Assignment \#1

Due: Wednesday, Nov. 7, 2007.

Problem 1: One wayness.
a. Let $f: X \rightarrow Y$ be an efficiently computable one-to-one function. Show that if f has a hard core bit then f is one-way.
b. Show that if $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ is a secure PRG then G is also one-way.
c. Show that if $F: K \times\{1, \ldots, n\} \rightarrow Y$ is a secure PRF then

$$
G(s):=F(k, 1)\|F(k, 2)\| \cdots \| F(k, n)
$$

is a secure PRG.
Problem 2: Hybrid arguments. Let $G: S \rightarrow Y$ be a secure RNG. Show that $G^{(n)}: X^{n} \rightarrow Y^{n}$ defined by

$$
G\left(s_{1}, \ldots, s_{n}\right):=\left(G\left(s_{1}\right), \ldots, G\left(s_{n}\right)\right)
$$

is also a secure PRG.
Hint: consider $n+1$ hybrid distributions, where in distribution number j, for $j=0,1, \ldots, n$, the first j components are pseaudorandom and the remaining $n-j$ components are random. Observe that the two distributions $j=0$ and $j=n$ are the ones used to define security of the PRG $G^{(n)}$.

Problem 3: Recall that the NOVY commitment scheme is perfectly hiding, but requires n rounds of interaction when using a OWP f on $\{0,1\}^{n}$. Construct an NOVY-like perfectly hiding commitment scheme that takes only $n / \log _{2} n$ rounds of interaction.
Hint: Try compressing $\log _{2} n$ rounds of NOVY into one. Prove that an adversary who can break binding of your scheme can invert the OWP.

Problem 4: Let A be a $n \times m$ matrix in \mathbb{Z}_{2}. Define the hash function $h_{A}(x):=A \cdot x$ from \mathbb{Z}_{2}^{m} to \mathbb{Z}_{2}^{n}. Now consider the set \mathcal{H} of hash functions h_{A} for all $n \times m$ matrices A over \mathbb{Z}_{2}. Show that \mathcal{H} is an ϵ-UHF for $\epsilon=1 / 2^{n}$.

Problem 5: Let F be a PRF defined over (K, X, X). Recall that the $E C B C$ is defined as:

$$
E C B C\left(\left(k_{1}, k_{2}\right), x\right):=F\left(k_{2}, F_{C B C}\left(k_{1}, x\right)\right)
$$

and suppose we use $E C B C$ as a MAC for fixed length messages, say messages in X^{n} for some n. Show that after $O(\sqrt{|X|})$ chosen message queries an attacker can forge the MAC on some previously unqueried message, with constant probability.

Problem 6: Let p be a prime and let $g \in \mathbb{Z}_{p}^{*}$ generate a subgroup of order q for some $q \equiv 3 \bmod 4$. Define $\operatorname{lsb}_{2}(x)=0$ if $x \bmod 4$ is 0 or 1 and $\operatorname{lsb}_{2}(x)=1$ otherwise. Let $f:\{0,1, \ldots, q-1\} \rightarrow \mathbb{Z}_{p}^{*}$ be the function $f(x)=g^{x} \bmod p$. Show that if $\operatorname{lsb}(x)$ is a hard core bit of f then so is $\operatorname{lsb}_{2}(x)$.

