
Programming Assignment 1 Winter 2018

CS 255: Intro to Cryptography

Prof. Dan Boneh Due Monday, Feb. 12, 11:59pm

1 Introduction

In many software systems today, the primary weakness often lies in the user’s password. This
is especially apparent in light of recent security breaches that have highlighted some of the weak
passwords people commonly use (e.g., 123456 or password). It is very important, then, that users
choose strong passwords (or “passphrases”) to secure their accounts, but strong passwords can be
long and unwieldy. Even more problematic, the user generally has many different services that use
password authentication, and as a result, the user has to recall many different passwords.

One way for users to address this problem is to use a password manager, such as LastPass and
KeePass. Password managers make it very convenient for users to use a unique, strong password
for each service that requires password authentication. However, given the sensitivity of the data
contained in the password manager, it takes considerable care to store the information securely.

In this assignment, you will be writing a secure and efficient password manager. In your implemen-
tation, you will make use of various cryptographic primitives we have discussed in class—notably,
authenticated encryption and collision-resistant hash functions. Because it is ill-advised to imple-
ment your own primitives in cryptography, you should use an established library: in this case, the
Stanford Javascript Crypto Library (SJCL). We will provide starter code that contains a basic tem-
plate, which you will be able to fill in to satisfy the functionality and security properties described
below.

2 Secure Password Manager

2.1 Implementation details

In general, a password manager (also called a keychain) application will store its password database
on disk, protected by a strong master password; in addition, while it is in use, it may store an
“unlocked” representation of the database in memory, from which it can provide the password for
each desired domain. Instead of implementing a full standalone password manager application, for
this project you will only be responsible for the core library. Thus, you will not need to implement
the interactive front-end for interacting with the password manager, nor will you need to actually
write the contents to disk. Instead, you will simulate these functionalities by providing features to
serialize and deserialize your data structures to string representations, so that it would be easy to
complete a full password manager application by writing these representations to disk.

Your password manager will keep its in-memory password data in a key-value store (KVS), repre-
sented by a Javascript object whose keys correspond to domain names, and whose values correspond

1

https://lastpass.com/
http://keepass.info/
http://crypto.stanford.edu/sjcl/

to passwords for each domain. For example, a sample password manager instance might store the
following information:

Key Value
www.google.com password
www.example.com 123456
www.amazon.com 6U)qAlOBy%3SZX$o
www.ebay.com guest

Naturally, writing this information to disk in the clear is not secure. In this assignment, you will
need to preserve both the confidentiality and the integrity of the values in your KVS. Thus, you
will be encrypting all the values (i.e, the passwords for different domains) using an authenticated
encryption scheme, namely AES-GCM. In order to accommodate a potentially large number of
entries in the password manager, you will encrypt and store each record individually in-memory.
In other words, it is not appropriate to encrypt the entire KVS as a single blob. This way, you do
not have to decrypt every entry in the password manager when fetching a single record.

We also do not want to leak any information about the domains the user has stored in the password
manager. At the same time, we want to maintain the ability to search for the data corresponding
to a specific domain. In this assignment, the KVS (Javascript object) storing the password data
should have as its keys the HMAC of each domain name, rather than the actual domain name in the
clear.1 Then, to look up the data corresponding to domain name x, you first compute HMAC(k, x),
where k is the secret key for HMAC, and check whether the result exists as a key in the key-value
store.

If you simply encrypt each domain/password pair in the KVS directly, your implementation will
probably leak some information about the lengths of the passwords. We will not consider such
implementations secure; rather, your implementation must prevent an adversary from learning any
information about the password lengths. (To make this feasible, you may assume that the maximum
length of any password is 64 bytes.)

You should use the password-based key derivation function, PBKDF2, to derive keys from the master
password that the user specifies (see Section 2.3 for a more detailed discussion on PBKDF2). As
we will see below, PBKDF2 is deliberately designed to be slow, and therefore you want to call it
just once to derive a key. You can then derive the specific keys that you will actually use (for the
HMAC for the domain names and the AES-GCM for the passwords) by evaluating HMAC at two
different arbitrary values using the key derived from PBKDF2, and using the outputs as your two
keys (this will not necessarily be secure for all MACs, but it does work with HMAC since it is also
a secure PRF).

Note that a secure password manager is not allowed to include the master password (or even a hash
of it or any other values that would leak information about it), or any of the secret keys used, in
the serialized password database on disk. Additionally, you should assume that an adversary has
access to your source code – this means you cannot embed any values you hope to hide from the
adversary in your code.

Important note: In practice, there are many other considerations to take into account when
designing an application like a secure password manager. For instance, as we will see below, we

1Technically, you will need to use some serialized string representation (like hex or base64) of the HMAC value.

2

make no effort to thwart timing attacks or other side-channel attacks, and indeed this is extremely
difficult using a language like Javascript that is so far removed from the underlying machine model.
Along similar lines, it is always a good practice to erase secret keys in memory when the application
is finished using them, in case the memory is subsequently exposed to the attacker. However, this
is likewise infeasible in Javascript, as many standard features and library functions (including
SJCL) leave data in memory that may leak secrets—both on the call stack and in garbage-collected
structures on the heap. Thus, while this project provides a valuable proof-of-concept illustration
of many important aspects of crypto implementation, it is very far from a complete picture, and
you should not rely on the code you produce to be secure in practical settings.2

2.2 Threat model

When designing any system with security goals, it is important to specify a threat model: i.e., we
must precisely define the power of the adversary, as well as the condition the adversary must satisfy
in order to be considered to have “broken” the system. Thus, we will now specify the threat model
for our secure password manager, in the form of a security game (of the same flavor as the PRF
or CPA games). In particular, just as the CPA game allows the adversary to specify messages of
its choice, our definition will seem to give the adversary a great deal of power over the contents of
the password database. It is important to remember that we must make such strong assumptions
when attempting to show that a system is secure for general use, because we have no idea under
what circumstances it may end up being deployed.

Our security game proceeds as follows. As usual, the password manager will play the role of the
challenger—interacting with another implicit party, the disk storage—while the adversary will make
a series of adaptive queries that determine the behavior of the system. Some of the adversary’s
queries may include a contingency for each of two possible experiments—as in experiments 0 and
1 in the CPA security game—and, as in the CPA game, the “experiment bit” parameter, b, will
determine which series of queries the challenger actually executes. Each query will take one of the
following forms:

1. Specify values 〈domain, password0, password1〉 to be added to the database. In experiment 0,
the challenger must run the password manager algorithm to add the domain-password pair
〈domain, password0〉 to the database, while in experiment 1, the challenger must run the same
algorithm, but on the pair 〈domain,password1〉.

2. Specify a key (domain) that the challenger must remove from the password database.

3. Specify that the challenger must serialize the database state to “disk”, whereupon the ad-
versary will receive the entire result of the serialization, and will be able to replace it with
an alternative of its choice (which must then immediately be deserialized by the challenger,
running the password manager algorithm).

4. Specify a key (domain) for authentication, at which point the challenger (again running the
password manager algorithms) must send the adversary the password corresponding to that
domain.3

2For an additional perspective on the pitfalls of implementing crypto in languages like Javascript, see http:
//www.matasano.com/articles/javascript-cryptography/.

3This ability models the fact that in real life, the adversary may control the server running at the other endpoint
of the client’s query, and therefore may see the result of a client password manager’s attempted authentication.

3

http://www.matasano.com/articles/javascript-cryptography/
http://www.matasano.com/articles/javascript-cryptography/

As in the PRF and CPA security games, we say that a password manager is secure if all computa-
tionally efficient adversaries have only negligible advantage in the game described above. (i.e. the
adversary’s probability of outputting 1 as its guess of the experiment bit b differs only by a negli-
gible amount when in experiment 0 and when in experiment 1.) Unlike the PRF and CPA games,
however,4 we will need an additional restriction for our security definition here. In particular, we
will only allow adversaries whose queries are “admissible” in the following sense:

• Whenever the adversary makes a query (4), requiring the challenger to send its password for
a given domain d, on its last query (1) setting the password for d (if there was such a query
at all), it must have been the case that password0 = password1.

(Indeed, it is fairly easy to see that without this restriction, the adversary could trivially win the
game—by query (1), it could cause the challenger to add a password for some domain d, under
the adversary’s control, so that the password value differed between experiments 0 and 1; and then
require, by query (4), that the challenger authenticate to it using domain d’s password.)

Intuitively, this definition captures the fact that even if the adversary is able to exert substantial
control over the contents of the password database—and even if it controls some malicious remote
servers—it still cannot learn anything about the passwords in the database for any other servers.

For this project, you will not be required to give a formal proof that your system fulfills the strong
security definition we have just stated. However, your system should be secure under this threat
model (and a proof should exist, even though you do not have to produce it).

However, you should note that, to satisfy such a strong definition, there are a number of interesting
attacks that you will have to defend against, most notably swap attacks and rollback attacks. In
a swap attack, the adversary interchanges the values corresponding to different keys. For instance,
the adversary might switch the entries for www.google.com and www.evil.com. Then, when the
user (for whatever reason) tries to authenticate to www.evil.com, the user inadvertently provides
its credentials for www.google.com. It should be easy to see that an adversary able to perform a
swap attack can easily win the security game we outlined above. In your implementation, you must
provide a defense against a swap attack.

In a rollback attack, the adversary can replace a record with a previous version of the record. For
example, suppose the adversary was able to retrieve the KVS in the example above. At some later
time, the user changes her/his password for www.google.com to google_pwd, which would update
the value for www.google.com in the KVS. However, the adversary can replace this updated record
with the previous record for www.google.com. Note that, as in the previous section, merely using
authenticated encryption does not protect against this attack. Rather, in your implementation,
you should compute a SHA-256 hash of the contents of the password manager. You can assume
this hash value can be saved to a trusted storage medium (inaccessible to the adversary)—such as
a flash drive on the user’s person. Whenever you load the password manager from disk, you should
verify that the hash is valid. This way, you can be assured that the contents of the KVS have not
been tampered with.

Depending on your design, your defense against rollback attacks might also turn out to protect
against the swap attacks described earlier. However, you must still implement an explicit
defense against swap attacks. In other words, the defenses you develop must work independently

4But similar to the CCA game.

4

of one another. Even if a SHA-256 hash is not provided from trusted storage, your scheme must
be secure against an adversary that swaps two records.

2.3 Using PBKDF2

In the previous section, we did not give a precise formulation of the security properties we are
assuming of PBKDF2. To give the full picture, we would need to work in a framework called the
“random oracle model,” which would take us too far afield. Instead, this section will provide some
practical guidelines on how to use PBKDF2.

Although we will discuss this in more detail towards the end of the course, it is important to
remember that when deriving anything using passwords, we should always use a randomly generated
salt. The recommended length of the salt is 64 bits, or even 128 bits if you want to be extra-safe.
The key derived from PBKDF2 will be a function of the provided password and the salt. If you
wish to derive the same key again in the future, such as when you’re loading the keychain from
disk, you will need to store the salt in the clear.

The idea behind salting passwords is to prevent an offline dictionary attack, where an attacker
derives keys for commonly used passwords, and tries to see if they work for different users’ keychains.
Salting slows the attackers down since they will have to do a separate dictionary attack for each
user. To make this even more difficult, PBKDF2 is deliberately designed to be a slow function (it
should take about 0.5-1s per evaluation on your laptop) so as to rate limit an attacker trying to
brute force it.5

3 API description

Here are descriptions of the functions you will need to implement. For each function, we also
prescribe the run-time your solution must achieve (as a function of the number of entries n in the
password database). We will assume that the input values (domain names and passwords) are of
length O(1), and regard each operation on an efficient dictionary/object/in-memory-key-value-store
as a single step. Of course, if your solution is asymptotically more efficient than what we prescribe,
that is acceptable.

3.1 keychain.init(password)

• password: password used to protect the keychain (string)

• No return value

• Run-time: O(1)

This method should create a new KVS. This function is also responsible for generating the necessary
keys you need to provide for the various functionality of the password manager. Once initialized,
the password manager should be in ready to support the other functionality described in the API.

5Of course, this only goes so far, and so if you use a password manager, you should make sure that you choose a
long master password that is hard to brute force.

5

3.2 keychain.load(password, representation, trustedDataCheck)

• password: password used to authenticate keychain (string)

• representation: JSON encoded serialization of the keychain (string)

• trustedDataCheck: SHA-256 hash of the keychain; note that this is an optional parameter
that is used to check integrity of the password manager (string)

• Returns: boolean

• Run-time: O(n)

This method loads the keychain state from a serialized representation. You can assume that
representation is a valid serialization generated by a call to keychain.dump(). This function
should verify that the given password is valid for the keychain. If the parameter trustedDataCheck
is provided,6 this function should also affirm the integrity of the KVS. If tampering is detected,
this function should throw an exception. If everything passes, the function should return true and
the keychain object should be ready to support the other functionality described in the API. If the
provided password is invalid, the function should return false.

If this method is called with the wrong master password, your code must return false, and no
other queries keychain.get, keychain.set, or keychain.remove can be performed on the password
manager unless the client calls keychain.init or successfully calls keychain.load. It is incorrect
for your password manager to pretend like nothing is wrong when the wrong password is provided
to keychain.load, and only later, fail to answer queries.

3.3 keychain.dump()

• Returns: an array consisting of two components, where the first is a JSON encoded serial-
ization of the keychain and the second is a SHA-256 hash of the contents of the keychain
(array)

• Run-time: O(n)

If the keychain has not been initialized or successfully loaded into memory, this method should
return null. Otherwise, this method should create a JSON encoded serialization of the keychain,
such that it may be loaded back into memory via a subsequent call to keychain.load. It should
return an array consisting of this, and also of the SHA-256 hash of the keychain contents (which is
to be stored in trusted storage, and used to prevent rollback attacks).

3.4 keychain.set(name, value)

• name: domain name of entry to add to the password manager (string)

• value: value associated with the given domain to store in the password manager (string)
6In Javascript, if an argument to a function is not provided, its value will be the special sentinel value undefined.

You can test that a value is not undefined using the expression: x !== undefined.

6

• No return value

• Run-time: O(1)

If the keychain has not been initialized or successfully loaded into memory, this method should
throw an exception: throw "Keychain not initialized." Otherwise, the method should insert
the domain and associated data into the KVS. If the domain is already in the password manager,
this method will update its value. Otherwise, it will create a new entry.

3.5 keychain.get(name)

• name: domain name of entry to fetch (string)

• Return: string (the value associated with the requested domain, null if not found)

• Run-time: O(1)

If the keychain has not been initialized or successfully loaded into memory, this method should throw
an exception: throw "Keychain not initialized." If the requested domain is in the KVS, then
this method should return the the saved data associated with the domain. If the requested domain
is not in the KVS, then this method should return null.

3.6 keychain.remove(name)

• name: domain name of entry to fetch (string)

• Return: boolean (true if record with the specified name is found, false otherwise)

• Run-time: O(1)

If the keychain has not been initialized or successfully loaded into memory, this method should
throw an exception: throw "Keychain not initialized." If the requested domain is in the KVS,
then this method should remove the record from the KVS. The method returns true in this case.
Otherwise, if the specified domain is not present, return false.

4 Hints and Summary

4.1 Setup Instructions

You should run your code using Node.js. The setup is fairly straightforward: if you don’t have it
already, install Node on your system by downloading it from https://nodejs.org/en/download/.
After installing it, you should be able to run the node and npm commands in your command line.
Then, extract the starter code and cd into the directory proj1. You will need to run npm install
– this will install the dependencies specified in the package.json file locally, into a new directory
named node_modules under proj1. You should now be all set. We have provided a simple test
suite, which you can run using the command npm test from this directory.

7

https://nodejs.org/en/download/

Note that this test suite does not cover all of the properties we will test, and in particular, does
not capture many of the security requirements. We will run a more exhaustive set of tests when
grading.

4.2 Implementation Details

• All the code you will have to write will be in the file password-manager.js. Please do not
write any code in another file, since our auto-grader will be assuming that you haven’t.

• Your password manager will depend on the Stanford Javascript Crypto Library (SJCL) for
its underlying crypto implementation. However, you should not need to call the SJCL
functions directly (and our starter code does not include it directly). We have provided
a support code library, lib.js, which provides wrappers for any SJCL functions that you
should need, as well as some additional utility functions – mainly to deal with operations on
bitarrays (which is the data structure that SJCL uses internally). Note that in your objects,
you will not be able to use bitarrays directly as keys – you can use the provided utility
functions to convert them to a Base64-encoded string representation and back.

• You can have a look at the tests being run in the file test/test-password-manager.js.
You are always welcome to write more tests to make sure your implementation satisfies the
requirements, but you are not required to, and we will not be grading your tests. The tests are
written using the MochaJS framework (https://mochajs.org/) with Expect.js for assertions
(https://github.com/Automattic/expect.js), and should be fairly readable.

• Serialization and deserialization of your password database (for the load and dump) func-
tions should be done using JSON, via the standard Javascript APIs: JSON.stringify and
JSON.parse. Further, the object that you serialize should have the key-value store that you
use for your domain names and passwords stored internally in a field called kvs on the object
(and you should use this field when you’re restoring your keychain – in particular, if this field
is modified, your object should have a modified set of domains and passwords). This is just
to facilitate autograding. The last test in our suite is there to help you make sure that you’re
including this field (although it does not make sure you’re using it when restoring).

• If your application detects tampering with any of its values at any point (like, say, a swap
attack), it should throw an exception (thereby terminating the execution). We will not test
what exception is thrown; it is fine to throw a string with an English description of the
potential tampering.

• All functions should make at most one call to PBKDF2.

• The only thing you should assume about SHA-256 is that it is collision resistant.

• Although you are unlikely to need it, documentation for SJCL is provided here: http://
bitwiseshiftleft.github.io/sjcl/doc/.

4.3 Summary of requirements

To summarize, you must implement a secure password manager that satisfies the following prop-
erties:

8

https://mochajs.org/
https://github.com/Automattic/expect.js
http://bitwiseshiftleft.github.io/sjcl/doc/
http://bitwiseshiftleft.github.io/sjcl/doc/

• The underlying in-memory data structure for the password manager should be a key-value
store (Javascript object), where the keys correspond to domain names and the values corre-
spond to the passwords for the given domain names.

• The password manager should be protected by a master password. Your implementation
cannot include the master password (or any values that would leak information about it) in
the serialized password database.

• When you need to derive a key from a password, you should use PBKDF2.

• Your system should satisfy the security properties described in the threat model (Section 2.2).
In particular, you should defend against swap attacks and rollback attacks.

• You should implement all of the API functions (Section 3) with the parameters described
there. Notably, your defenses for swap attacks and rollback attacks should be independent—
your system must continue to be secure against swap attacks even if a hash value from trusted
storage is not provided.

• You also need to submit answers to the short-answer questions from Section 5.

Please submit the entire proj1 directory as a compressed .zip file to the “Project #1”
Gradescope assignment when you are finished.

5 Short-answer Questions

In addition to your implementation, please include answers to the following questions regarding
your implementation. Your answers need not be long, but should include important details.

Please submit typed or handwritten answers to the “Project #1 Short-answer Ques-
tions” assignment on Gradescope (separate from programming component).

1. Briefly describe your method for preventing the adversary from learning information about
the lengths of the passwords stored in your password manager.

2. Briefly describe your method for preventing swap attacks (Section 2.2). Provide an argument
for why the attack is prevented in your scheme.

3. In our proposed defense against the rollback attack (Section 2.2), we assume that we can store
the SHA-256 hash in a trusted location beyond the reach of an adversary. Is it necessary to
assume that such a trusted location exists, in order to defend against rollback attacks? Briefly
justify your answer.

4. Because HMAC is a deterministic MAC (that is, its output is the same if it is run multiple
times with the same input), we were able to look up domain names using their HMAC values.
There are also randomized MACs, which can output different tags on multiple runs with the
same input. Explain how you would do the look up if you had to use a randomized MAC
instead of HMAC. Is there a performance penalty involved, and if so, what?

9

5. In our specification, we leak the number of records in the password manager. Describe an
approach to reduce the information leaked about the number of records. Specifically, if there
are k records, your scheme should only leak blog2(k)c (that is, if k1 and k2 are such that
blog2(k1)c = blog2(k2)c, the attacker should not be able to distinguish between a case where
the true number of records is k1 and another case where the true number of records is k2).

10

	Introduction
	Secure Password Manager
	Implementation details
	Threat model
	Using PBKDF2

	API description
	keychain.init(password)
	keychain.load(password, representation, trustedDataCheck)
	keychain.dump()
	keychain.set(name, value)
	keychain.get(name)
	keychain.remove(name)

	Hints and Summary
	Setup Instructions
	Implementation Details
	Summary of requirements

	Short-answer Questions

