Small *e*

To encrypt quickly use small *e*. (corresponding *d* is large)

Typical suggestion is $e = 2^{2^4} + 1 = 65,537$ encryption takes 17 mult.

For simplicity we take e=3 as an example.

Problem:

Given $C=M^3 \pmod{N}$ find M.

Underlying Theorem

Theorem (Coppersmith): Let $p(x) = 0 \pmod{N}$ be a polynomial equation of degree d. Then can efficiently find all solutions x_0 satisfying $|x_0| < N^{1/d}$

Remark: Suppose $p(x) = x^d - c \pmod{N}$ Then theorem is trivial.

The remark suggests that the theorem cannot be improved.

CRT

<u>Chinese Remainder Theorem</u> (CRT):

Assuming $gcd(N_i, N_j) = 1$ $1 \le i < j \le 3$ there <u>exists</u> a <u>unique</u> $0 \le X < N_1 N_2 N_3$ such that

 $X = C_i \pmod{N_i}$ for *i*=1,2,3.

X can be efficiently constructed.

Claim: $X = M^3 \pmod{N_1 N_2 N_3}$

But, $M^3 < N_1 N_2 N_3$ so $X = M^3$.

 \Rightarrow Given X can easily find M.

Franklin-Reiter $M_1 =$ text s

 $M_2 =$ text s+1

Suppose Eve intercepts two ciphertexts:

 $C_1 = M_1^3$ and $C_2 = M_2^3 \pmod{N}$ where $M_2 = M_1 + \Delta$ and Δ known.

 M_1 is a common root of the polynomials: $f_1(X) = X^3 - C_1$ and $f_2(X) = (X + \Delta)^3 - C_2$

Eve can recover "text" by computing $gcd(f_1, f_2) = "X - M_1" \pmod{N}$

Timing Attack

Attack (Kocher):

Measuring the time it takes to compute $C^d \pmod{N}$ for many Ccan reveal the secret d.

<u>Repeated squaring:</u> $d = d_n d_{n-1} \dots d_1 d_0$

$A \leftarrow 1$	$Z \leftarrow C$
$A \leftarrow A \cdot Z^{d_0}$	$Z \leftarrow Z^2$
$A \leftarrow A \cdot Z^{d_1}$	$Z \leftarrow Z^2$
$A \leftarrow A \cdot Z^{d_{n-1}}$	$Z \leftarrow Z^2$
$A \leftarrow A \cdot Z^{d_n}$	

Timing attack (cont.)

d odd implies $d_0 = 1$

Messages: $C_1, C_2, C_3, \dots, C_k$ Times: $T_1, T_2, T_3, \dots, T_k$ Time for $C_i \times C_i^2 \pmod{N}$:

 $t_1, t_2, t_3, \dots, t_k$

If $d_1 = 1$ then

the random variable T and t are correlated.

Otherwise, they are "independent".

Iterating this reveals the bits of d.