CS255: Intro. to Cryptography

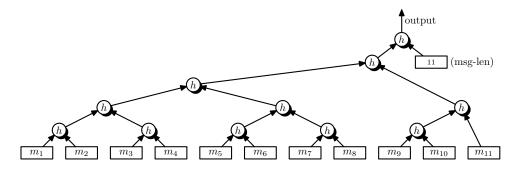
Winter 2023

Assignment #3

Due: Tuesday, Feb. 21, 2022, by Gradescope (each answer on a separate page).

- **Problem 1.** RawCBC attacks. In class we discussed the ECBC (encrypted CBC) MAC for messages in $\mathcal{X}^{\leq L}$ where $\mathcal{X} = \{0,1\}^n$. Recall that RawCBC is the same as ECBC, but without the very last encryption step. We showed that RawCBC is an insecure MAC for variable length messages. Here we show a more devastating attack on RawCBC. Let m_1 and m_2 be two multi-block messages. Show that by asking the signer for the MAC tag on m_1 and for the MAC tag on one additional multi-block message m'_2 of the same length as m_2 , the attacker can obtain the MAC tag on $m = m_1 \parallel m_2$, the concatenation of m_1 and m_2 .
- **Problem 2.** Multicast MACs. Suppose user A wants to broadcast a message to n recipients B_1, \ldots, B_n . Privacy is not important but integrity is. In other words, each of B_1, \ldots, B_n should be assured that the message he is receiving were sent by A. User A decides to use a MAC.
 - **a.** Suppose user A and B_1, \ldots, B_n all share a secret key k. User A computes the MAC tag for every message she sends using k. Every user B_i verifies the tag using k. Using at most two sentences explain why this scheme is insecure, namely, show that user B_1 is not assured that messages he is receiving are from A.
 - **b.** Suppose user A has a set $S = \{k_1, \ldots, k_\ell\}$ of ℓ secret keys. Each user B_i has some subset $S_i \subseteq S$ of the keys. When A transmits a message she appends ℓ MAC tags to it by MACing the message with each of her ℓ keys. When user B_i receives a message he accepts it as valid only if all tags corresponding to keys in S_i are valid. Let us assume that the users B_1, \ldots, B_n do not collude with each other. What property should the sets S_1, \ldots, S_n satisfy so that the attack from part (a) does not apply?
 - **c.** Show that when n=10 (i.e. ten recipients) it suffices to take $\ell=5$ in part (b). Describe the sets $S_1, \ldots, S_{10} \subseteq \{k_1, \ldots, k_5\}$ you would use.
 - **d.** Show that the scheme from part (c) is completely insecure if two users are allowed to collude.

Problem 3. Parallel Merkle-Damgård. Recall that the Merkle-Damgård construction gives a sequential method for extending the domain of a CRHF. The tree construction in the figure below is a parallelizable approach: all the hash functions h within a single level can be computed in parallel. Prove that the resulting hash function defined over $(\mathcal{X}^{\leq L}, \mathcal{X})$ is collision resistant, assuming h is collision resistant. Here h is a compression function $h: \mathcal{X}^2 \to \mathcal{X}$, and we assume the message length can be encoded as an element of \mathcal{X} .



More precisely, the hash function is defined as follows:

```
input: m_1 \dots m_s \in \mathcal{X}^s for some 1 \leq s \leq L output: y \in \mathcal{X} let t \in \mathbb{Z} be the smallest power of two such that t \geq s (i.e., t := 2^{\lceil \log_2 s \rceil}) for i = s + 1 to t: m_i \leftarrow \bot for i = t + 1 to 2t - 1: \ell \leftarrow 2(i - t) - 1, r \leftarrow \ell + 1 // indices of left and right children if m_\ell = \bot and m_r = \bot: m_i \leftarrow \bot // if node has no children, set node to null else if m_r = \bot: m_i \leftarrow m_\ell // if one child, propagate child as is else m_i \leftarrow h(m_\ell, m_r) // if two children, hash with h output y \leftarrow h(m_{2t-1}, s) // hash final output and message length
```

Problem 4. In the lecture we saw that Davies-Meyer is used to convert an ideal block cipher into a collision resistant compression function. Let E(k, m) be a block cipher where the message space is the same as the key space (e.g. 128-bit AES). Show that the following methods do not work:

$$f_1(x,y) = E(y,x) \oplus y$$
 and $f_2(x,y) = E(x, x \oplus y)$

That is, show an efficient algorithm for constructing collisions for f_1 and f_2 . Recall that the block cipher E and the corresponding decryption algorithm D are both known to you.

- **Problem 5.** Authenticated encryption. Let (E, D) be an encryption system that provides authenticated encryption. Here E does not take a nonce as input and therefore must be a randomized encryption algorithm. Which of the following systems provide authenticated encryption? For those that do, give a short proof. For those that do not, present an attack that either breaks CPA security or ciphertext integrity.
 - **a.** $E_1(k,m) = [c \leftarrow E(k,m), \text{ output } (c,c)]$ and $D_1(k, (c_1,c_2)) = D(k,c_1)$
 - $\mathbf{b.} \quad E_2(k,m) = \begin{bmatrix} c \leftarrow E(k,m), \text{ output } (c,c) \end{bmatrix} \quad \text{and} \quad D_2(k,\ (c_1,c_2)\) = \begin{cases} D(k,c_1) & \text{if } c_1 = c_2 \\ \text{fail} & \text{otherwise} \end{cases}$
 - **c.** $E_3(k,m) = (E(k,m), E(k,m))$ and $D_3(k, (c_1, c_2)) = \begin{cases} D(k, c_1) & \text{if } D(k, c_1) = D(k, c_2) \\ \text{fail} & \text{otherwise} \end{cases}$

To clarify: E(k, m) is randomized so that running it twice on the same input will result in different outputs with high probability.

- $\mathbf{d.} \quad E_4(k,m) = \left(\ E(k,m), \ H(m) \ \right) \quad \text{and} \quad D_4(k, \ (c_1,c_2) \) = \begin{cases} D(k,c_1) & \text{if } H(D(k,c_1)) = c_2 \\ \text{fail} & \text{otherwise} \end{cases}$ where H is a collision resistant hash function.
- **Problem 6.** Let F be a secure PRF defined over $(\mathcal{K}, \mathcal{X}, \mathcal{Y})$ where $\mathcal{Y} := \{0, 1\}^n$. Let $(E_{\text{ctr}}, D_{\text{ctr}})$ be the cipher derived from F using randomized counter mode. Let $H: \mathcal{Y}^{\leq L} \to \mathcal{Y}$ be a collision resistant hash function. Consider the following attempt at building an AE-secure cipher defined over $(\mathcal{K}, \mathcal{Y}^{\leq L}, \mathcal{Y}^{\leq L+2})$:

$$E'(k,m) := E_{\operatorname{ctr}} \big(k, \ (H(m),m) \big) \ ; \qquad D'(k,c) := \left\{ \begin{array}{l} (t,m) \leftarrow D_{\operatorname{ctr}}(k,c) \\ \text{if } t = H(m) \text{ output } m, \text{ else reject} \end{array} \right\}$$

Note that when encrypting a single block message $m \in \mathcal{Y}$, the output is three blocks: the random IV, a ciphertext block corresponding to H(m), and a ciphertext block corresponding to m. Show that (E', D') is not AE-secure by showing that it does not have ciphertext integrity. Your attack should make a single encryption query.

At some point in the past, this type of construction was used to protect secret keys in the Android KeyStore. Your attack resulted in a compromise of the key store.

- **Problem 7.** Alice and Bob run the Diffie-Hellman protocol in the cyclic group $\mathbb{G} = \mathbb{Z}_{101}^*$ with generator g = 7. What is the Diffie-Hellman secret $s = g^{ab} \in \mathbb{G}$ if Alice uses a = 3 and Bob uses b = 67? You do not need a calculator to solve this problem!
- **Problem 8.** Exponentiation algorithms. Let \mathbb{G} be a finite cyclic group of order p with generator g. In class we discussed the repeated squaring algorithm for computing $g^x \in \mathbb{G}$ for $0 \le x < p$. The algorithm needed at most $2\log_2 p$ multiplications in \mathbb{G} .

In this question we develop a faster exponentiation algorithm. For some small constant w, called the window size, the algorithm begins by building a table T of size 2^w defined as follows:

set
$$T[k] := g^k$$
 for $k = 0, \dots, 2^w - 1$. (1)

a. Show that once the table T is computed, we can compute g^x using only $(1+1/w)(\log_2 p)$ multiplications in \mathbb{G} . Your algorithm shows that when the base of the exponentiation g is fixed forever, the table T can be pre-computed once and for all. Then exponentiation is faster than with repeated squaring.

Hint: Start by writing the exponent x base 2^w so that:

$$x = x_0 + x_1 2^w + x_2 (2^w)^2 + \dots + x_{d-1} (2^w)^{d-1}$$
 where $0 \le x_i < 2^w$ for all $i = 0, \dots, d-1$.

Here there are d digits in the representation of x base 2^w . Start the exponentiation algorithm with x_{d-1} and work your way down, squaring the accumulator w times at every iteration.

- **b.** Suppose every exponentiation is done relative to a different base, so that a new table T must be re-computed for every exponentiation. What is the worse case number of multiplications as a function of w and $\log_2 p$?
- c. Continuing with Part (b), compute the optimal window size w when $\log_2 p = 256$, namely the w that minimizes the overall worst-case running time. What is the worst-case running time with this w? (counting only multiplications in \mathbb{G})