, . . . , xn is of the form ∨k
i=1 (`i,1 ∧ `i,2)

where `i,1, `i,2 ∈ {x1, . . . , xn, x̄1, . . . , x̄n}.

We first give a protocol for the model of semi-honest parties, and then modify it to cope with
a malicious Bob, capitalizing on an ‘input verification’ gadget.

In the semi-honest model, both parties are assumed to perform computations and send messages
according to their prescribed actions in the protocol. They may also record whatever they see
during the protocol (i.e. their own input and randomness, and the messages they receive). On the
other hand, a malicious party may deviate arbitrarily from the protocol. We sketch the security
definitions for the simple case where only one party (Bob) is allowed to learn the output. We refer
readers to Goldreich’s book [18] for the complete definitions.

Security in the semi-honest model. The definition is straightforward since only one party
(Bob) is allowed to learn the output:

• Bob’s security – indistinguishability: We require that Alice cannot distinguish between the
different possible inputs Bob may hold.

• Alice’s security – comparison to an ideal model: Alice’s security is formalized by considering
an ideal trusted party that gets the inputs φ() and a, and gives φ(a) to Bob. We require in
the real implementation that Bob does not get any information beyond whether a satisfies
φ().

Security against malicious parties. The security definition for this model captures both the
privacy and correctness of the protocol and is limited to the case where only one of the parties
is corrupt. Informally, the security definition is based on a comparison with an ideal trusted
party model (here the corrupt party may give an arbitrary input to the trusted functionality).
The security requirement is that for any strategy a corrupt party may play in a real execution of
the protocol, there is an efficient strategy it could play in the ideal model with computationally
indistinguishable outcomes.

6

4.1 The basic protocol

Protocol 2-DNF in Figure 1 uses our homomorphic encryption scheme for efficiently evaluating 2-
DNFs with semi-honest parties. We get a three message protocol with communication complexity
O(n·τ) — a quadratic improvement in communication with respect to Yao’s garbled-circuit protocol
[36] that yields communication proportional to the potential formula length, Θ(n2).

Input: Alice holds a 2-DNF formula φ(x1, . . . , xn) = ∨k
i=1 (`i,1 ∧ `i,2) and Bob holds an assignment

a = a1, . . . , an ∈ {0, 1}n. Both parties’ inputs include a security parameter τ .

1. Bob performs the following:

(a) He invokes KeyGen(τ) to compute keys SK,PK, and sends PK to Alice.

(b) He computes and sends Encrypt(PK, aj) for j = 1, . . . , n.

2. Alice performs the following:

(a) She computes an arithmetization Φ of φ by replacing “∨” by “+”, “∧” by “·” and “x̄j”
by “(1− xj)”. Note that Φ is a polynomial in x1, . . . , xn with total degree 2.

(b) Alice computes the encryption of r ·Φ(a) for a randomly chosen r using the encryption
scheme’s homomorphic properties. The result is sent to Bob.

3. If Bob receives an encryption of 0, he outputs 0; otherwise, he outputs 1.

Figure 1: Protocol 2-DNF.

Claim 4.1. Protocol 2-DNF is secure against semi-honest Alice and Bob.

Proof Sketch. Alice’s security follows as the distribution on Bob’s output only depends on whether
φ() is satisfied by a or not. Bob’s security follows directly from the semantic security of the
encryption scheme.

Note. Protocol 2-DNF (as well Malicious-Bob-2-DNF below) is secure even against a computa-
tionally unlimited Bob. Interestingly, the garbled circuit protocol (where Alice garbles φ) has the
opposite property where it can be secured against an unbounded Alice but not an unbounded Bob.
(See also Cachin et al. [6] for a discussion of computing on encrypted data versus garbled circuits).

4.2 Example application – private information retrieval

A private information retrieval (PIR) scheme allows a user to retrieve information from an n-bit
database without revealing any information on which bit he is interested in [8, 23]. SPIR (symmetric
PIR) is a PIR scheme that also protects the database privacy – a (semi-honest) user will only learn
one of the database bits [17]. In this section, we show how an immediate application of protocol
2-DNF results in a PIR/SPIR scheme. Our constructions are based on that of Kushilevitz and
Ostrovsky [23].

A SPIR scheme. We get a SPIR scheme with communication O(τ ·
√
n) as an immediate applica-

tion of protocol 2-DNF. Without loss of generality, we assume that the database size n is a perfect
square and treat the database as a table D of dimensions

√
n×
√
n. Using this notation, suppose

7

Bob wants to retrieve entry (I, J) of D. Alice (the database holder) holds the 2-DNF formula φ
over x1, . . . , x√n, y1, . . . , y√n:

φ(x1, . . . , x√n, y1, . . . , y√n) = ∨Di,j=1 (xi ∧ yj) ,

and Bob’s assignment a sets xI and yJ to 1 and all other variables to 0. Bob and Alice carry out the
2-DNF protocol with this assignment and 2-DNF formula. It is clear that φ(a) = DI,J as required.

An alternative construction. Using the 2-DNF protocol for SPIR restricts database entries to
bits. We provide an alternative construction that allows each database entry to contain up to
O(log n) bits. We consider the data as a table of dimensions

√
n×
√
n as above. To retrieve entry

(I, J) of D, Bob creates two polynomials p1(x) and p2(x) of degree
√
n− 1 such that p1(i) is zero

on 0 ≤ i <
√
n except for p1(I) = 1, and similarly p2(j) is zero on 0 ≤ j <

√
n except for p2(J) = 1.

Bob sends to Alice the encryption of the coefficients of p1(x) and p2(x). Alice uses the encryption
scheme’s homomorphic properties to compute the encryption of

DI,J =
∑

0≤i,j<
√

n

p1(i)p2(j)Di,j .

We allow Di,j to be b-bit values where b = O(log n). Bob recovers Di,j in time O(2b/2) by computing
a discrete logarithm e.g. using the baby-step giant-step algorithm.

A PIR scheme. Standard communication balancing of our SPIR scheme results in a PIR scheme
where each party sends O(τ · 3

√
n) bits. In particular, view the database as comprising of n1/3

chunks, each chunk containing n2/3 entries, where Bob is interested in retrieving entry (I, J,K) of
D. Bob sends Alice the coefficients of two polynomials p1(x) and p2(x) of degree 3

√
n− 1 such that

p1(i) = p2(i) = 0 on 0 ≤ i < 3
√
n except for p1(I) = p2(J) = 1. Alice uses the encryption scheme’s

homomorphic properties to compute encryptions of

DI,J,k =
∑

0≤i,j< 3√n

p1(i)p2(j)Di,j,k

for 0 ≤ k < 3
√
n. Alice sends the 3

√
n resulting ciphertexts to Bob who decrypts the Kth entry.

Recursively applying this balancing (as in Kushilevitz-Ostrovsky [23]) results in a protocol with
communication complexity O(τnε) for any ε > 0. We note that the recursion depth to reach ε is
lower in our case compared to that of Kushilevitz-Ostrovsky [23] by a constant factor of log2 3.

4.3 Security of the 2-DNF protocol against a malicious Bob.

A malicious Bob may try to learn about Alice’s 2-DNF formula by sending Alice an encryption of
a non-boolean assignment a1, . . . , an. He may also let Alice evaluate φ for an encrypted assignment
that Bob cannot decrypt himself. Both types of behaviors do not correspond to a valid run in the
ideal model.

To prevent the first attack, we present a gadget that allows Alice to ensure a ciphertext she
receives contains one of two ‘valid’ messages v0, v1. This gadget is applicable outside of the scope
of 2-DNF as we demonstrate in sections 5 and 6. The second attack is prevented using standard
methods — Alice presents Bob with a challenge that cannot be resolved unless he can decrypt.

8

This decryption ability is then used when Bob is simulated to create valid inputs for the trusted
party.2

A gadget for checking c ∈ {v0,v1}. This gadget exploits our ability to evaluate a polynomial
of total degree 2 on the encryption of c. We choose a polynomial that has v0 and v1 as zeros as
follows: given an encryption of a value c, Alice uses the homomorphic properties of the encryption
scheme to compute r · (c− v0) · (c− v1) for a randomly chosen r. For c ∈ {v0, v1}, this computation
results in the encryption of 0. For other values of c, the result is random. In the special case of
c ∈ {0, 1}, Alice computes r · c · (c− 1).

The protocol. The result is protocol Malicious-Bob-2-DNF described in Figure 2.

Input: as in protocol 2-DNF in Figure 1.

1. Bob invokes KeyGen(τ) to compute keys SK,PK and sends PK = (n,G,G1, e, g, h) to Alice.

2. Alice and Bob engage in a ‘public key validation’ protocol:

(a) Bob proves to Alice in zero knowledge that n is a product of two primes [3, 35, 16, 7].

(b) Alice checks that gn = hn = 1 ∈ G and g, h 6= 1. She rejects PK if not.

3. Next, Alice and Bob engage in a ‘proof of decryption ability’ protocol:

(a) Alice chooses τ random bits m1, . . . ,mτ and sends to Bob all the encryptions
Encrypt(PK,m1), . . . ,Encrypt(PK,mτ).

(b) Bob replies with a decryption m′
1, . . . ,m

′
τ of the received encryptions. Alice aborts if

any of Bob’s decryptions is incorrect.

4. Bob computes and sends Encrypt(PK, aj) for j = 1, . . . , n.

5. Alice performs the following:

(a) She computes an arithmetization Φ of φ as in protocol 2-DNF.

(b) Using the homomorphic properties of the encryption scheme, she computes the encryp-
tion of r · Φ(a) +

∑n
i=1 ri · ai · (ai − 1) for randomly chosen r, ri. She sends the result

to Bob.

6. If Bob receives an encryption of 0, he outputs 0; otherwise, he outputs 1.

Figure 2: Protocol Malicious-Bob-2-DNF.

Claim 4.2. Protocol 2-DNF is secure against semi-honest Alice and malicious Bob.

Proof Sketch. Security against semi-honest Alice follows as in protocol 2-DNF. Security against
malicious Bob follows by simulation. Note that the ‘proof of decryption ability’ sub-protocol can
be used to decrypt Bob’s message in Step 4 of the protocol, hence providing the inputs to the
trusted party.

2The ‘standard’ use of this technique is to give Bob a random message for a challenge. Bob’s simulator would
then use the self reducibility properties of the encryption scheme to (i) map an encrypted message Encrypt(PK, m)
to an encryption of a random message, say Encrypt(PK, m + r), (ii) use Bob’s procedure to retrieve m′ = m + r, and
(iii) retrieve m = m′ − r. As the message space is limited in our scheme due to decryption limitations, we need a
slightly modified scheme.

9

5 An efficient election protocol without random oracles

In this section, we describe an electronic election protocol where voters submit boolean (“yes/no”)
votes. Such protocols were first considered by Benaloh and Fisher [9, 2] and more recently by
Cramer et al. [10, 11].

A key component of electronic election schemes is a proof, attached to each vote, of its correct-
ness (or validity); for example, a proof that the vote really is an encryption of 0 or 1. Otherwise,
voters may corrupt the tally by sending an encryption of an arbitrary value. Such proofs of validity
are typically zero-knowledge (or witness indistinguishable) proofs. These interactive zero knowledge
proofs of bit encryption are efficiently constructed (using zero knowledge identification protocols)
for standard homomorphic encryption schemes such as ElGamal [13, 21], Pedersen [29, 10], or
Paillier [28, 12]. The proof of validity is then usually made non-interactive using the Fiat-Shamir
heuristic of replacing communication with an access to a random oracle [14]. In the actual in-
stantiation, the random oracle is replaced by some ‘cryptographic function’ such a hash function.
Security is shown hence to hold in an ideal model with access to the random oracle, and not in the
standard model [30].

Our election protocol has the interesting feature that voters do not need to include proofs
of validity or any other information except for their encrypted votes when casting their ballots.
Instead, the election authorities can jointly verify that a vote is valid based solely on its encryption.
The technique is based on the gadget we constructed in Section 4.3. This gadget allows us to avoid
using the Fiat-Shamir heuristic and yet makes our scheme efficient. As a result, our election scheme
is very efficient from the voter’s point of view as it requires only a single encryption operation (two
exponentiations) to create a ballot.3

5.1 The election scheme

Our scheme belongs to the class of election protocols proposed by Cramer et al. [10, 11] where votes
are encrypted using a homomorphic encryption scheme.

For robustness, we use a threshold version of the encryption scheme in Section 3. For simplicity
(following Shoup [34]), we assume that a trusted dealer first generates the public/private keys,
shares the private keys between the election authorities, and then deletes the private key (a generic
secure computation may be used to replace the trusted dealer, as this is an offline phase). With
this assumption, a threshold version of our encryption scheme can be constructed using standard
techniques from discrete log threshold cryptosystems [29].

Correctness of threshold decryption. One caveat is that threshold decryption requires a zero
knowledge of correct partial decryption from each election authority that contributes a share of
its private key. Since the number of election authorities is typically a small constant, the proof of
correct partial decryption can be performed interactively with relative efficiency between election
authorities; transcripts of such interactions are made public for verification (note that transcripts
do not leak information on votes). Another possible technique is to use a trusted source of random
bits (such as a beacon [31]) among the election authorities, or for the authorities to collectively
generate a public source of random bits. In a typical run of our protocol, the election authorities
run only a limited number of these proofs (see below), hence the usage of either technique results

3Curiously, this voting scheme is probably the most efficient for the voter, taking into account the efficiency of
operating in an elliptic curve group.

10

in a reasonably efficient protocol, and allows us to avoid using the Fiat-Shamir heuristic.
We note that these techniques can also be used in existing election protocols for verifying a

voter’s ballot, which avoids the Fiat-Shamir heuristic; but the resulting protocol becomes unwieldy
and inefficient especially when the number of voters is large (and we expect that there is at least
several orders of magnitude more voters than election authorities).

Vote verification. Here we use the verification gadget of Section 4.3 in combination with threshold
decryption. We let all authorities compute an encryption of v · (v− 1) and then jointly decrypt the
result. To save on computation, we check a batch of votes at once (i.e.

∑
ri · vi · (vi− 1) where the

ri’s are chosen by the verifiers) and then run a binary search to identify the invalid votes [1].

The protocol. We assume the existence of an online bulletin board where the parties participating
in the protocol post messages. Our election protocol works as follows:

Setup: As discussed above, a trusted dealer first generates the public parameters and the private
key for the encryption scheme of Section 3, and shares the private key between the k election
authorities so that at least t out the k election authorities are needed to decrypt. Finally,
the trusted dealer deletes the private key and has no further role in the protocol. The public
parameters are posted on a public bulletin board.

Denote one of the k election authorities as a leader (the election authority that organizes
a quorum for decryption requests). After the public parameters are posted to the public
board, the leader publishes an encryption of the bit 1 and the random bits used to create
that encryption. Denote this encryption of the bit 1 as E1. With the random bits, the other
k − 1 election authorities can check that E1 is indeed an encryption of 1.

Vote casting: Voters cast their ballots by encrypting a bit indicating their vote, and then pub-
lishing the encrypted bit to the public bulletin board.

Vote verification: When a ballot v has been posted, all k election authorities compute a cipher-
text c corresponding to v · (v − 1) where E1 is used as the encryption of “1” (hence, c is
‘deterministic’ given the encryption of v). The leader forms a quorum of t− 1 other election
authorities to decrypt c (the other election authorities agree to participate only if c agrees
with the ciphertext they computed). If c decrypts to something other than 0, then the vote
v is invalid and is discarded.

For better efficiency in optimistic scenarios, any number of votes v1, . . . , vk can be verified in
bulk by first computing r1 · v1 · (v1 − 1) + . . .+ rk · vk · (vk − 1) where the ri’s are collectively
chosen by the election authorities, and then checking that the decryption of the result is 0.
All invalid votes are efficiently located by binary search. We note that in general it suffices
for ri to be relatively short, as the chance of

∑
ri · vi · (vi − 1) being zero when some of the

summed votes are invalid is exponentially small in |r|.

Vote tabulation and tally computation: After all the votes are posted and verified, all k elec-
tion authorities each add all the valid encrypted votes on the public board together (using the
additive homomorphic property of the encryption scheme) to form the tallied vote V . The
leader obtains a quorum of election authorities to decrypt V . Each election authority decides
whether to participate in the decryption request by comparing V with her own tally.

We note that our election protocol also possesses the necessary properties of voter privacy
(from semantic security of the encryption scheme), universal verifiability (from the homomorphic

11

property of the encryption scheme and also because all votes and proof transcripts are posted to
the bulletin board), and robustness (from the threshold encryption scheme). The reader is referred
to [9, 2, 10, 11] for discussions of these properties.

6 Universally Verifiable Computation

We now describe a related application for the gadget of Section 4.3. Consider an authority per-
forming a computation, defined by a (publicly known) circuit C over the joint private inputs
a = (a1, . . . , an) of the n users. The authority publishes the outcome C(a) in a way that 1) lets
everyone check that the computation was performed correctly, but 2) does not reveal any other
information on the private inputs. Besides voting, other applications of universally verifiable com-
putation include auctions.

To simplify our presentation, we only consider the case where ai ∈ {0, 1}; general inputs are
treated similarly using any binary representation. We describe a single authority protocol that is
easily transformed into a threshold multi-authority protocol using standard methods.

6.1 A protocol for verifying C(a)

Setup. The authority uses KeyGen(τ) to generate a public-key/private-key pair PK,SK. We
assume the existence of a bulletin board where each user i posts an encryption ci = Encrypt(PK, ai)
of her input. We also assume the existence of a random function H accessible by all parties, which
implies that we prove security only in the random oracle model. As in the previous section, we can
do without a random oracle in the multi-authority case (details omitted).

We first give a high level overview of the protocol. After all users post their encrypted inputs
onto the bulletin board, the authority decrypts each user’s input and evaluates the circuit on these
inputs. In the process of evaluating the circuit, the authority computes and publishes ciphertexts
for all the wire values in C. In addition, the authority also publishes an encryption of the bit 1 and
the random bits used to create that encryption. Denote this encryption of the bit 1 as E1. Finally,
the authority publishes an encrypted value V and a witness-indistinguishable proof that V is an
encryption of 0; for now, we defer the exact definition of V .

To convince a verifier that the circuit was computed correctly, the authority needs to prove that
1) all inputs are binary, and 2) all gate outputs are correct. We show how a verifier checks that
both conditions hold using validators v that can be publicly constructed from the public encrypted
wire values. We first show how to construct validators for the user inputs and gate outputs before
showing how to use these validators to verify the computation.

Building Validators for User Inputs. In the process of evaluating the circuit, the authority
publishes the values on every wire of the circuit. We enumerate the wires and denote the value
on wire i as ai. We also denote the encryption of ai as ci. Recall that each user posts ci =
Encrypt(PK, ai) of her input ai on the bulletin board (the ai’s are never revealed in the clear). For
each input wire i with value ai, let ri = H(i, ci); note that ri can be computed by any of the parties.
The validator for ai is vi = ri · ai · (1− ai), and the computation occurs modulo q2 where q2 is one
of the factors of the modulus n (recall that SK = q1). It is easy to see that the encryption of vi

can be computed by anyone given H, ci, and E1.
We note that even given q2 and allowing a polynomial (in the security parameter τ) number of

applications of H, the probability that an adversary successfully generates an invalid ci with vi = 0

12

is bounded by O(poly(τ)/q2), which is negligible in τ .

Building Validators for Gate Outputs. Let g ∈ C be a binary gate for which both input wires
x, y are validated. In addition, let G(x, y) be the bivariate polynomial of total degree 2 that realizes
the gate g. For example, an AND gate has Gand(x, y) = xy, an OR gate has Gor(x, y) = x+y−xy,
and a NOT gate has Gnot(x) = 1− x. The validator for the output wire (enumerated z) of gate
g is vz = rz · (az −G(x, y)) where rz = H(z, cz) and cz is the encryption of the value az on wire z.
Again, it is easy to see that any party can compute the encryption of vz given H, cx, cy, cz, and E1.

Verifying the Circuit Using Validators. Using the homomorphic properties of the encryption
scheme, anyone can compute (by herself) an encryption of the sum of validators for the circuit.
Note that if all posted encryptions are correct, then the sum of validators is zero. Otherwise, it
is zero with only a negligible probability. The authority supplies its own version of the encrypted
validator sum called V , together with a zero-knowledge proof that the resulting sum is zero; in
this case, the encryption is of the form hr so one can use protocols designed for the Pedersen
encryption [29]. To verify the circuit computation, a verifier computes her own validator sum V ′,
checks that V ′ = V , and then verifies the witness-indistinguishable proof that V is an encryption
of 0.

7 Summary and open problems

We presented a homomorphic encryption scheme that supports addition and one multiplication.
We require that the values being encrypted lie in a small range as is the case when encrypting bits.
These homomorphic properties enable us to evaluate multi-variate polynomials of total degree 2
given the encrypted inputs. We described a number of applications of the system. Most notably,
using our encryption scheme, we (i) reduced the amount of communication in the basic step of the
Kushilevitz-Ostrovsky PIR, (ii) improved the efficiency of election systems based on homomorphic
encryption, and (iii) implemented universally verifiable secure computation. We hope this scheme
will have many other applications.

We end with a couple of open problems related to our encryption scheme:

n-linear maps. The multiplicative homomorphism was possible due to properties of bilinear maps.
We note that an n-linear map would enable us to evaluate polynomials of total degree n rather than
just quadratic polynomials. This provides yet another motivation for constructing cryptographic
n-linear maps [5].

Message space. Our scheme is limited in the size of message space due to the need to compute
discrete logarithms during decryption. An encryption scheme that allows for a large message space
would enable more applications, such as an efficient shared RSA key generation.

Acknowledgements

We thank David Wagner for pointing out a mistake in the original 2-DNF protocol for malicious
users.

13

References

[1] M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular exponentiation and
digital signatures. In Proceedings of Eurocrypt ’98, volume 1403, 1998.

[2] J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, 1987.

[3] M. Blum. Coin flipping by telephone. In Proceedings of Crypto ’81, 1981.

[4] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM Journal
of Computing, 32(3):586–615, 2003. Extended abstract in Proceedings of Crypto 2001.

[5] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. In Top-
ics in Algebraic and Noncommutative Geometry, number 324 in Contemporary Mathematics.
American Mathematical Society, 2003.

[6] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation and secure
autonomous mobile agents. In 27th International Colloquium on Automata, Languages and
Programming (ICALP ’2000), volume 1853 of Lecture Notes in Computer Science, pages 512–
523. Springer-Verlag, Berlin Germany, July 2000.

[7] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two
safe primes. In Eurocrypt ’99, pages 107–122, 1999.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In 36th
Annual Symposium on Foundations of Computer Science, pages 41–50, Milwaukee, Wisconsin,
23–25 Oct. 1995. IEEE.

[9] J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election scheme.
In Proceedings of 26th IEEE Symposium on Foundations of Computer Science, pages 372–382,
1985.

[10] R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-ballot elec-
tions with linear work. In U. Maurer, editor, Proceedings of Eurocrypt 1996, volume 1070 of
LNCS, pages 72–83. Springer, 1996.

[11] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority
election scheme. European Transactions on Telecommunications, 8(5):481–490, Sep 1997.

[12] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In K. Kim, editor, Proceedings of Public Key Cryptography
2001, volume 1992 of LNCS, pages 119–136. Springer, 2001.

[13] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, Jul 1985.

[14] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. Odlyzko, editor, Proceedings of Crypto 1986, volume 263 of LNCS,
pages 186–194. Springer, 1986.

14

[15] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS,
pages 1–19. Springer-Verlag, May 2004.

[16] R. Gennaro, D. Micciancio, and T. Rabin. An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products. In ACM Computer and Communi-
cations Security (CCS) ’98, 1998.

[17] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private infor-
mation retrieval schemes. Journal of Computer and System Sciences, 60(3):592–629, 2000.

[18] O. Goldreich. The Foundations of Cryptography - Volume 2. Cambridge Univesity Press, 2004.

[19] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a
methodology of cryptographic protocol design (extended abstract). In 27th Annual Symposium
on Foundations of Computer Science, pages 174–187, Toronto, Ontario, Canada, 27–29 Oct.
1986. IEEE.

[20] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker keeping
secret all partial information. In Proceedings of the fourteenth annual ACM symposium on
Theory of computing, pages 365–377. ACM Press, 1982.

[21] M. Jakobsson and A. Juels. Millimix: Mixing in small batches. Technical Report 99-33, Center
for Discrete Mathematics and Theoretical Computer Science (DIMACS), Oct 1999.

[22] A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor, Proceed-
ings of 4th Algorithmic Number Theory Symposium, number 1838 in LNCS, pages 385–394.
Springer, Jul 2000.

[23] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-
private information retrieval (extended abstract). In 38th Annual Symposium on Foundations
of Computer Science, pages 364–373, Miami Beach, Florida, 20–22 Oct. 1997. IEEE.

[24] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[25] V. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.

[26] V. Miller. The weil pairing, and its efficient calculation. J. of Cryptology, 17(4), 2004.

[27] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In
K. Nyberg, editor, Proceedings of Eurocrypt 1998, volume 1403 of LNCS, pages 308–318.
Springer-Verlag, May 1998.

[28] P. Pallier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, Proceedings of Eurocrypt 1999, volume 1592 of LNCS, pages 223–238. Springer-Verlag,
May 1999.

[29] T. P. Pedersen. A threshold cryptosystem without a trusted party. In D. Davies, editor,
Proceedings of Eurocrypt 1991, volume 547 of LNCS, pages 522–526. Springer, 1991.

15

[30] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer, editor,
Proceedings of Eurocrypt 1996, volume 1070 of LNCS, pages 387–398. Springer, 1996.

[31] M. Rabin. Transaction protection by beacons. Journal of Computer and System Science,
27(2):256–267, 1983.

[32] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, 1978.

[33] T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing forNC1. In Proceedings
of the 40th Symposium on Foundations of Computer Science (FOCS), pages 554–567, New
York, NY, USA, Oct. 1999. IEEE Computer Society Press.

[34] V. Shoup. Practical threshold signatures. In B. Preneel, editor, Proceedings of Eurocrypt 2000,
volume 1807 of LNCS, pages 207–220. Springer, 2000.

[35] J. van de Graaf and R. Peralta. A simple and secure way to show validity of your private key.
In Proceedings of Crypto ’87, 1987.

[36] A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Symposium on
Foundations of Computer Science (FOCS), pages 160–164. IEEE Computer Society Press,
1982.

16

