Small e

To encrypt quickly use small e.
 (corresponding d is large)

Typical suggestion is $e=2^{2^{4}}+1=65,537$ encryption takes 17 mult.

For simplicity we take $e=3$ as an example.

Problem:

Given $C=M^{3}(\bmod N)$ find M.

Underlying Theorem

Theorem (Coppersmith):
Let $\quad p(x)=0(\bmod N)$ be a polynomial equation of degree d.

Then can efficiently find all solutions
x_{0} satisfying $\left|x_{0}\right|<N^{1 / d}$

Remark: Suppose $p(x)=x^{d}-c(\bmod N)$
Then theorem is trivial.

The remark suggests that the theorem cannot be improved.

Broadcast Attack

Blum, Liebherr, Williams:

Given $\quad C_{1}, C_{2}, C_{3}$ Eve can find M.

CRT

Chinese Remainder Theorem (CRT):

Assuming $\operatorname{gcd}\left(N_{i}, N_{j}\right)=1 \quad 1 \leq i<j \leq 3$
there exists a unique $0 \leq X<N_{1} N_{2} N_{3}$ such that

$$
X=C_{i}\left(\bmod N_{i}\right) \quad \text { for } \quad i=1,2,3
$$

X can be efficiently constructed.

Claim: $\quad X=M^{3}\left(\bmod N_{1} N_{2} N_{3}\right)$

But, $\quad M^{3}<N_{1} N_{2} N_{3} \quad$ so $\quad X=M^{3}$.
\Rightarrow Given $\quad X$ can easily find M.

Franklin-Reiter

$$
\begin{array}{l|c|}
M_{1}= & \text { text } \\
M_{2}= & \mathbf{s} \\
\hline \text { text } & \mathbf{s + 1} \\
\hline
\end{array}
$$

Suppose Eve intercepts two ciphertexts:

$$
C_{1}=M_{1}^{3} \quad \text { and } \quad C_{2}=M_{2}^{3} \quad(\bmod N)
$$

where $M_{2}=M_{1}+\Delta$ and Δ known.
M_{1} is a common root of the polynomials:

$$
f_{1}(X)=X^{3}-C_{1} \quad \text { and } \quad f_{2}(X)=(X+\Delta)^{3}-C_{2}
$$

Eve can recover "text" by computing

$$
\operatorname{gcd}\left(f_{1}, f_{2}\right)=" X-M_{1} " \quad(\bmod N)
$$

Unknown Δ

$$
\begin{aligned}
& \left.M_{1}=\quad \begin{array}{|c|c|}
\hline \text { text } & \mathbf{r}_{1} \\
M_{2}=\begin{array}{|c|c|}
\hline \text { random } \\
\text { pad }
\end{array}
\end{array}\right) . \begin{array}{r}
\text { text }
\end{array}
\end{aligned}
$$

$M_{2}=M_{1}+\Delta$ where Δ is unknown.
Set $C_{1}=M_{1}^{3} \quad$ and $C_{2}=M_{2}^{3}(\bmod N)$

$$
f_{1}(X)=X^{3}-C_{1} \text { and } f_{2}(X, Y)=(X+Y)^{3}-C_{2}
$$

have a common root when $Y=\Delta$.
$\Rightarrow \quad \Delta$ is a root of $g(Y)=\operatorname{Res}_{x}\left(f_{1}, f_{2}\right)$.

$$
g(Y) \text { has degree } e^{2}=9
$$

\Rightarrow as long as $\Delta<N^{1 / 9}$ Eve can find $\Delta!!$
Then use Franklin-Reiter to find "text"

Timing Attack

Attack (Kocher):

 Measuring the time it takes to compute $C^{d}(\bmod N)$ for many C can reveal the secret d.Repeated squaring: $\quad d=d_{n} d_{n-1} \ldots d_{1} d_{0}$

$$
\begin{array}{lc}
\hline A \leftarrow 1 & Z \leftarrow C \\
\hline A \leftarrow A \cdot Z^{d_{0}} & Z \leftarrow Z^{2} \\
A \leftarrow A \cdot Z^{d_{1}} & Z \leftarrow Z^{2} \\
& \\
A \leftarrow A \cdot Z^{d_{n-1}} & Z \leftarrow Z^{2} \\
\hline A \leftarrow A \cdot Z^{d_{n}} &
\end{array}
$$

Timing attack (cont.)

d odd implies $d_{0}=1$

Messages: $\quad C_{1}, C_{2}, C_{3}, \ldots, C_{k}$
Times: $\quad T_{1}, T_{2}, T_{3}, \ldots, T_{k}$
Time for $C_{i} \times C_{i}^{2}(\bmod N)$:

$$
t_{1}, \quad t_{2}, \quad t_{3}, \ldots, t_{k}
$$

If $d_{1}=1$ then
the random variable T and t are correlated.
Otherwise, they are "independent".

Iterating this reveals the bits of d.

