Assignment #1

Due: Wednesday, Nov. 7, 2007.

Problem 1: One wayness.

- **a.** Let $f: X \to Y$ be an efficiently computable one-to-one function. Show that if f has a hard core bit then f is one-way.
- **b.** Show that if $G: \{0,1\}^n \to \{0,1\}^{2n}$ is a secure PRG then G is also one-way.
- **c.** Show that if $F: K \times \{1, \ldots, n\} \to Y$ is a secure PRF then

$$G(s) := F(k,1) \|F(k,2)\| \cdots \|F(k,n)\|$$

is a secure PRG.

Problem 2: Hybrid arguments. Let $G: S \to Y$ be a secure RNG. Show that $G^{(n)}: X^n \to Y^n$ defined by

$$G(s_1,\ldots,s_n) := (G(s_1),\ldots,G(s_n))$$

is also a secure PRG.

Hint: consider n + 1 hybrid distributions, where in distribution number j, for j = 0, 1, ..., n, the first j components are pseudorandom and the remaining n - j components are random. Observe that the two distributions j = 0 and j = n are the ones used to define security of the PRG $G^{(n)}$.

Problem 3: Recall that the NOVY commitment scheme is perfectly hiding, but requires n rounds of interaction when using a OWP f on $\{0,1\}^n$. Construct an NOVY-like perfectly hiding commitment scheme that takes only $n/\log_2 n$ rounds of interaction.

Hint: Try compressing $\log_2 n$ rounds of NOVY into one. Prove that an adversary who can break binding of your scheme can invert the OWP.

Problem 4: Let A be a $n \times m$ matrix in \mathbb{Z}_2 . Define the hash function $h_A(x) := A \cdot x$ from \mathbb{Z}_2^m to \mathbb{Z}_2^n . Now consider the set \mathcal{H} of hash functions h_A for all $n \times m$ matrices A over \mathbb{Z}_2 . Show that \mathcal{H} is an ϵ -UHF for $\epsilon = 1/2^n$.

Problem 5: Let F be a PRF defined over (K, X, X). Recall that the ECBC is defined as:

$$ECBC((k_1, k_2), x) := F(k_2, F_{CBC}(k_1, x))$$

and suppose we use ECBC as a MAC for fixed length messages, say messages in X^n for some n. Show that after $O(\sqrt{|X|})$ chosen message queries an attacker can forge the MAC on some previously unqueried message, with constant probability.

Problem 6: Let p be a prime and let $g \in \mathbb{Z}_p^*$ generate a subgroup of order q for some $q \equiv 3 \mod 4$. Define $lsb_2(x) = 0$ if $x \mod 4$ is 0 or 1 and $lsb_2(x) = 1$ otherwise. Let $f : \{0, 1, \ldots, q-1\} \to \mathbb{Z}_p^*$ be the function $f(x) = g^x \mod p$. Show that if lsb(x) is a hard core bit of f then so is $lsb_2(x)$.