CS355: Topics in cryptography

Fall 2002

Assignment #1

Due: Wednesday, Nov 6th, 2002.

Problem 1: a. Let $f: \{0,1\}^n \to \{0,1\}^m$ be an efficiently computable one-to-one function. Show that if f has a (t,ϵ) hard core bit then f is $(t,2\epsilon)$ one-way.

- **b.** Show that if $G: \{0,1\}^n \to \{0,1\}^{2n}$ is a (t,ϵ) PRNG then G is also (t',ϵ') one-way for some (t',ϵ') close to (t,ϵ) . Give the best bounds you can.
- **c.** Show that if $F: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n$ is a (t,ϵ,q) PRF then

$$G(s) = F(1, s) || F(2, s) || \cdots || F(q, s)$$

is a $(t-q,\epsilon)$ PRNG. We are assuming that evaluating F takes unit time.

Problem 2: Hybrid arguments (in part (a)).

a. Let $G: \{0,1\}^n \to \{0,1\}^m$ be a (t,ϵ) PRNG. Define the distributions P_1 and P_2 as:

$$P_1 = \{G(x_1), \dots, G(x_q) \in \{0, 1\}^m \mid x_1, \dots, x_q \leftarrow \{0, 1\}^n\}$$

$$P_2 = \{y_1, \dots, y_q \leftarrow \{0, 1\}^m\}$$

Show that P_1 and P_2 are $(t - cq, q\epsilon)$ indistinguishable for some constant c > 0.

b. Let H be a group of prime order q and $g \in H$ a fixed public generator. Consider the following PRNG, $G: \mathbb{Z}_q^2 \to H^3$, defined by $G(a,b) = [g^a, g^b, g^{ab}]$. As above, define the two distributions:

$$P_1 = \{G(a_1, b_1), \dots, G(a_q, b_q) \in H^3 \mid a_1, b_1, \dots, a_q, b_q \leftarrow \mathbb{Z}_q\}$$

$$P_2 = \{h_1, \dots, h_{3q} \leftarrow H\}$$

Show that if the (t, ϵ) -DDH assumption holds in H then P_1 and P_2 are $(t - cq, \epsilon)$ indistinguishable for some constant c > 0 (assuming exponentiation in H takes constant time). Hence, for DDH PRNG we get a more efficient reduction than for general PRNG's.

Problem 3: In this problem we develop a simple version of the Goldreich-Levin algorithm. Suppose $\alpha \in \{0,1\}^n$ and $f_\alpha : \{0,1\}^n \to \{0,1\}$ is an oracle satisfying

$$\Pr_{x}[f_{\alpha}(x) = x \cdot \alpha] > \frac{3}{4} + \epsilon$$

where $x \cdot \alpha$ is the inner product modulo 2 of x and α . Show that α can be recovered from the oracle f with probability 1/2 by making $\tilde{O}(n/\epsilon)$ oracle queries.

Hint: Show that the first bit of α can be found by querying f_{α} at many pairs of points $(r_1r_2...r_n, \bar{r}_1r_2...r_n)$. Generalize to show that all bits of α can be found. Use the Chernoff bound to bound the success probability of your algorithm.

Remark: This approach can be extended to reduce the $\frac{3}{4} + \epsilon$ bound to $\frac{1}{2} + \epsilon$. The extension is based on making the query points pair wise independent rather than completely independent.

Problem 4: Let $F: \{0,1\}^n \times \{0,1\}^s \to \{0,1\}^t$ be a (t,ϵ,q) unpredictable function (UF). For vectors $x,y \in \{0,1\}^t$ define $x \cdot y$ to be the inner product of x and y modulo 2, i.e. $x \cdot y = \sum_{i=1}^n x_i y_i \mod 2$. Define the function $F': \{0,1\}^n \times \{0,1\}^{s+t} \to \{0,1\}$ by

$$F'_{k,r}(x) = F'(x, (k, r)) \stackrel{def}{=} F_k(x) \cdot r \in \{0, 1\}$$

Prove using the Goldreich-Levin algorithm that F' is a (t', ϵ', q') -PRF for some t', ϵ', q' . Give the best parameters t', ϵ', q' you can.

As a simple application for this result, note that your proof suggests one way for converting any determinstic MAC into a symmetric encryption scheme.

Problem 5: Let $H = \{h_k : \{0,1\}^N \to \{0,1\}^n\}$ be a family of hash functions such that

$$\forall x \neq y \in \{0,1\}^N : \Pr_{h \leftarrow H}[h(x) = h(y)] < \epsilon'.$$

Let $F: \{0,1\}^n \times \{0,1\}^s \to \{0,1\}^t$ be a (t,ϵ,q) -PRF. Prove that $HF_{k1,k2}(M) = F_{k1}(h_{k2}(M))$ is a $(t,\epsilon+\epsilon',q)$ unpredictable function (UF).

Problem 6: Let $\pi: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n$ be a (t,ϵ,q) PRP. Given k, both $\pi_k(x)$ and $\pi_k^{-1}(x)$ can be efficiently computed. Show how to construct an SPRP out of π . Prove that your construction is a (t',ϵ',q) SPRP. Give the best values of t',ϵ' you can. Your solution suggests a way of converting any block cipher that is resistant to chosen PT attacks into a block cipher that resists both chosen PT and chosen CT attacks.