Programming Assignment 2 Winter 2024

CS 255: Intro to Cryptography

Prof. Dan Boneh Due Tuesday, March 5, 11:59pm

1 Introduction

In this assignment, you are tasked with implementing a secure and efficient end-to-end encrypted
chat client using the Double Ratchet Algorithm, a popular session setup protocol that powers real-
world chat systems such as Signal and WhatsApp. As an additional challenge, assume you live in a
country with government surveillance. Thereby, all messages sent are required to include the session
key encrypted with a fixed public key issued by the government. In your implementation, you will
make use of various cryptographic primitives we have discussed in class—notably, key exchange,
public key encryption, digital signatures, and authenticated encryption. Because it is ill-advised
to implement your own primitives in cryptography, you should use an established library: in this
case, the SubtleCrypto library. We will provide starter code that contains a basic template, which
you will be able to fill in to satisfy the functionality and security properties described below.

2 End-to-end Encrypted Chat Client

2.1 Implementation Details

Your chat client will use the Double Ratchet Algorithm to provide end-to-end encrypted commu-
nications with other clients. To evaluate your messaging client, we will check that two or more
instances of your implementation it can communicate with each other properly.

We feel that it is best to understand the Double Ratchet Algorithm straight from the source, so we
ask that you read Sections 1, 2, and 3 of Signal’s published specification here: https://signal.
org/docs/specifications/doubleratchet/. Your implementation must correctly use the
Double Ratchet Algorithm as described in Section 3 of the specification, with the
following changes and clarifications:

e You may use HKDF to ratchet the Diffie-Hellman keys the as described in Section 2.3 of
the Signal Specification. Proper usage of HKDF is explained in Section 5.2 of the Signal
Specification.

o« HKDF is a key derivation function that we’ve added to lib.js. Section 5.2 describes how it
can be used in your implementation. Read the lib.js comments for how to use our API.

o The lib.js functions contains two HMAC-related functions: HMACtoAESKey (used to generate
keys for AES encryption/decryption) and HMACtoHMACKey (used to generate keys for further
HMACSs). Part of your task is determining which function to use in each case in order to
implement the Signal algorithm.


https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

o Use ElGamal key pairs for the Diffie-Hellman key exchange. See the generateEG function in
lib.js.

e Use AES-GCM as the symmetric encryption algorithm for encrypting messages, using the
sending and receiving keys as derived in Section 2.4.

o Disregard the AD byte sequence input for the ratchetEncrypt and ratchetDecrypt functions
in the Signal Specification. Message headers should still be be authenticated.

e The header of all sent messages must include an encryption of the sending key under the gov-
ernment’s public key. Use ElGamal public key encryption, with AES-GCM as the symmetric
cipher, to encrypt the sending keys. (Note: Since the output of the computeDH function is
configured with HMAC, you will need to run the output through HMACtoAESKey to generate a
key that can be used with AES-GCM. Please use the govEncryptionDataStr variable as the
data parameter in your call to HMACtoAESKey. It may be helpful to refer to the govDecrypt
function in test-messenger. js to see how the govEncryptionDataStr variable is used during
decryption.)

o Every client will a possess an initial ElGamal key pair. These key changes will be used to
derive initial root keys for new communication sessions.

e Public keys will be distributed through simple certificates. Each client generates its own
certificate upon initialization which contains its ElGamal public key. Assume that there is
some trusted central party (e.g. server managed by developers of messaging app), and that
this central party can securely receive certificates generated by clients. This central party
generates a digital signature on each certificate that it obtains, which serves to endorse the
authenticity of the certificate owner’s identity and to prevent any tampering of the certificate
by an adversary. The signed certificates are then distributed back to the clients, so that every
client has the ElGamal public key of every other client in the system.

o Please note that you should generate a new random IV every time you encrypt with AES-
GCM. You can use the genRandomSalt function from lib.js to generate this IV. Keep in mind
that your implement can store I'Vs in plaintext in message headers and in fact you will need
to store I'Vs in the message headers.

e You do not need to handle and recover from dropped or out-of-order messages. You do not
need to worry about Section 2.6 of the specification. You can assume that a message being
sent and received together constitute an atomic operation, meaning if a message is sent, the
very next action that occurs is that the same message will be received by the other party. It
will never be the case that two messages are sent before the first one is received. If you detect
that a message has been blocked, dropped, or received out of order, throw an exception.

o The memory cost of key storage for your algorithm should always be O(1) and independent
of the number of messages sent. In order to satisfy this, your implementation will discard old
keys whenever a ratchet occurs.

2.2 Threat model

The goal of the Double-Ratchet algorithm is to provide Forward Secrecy: compromise of long
term keys or current session key must not compromise past communications.



Specifically, consider a Man-in-the-Middle attacker Eve who sits between Alice and Bob. FEve
sees every encrypted message passed between Alice and Bob and writes all of them to persistent
storage. Then at some point, Alice’s device is compromised and Eve learns Alice’s current secret
keys. (Assume that Alice has deleted her keys for old messages, as encouraged by the Signal
Specification.) Your implementation must ensure that under this scenario, the attacker cannot
decrypt any of the past messages in her persistent storage despite having full access to Alice’s
current keys.

After Alice’s keys are compromised, the adversary can now launch an active Man-in-the-Middle
attack. She impersonates both parties and is able to decrypt all communications between Alice
and Bob. However, at some later point, Alice manages to send a single message to Bob without the
attacker being able to intercept it. Under this scenario, your implementation must ensure that the
attacker loses all ability to decrypt communications once again. This property is called Break-in
Recovery.

Implementing the Double-Ratchet algorithm as defined in the Signal documentation is sufficient to
ensure these two properties.

Adding the sending key encrypted under the government’s public key should not compromise the
security properties of the chat client. The government should be able to use its secret key to
decrypt any message; however no one else, other than the intended recipient, should be able to
learn anything about the message contents.

3 API description

Here are descriptions of the functions you will need to implement.

3.1 messenger.generateCertificate(username)

This method should initialize the messenger client for communications with other clients. Generate
the necessary ElGamal key pair for key exchanges. Public keys are are placed into a certificate to
send to other clients. You are free to design your own certificate object, so long as it has a field
called “username”.

3.2 messenger.receiveCertificate(certificate, signature)

This method takes a certificate from another client and stores it in the messengers internal state,
so that the client can now send and receive messages from the owner of that certificate. The second
argument is the trusted central party’s signature of the certificate. You must verify the validity of
the signature (using the trusted central party’s public key, provided to you in the messenger class
constructor) to ensure that the certificate has not been modified by an adversary. If you detect
tampering, immediately throw an exception to end program execution.



3.3 messenger.sendMessage(name, message)

Send an encrypted message to the user specified by name. You can assume you already possess their
certificate through messenger.receiveCertificate, and that they already possess your certificate.
If you have not previously communicated, setup the session by generating the necessary double
ratchet keys according to the Signal spec. On every send, increment the sending chain (and the
root chain if necessary, according to the Signal spec). Create a header including the data necessary
for other party to derive the new key, in addition to the new sending key encrypted with the
government’s public key. The header must include the fields “vGov” and “cGov” which denote
the outputs (v, c) of the ElGamal public key encryption. You will also need to pass an “ivGov”
containing the IV used to encrypt the message key for the government and a “receiverI V” containing
the IV used to encrypt the message for the receiver. Each header will contain two randomly
generated IVs in total. Lastly, with the new sending key, encrypt the message with the header
passed as authenticated data. Fvery message must be encrypted with a new sending key.

3.4 messenger.receiveMessage(name, [header, ciphertext])

Receive an encrypted message from the user specified by name. You can assume you already possess
their certificate through messenger.receiveCertificate, and that they computed the initial root
key using the ElGamal key from your certificate. If you have not previously communicated, setup
the session by generating necessary double ratchet keys according to the Signal spec. On every
receive, increment the receiving chain (and the root chain if necessary, according to the Signal spec)
using the information provided in the header, and decrypt with a new receiving key. If tampering
is detected in any way, throw and exception to terminate the program (i.e. the adversary has
tampered with your ciphertext).

4 Setup Instructions

The setup process is essentially the same as with Project 1, as this project is also based in Node.

Extract the starter code and cd into the directory proj2. You will need to run npm install — this
will install the dependencies specified in the package. json file locally, into a new directory named
node_modules under proj2. You should now be all set. We have provided a test suite, which
you can run using the command npm test from this directory. These are the same tests that the
autograder will be running. There are no hidden test cases. The autograder will be running Node
version 18.

4.1 Linting

The provided package . json includes a linting script, which can help you find simple bugs and style
issues. To run the linter, run npm run lint. The linter can also fix some formatting errors in your
code. To have the linter automatically apply the fixes it can, run npm run lint-fix. The linter is
provided for your convenience. The autograder will NOT be running the linter.



5 Hints and Summary

e All the code you will have to write will be in the file messenger. js. Please do not write any
code in another file.

e Your messaging system will depend on the SubtleCrypto library for its underlying crypto
implementation. However, you should not need to call the SubtleCrypto functions directly
(and our starter code does not include it directly). We have provided a support code library,
1ib. js, which provides wrappers for any SubtleCrypto functions that you should need.

e Be sure to review the comments in the 1ib. js file to understand what the data types and
inputs and outputs of various functions are.

e Since SubtleCrypto is an inherently asynchronous library, almost all of the functions in
lib. js are asynchronous. If you are running into errors about values being undefined, check
to make sure that each call to an asychronous function is preceeded by an await or followed
by a .then(). If you refer to test/test-messenger. js you will see many examples of the
await keyword being used.

e You can have a look at the tests being run in the file test/test-messenger.js. You are
always welcome to write more tests to make sure your implementation satisfies the require-
ments, but you are not required to, and we will not be grading your tests. The tests are
written using the MochaJS framework (https://mochajs.org/) with Chai for assertions
(http://chaijs.com/), and should be fairly readable.

o If your application detects tampering with any of its in-transit data (e.g. ciphertexts, signa-
tures, etc.), it should throw an exception (thereby terminating the execution). We will not
test what exception is thrown; it is fine to throw a string with an English description of the
potential tampering.

6 Extra Credit

We will award 10% extra credit for successfully handling messages that are dropped, delayed or
delivered out-of-order. How this can be achieved is described in section 2.6 of the Signal Double-
Ratchet specification, and the full algorithm as described in section 3 of the spec includes handling
such messages.

Suppose two messages A and B are delivered out-of-order i.e. B arrives before A. A successful
implementation will be able decrypt B as soon as it arrives without having to wait for A, yet will
still be able decrypt A when it does finally arrive. For full extra-credit, you should be able to
decrypt A even if an arbitrary number of messages arrive in between B and A.

We strongly recommend you first implement the project without attempting the extra credit por-
tion.


https://mochajs.org/
http://chaijs.com/

7 Short-answer Questions

In addition to your implementation, please include answers to the following questions regarding
your implementation. Your answers need not be long, but should include important details.

Please submit typed or handwritten answers to the “Project #2 Short-answer Ques-
tions” assignment on Gradescope (separate from programming component).

1. In our implementation, Alice and Bob increment their Diffie-Hellman ratchets every time they
exchange messages. Could the protocol be modified to have them increment the DH ratchets
once every ten messages without compromising confidentiality against an eavesdropper (i.e.,
semantic security)?

2. What if they never update their DH keys at all? Please explain the security consequences of
this change with regards to Forward Secrecy and Break-in Recovery.

3. Consider the following conversation between Alice and Bob, protected via the Double Ratchet
Algorithm according to the spec:

Hey Bob, can you send me the locker combo?

I need to get my laptop

Sure, it’s 1234!

Great , thanks! I used it and deleted the previous message.
Did it work?

SRl vl v

What is the length of the longest sending chain used by Alice? By Bob? Please explain.

4. Unfortunately, in the situation above, Mallory has been monitoring their communications
and finally managed to compromise Alice’s phone and steal all her keys just before she sent
her third message. Mallory will be unable to determine the locker combination. State and
describe the relevant security property and justify why double ratchet provides this property.

5. The method of government surveillance is deeply flawed. Why might it not be as effective as
intended? What are the major risks involved with this method?

6. The SubtleCrypto library is able to generate signatures in various ways, including both
ECDSA and RSA keys. For both the ECDSA and RSA-based signature techniques, please

compare:

(a) Which keys take longer to generate (timing SubtleCrypto.generateKey)
(b) Which signature takes longer to generate (timing SubtleCrypto.sign)
)
)

(c

(d) Which signature takes longer to verify (timing SubtleCrypto.verify)

Which signature is longer in length (length of output of SubtleCrypto.sign)

Note: For this question, you can choose to conjecture what the right answer might be or run
the script provided in the starter code (in folder /question6code). A well justified conjecture
that may not be fully correct can still receive full credit. To run the code in /question6code,
navigate to the folder in your terminal and then execute the command node g6code. js.


https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/generateKey
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/sign
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/sign
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/verify

	Introduction
	End-to-end Encrypted Chat Client
	Implementation Details
	Threat model

	API description
	messenger.generateCertificate(username)
	messenger.receiveCertificate(certificate, signature)
	messenger.sendMessage(name, message)
	messenger.receiveMessage(name, [header, ciphertext])

	Setup Instructions
	Linting

	Hints and Summary
	Extra Credit
	Short-answer Questions

