Assignment #3

Due: Monday, Mar. 13, 2017, by Gradescope (each answer on a seperate page).

Problem 1. Let's explore why in the RSA public key system each person has to be assigned a different modulus n = pq. Suppose we try to use the same modulus n = pq for everyone. Each person is assigned a public exponent e_i and a private exponent d_i such that $e_i \cdot d_i = 1 \mod \varphi(n)$. At first this appears to work fine: to encrypt to Bob, Alice computes $c = x^{e_{\text{bob}}}$ for some value x and sends c to Bob. An eavesdropper Eve, not knowing d_{bob} appears to be unable to invert Bob's RSA function to decrypt c. Let's show that using e_{eve} and d_{eve} Eve can very easily decrypt c.

- **a.** Show that given e_{eve} and d_{eve} Eve can obtain a multiple of $\varphi(n)$. Let us denote that integer by V.
- **b.** Suppose Eve intercepts a ciphertext $c = x^{e_{\text{bob}}} \mod n$. Show that Eve can use V to efficiently obtain x from c. In other words, Eve can invert Bob's RSA function. **Hint:** First, suppose e_{bob} is relatively prime to V. Then Eve can find an integer d such that $d \cdot e_{\text{bob}} = 1 \mod V$. Show that d can be used to efficiently compute x from c. Next, show how to make your algorithm work even if e_{bob} is not relatively prime to V.

Note: In fact, one can show that Eve can completely factor the global modulus n.

Problem 2. Time-space tradeoff. Let $f: X \to X$ be a one-way one-to-one function. Show that one can build a table T of size 2B eleents of X ($B \ll |X|$) that enables an attacker to invert f in time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm A that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying f(x) = y. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point $z \in X$ and compute the sequence

$$z_0 := z$$
, $z_1 := f(z)$, $z_2 := f(f(z))$, $z_3 := f(f(f(z)))$, ...

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some j > 0 such that $z_j = z$). We call the resulting sequence (z_0, z_1, \ldots, z_j) an f-cycle. Let $t := \lceil |X|/B \rceil$. Try storing $(z_0, z_t, z_{2t}, z_{3t}, \ldots)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time O(t).

Problem 3. Let's build a collision resistant hash function from the RSA problem. Let n be a random RSA modulus, e a prime relatively prime to $\varphi(n)$, and u random in \mathbb{Z}_n^* . Show that the function

$$H_{n,u,e}: \mathbb{Z}_n^* \times \{0,\dots,e-1\} \to \mathbb{Z}_n^*$$
 defined by $H_{n,u,e}(x,y) := x^e u^y \in \mathbb{Z}_n$ (1)

is collision resistant assuming that taking e'th roots modulo n is hard.

Suppose \mathcal{A} is an algorithm that takes n, u as input and outputs a collision for $H_{n,u,e}(\cdot,\cdot)$. Your goal is to construct an algorithm \mathcal{B} for computing e'th roots modulo n.

- **a.** Your algorithm \mathcal{B} takes random n, u as input and should output $u^{1/e}$. First, show how to use \mathcal{A} to construct $a \in \mathbb{Z}_n$ and $b \in \mathbb{Z}$ such that $a^e = u^b$ and $0 \neq |b| < e$.
- **b.** Clearly $a^{1/b}$ is an e'th root of u (since $(a^{1/b})^e = u$), but unfortunately for \mathcal{B} , it cannot compute roots in \mathbb{Z}_n . Nevertheless, show how \mathcal{B} can compute the eth root of u from a, u, e, b. This will complete your description of algorithm \mathcal{B} .

Hint: since e is prime and $0 \neq |b| < e$ we know that b and e are relatively prime. Hence, there are integers s, t so that bs + et = 1. Use a, u, s, t to find the e'th root of u in \mathbb{Z}_n .

- **c.** Show that if we extend the domain of the function to $\mathbb{Z}_n^* \times \{0, \dots, e\}$ then the function is no longer collision resistant.
- **d.** Show that if the factorization of n becomes public, then the function in (1) is not even a one-way function.

Problem 4. A bad choice of primes for RSA. Let's see why when choosing an RSA modulus n = pq it is important to choose the two primes p and q independently at random. Suppose n is generated by choosing the prime p at random, and then choosing the prime q dependent on p. In particular, suppose that p and q are close, namely $|p-q| < n^{1/4}$. Let's show that the resulting p can be easily factored.

a. Let A = (p+q)/2 be the arithmetic mean of p and q. Recall that \sqrt{n} is the geometric mean of p and q. Show that when $|p-q| < n^{1/4}$ we have that

$$A - \sqrt{n} < 1.$$

Hint: one way to prove this is by multiplying both sides by $A + \sqrt{n}$ and then using the fact that $A \ge \sqrt{n}$ by the AGM inequality.

b. Because p and q are odd primes, we know that A is an integer. Then by part (a) we can deduce that $A = \lceil \sqrt{n} \rceil$, and therefore it is easy to calculate A from n. Show that using A and n it is easy to factor n.

Problem 5. Oblivious PRF. Let \mathbb{G} be a cyclic group of prime order q generated by $g \in \mathbb{G}$. Let $H : \mathcal{M} \to \mathbb{G}$ be a hash function. Let F be the PRF defined over $(\mathbb{Z}_q, \mathcal{M}, \mathbb{G})$ as follows:

$$F(k,m) := H(m)^k \text{ for } k \in \mathbb{Z}_q, m \in \mathcal{M}.$$

It is not difficult to show that this F is a secure PRF assuming the Decision Diffie-Hellman (DDH) assumption holds in the group \mathbb{G} and, the hash function H is modeled as a random oracle.

Show that this PRF F can be evaluated *obliviously*. That is, show that if Bob has the key k and Alice has an input m, there is a simple protocol that allows Alice to learn F(k,m) without learning anything else about k. Moreover, Bob learns nothing about m. You may assume that g and g^k are publicly known values. An oblivious PRF like this is quite handy for many applications.

- **a.** To start the protocol, Alice generates a random $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and sends to Bob $u := H(m) \cdot g^r$. Show that this u is uniformly distributed in \mathbb{G} and is independent of m, so that Bob learns nothing about m.
- **b.** Show how Bob can respond to enable Alice to learn F(k,m) and nothing else.

Problem 6. In this problem we explore a vulnerability in RSA-PKCS1 v1.5 signatures that illustrates the fragility of the scheme. Let (N,3) be an RSA public-key: N is the RSA modulus and the signature verification exponent is 3. Recall that when signing a message m using PKCS1 v1.5 one first forms the block

$$B = \boxed{01}$$
 0xFF ... 0xFF $\boxed{0x00}$ ASN1 hash

where hash = SHA256(m). The fields are:

- 01 is a two bytes (16 bits) field set to the value 01 (for PKCS1 mode 1),
- 0xFF...0xFF is a variable length padding block where each byte is set to 0xFF (i.e. the number 255),
- the 0x00 field is 1 byte (8 bits) set to 0 indicating the end of the padding block,
- The ASN1 field encodes the type of hash function used to hash the message. For SHA256 this field holds a fixed 15 byte value.
- hash is the hash of the message m: for SHA256 this field is 32 bytes (256 bits).

The purpose of the variable length padding block is to ensure that B is about the size of N. In our case B will be padded to 256 bytes (2048 bits). Note that the ASN1 field was omitted in the lecture for simplicity.

When signing the message m the signer constructs B and then outputs ($B^{1/3} \mod N$) as the signature σ . Recall that the signer computes the cube root of B using his secret RSA signing key.

To verify a message/signature pair (m, σ) using the public-key (N, 3) one would naively carry out the following steps:

- (a) set $B \leftarrow \sigma^3 \mod N$
- (b) parse B from left to right and do:
 - i. if the top most 2 bytes are not 01 reject
 - ii. skip over all 0xFF bytes until reaching a 0x00 byte and skip over it too
 - iii. if the next 15 bytes are not the ASN1 identifier for SHA256 reject
 - iv. read the following 32 bytes (256 bits) and compare them to SHA256(m). Reject if not equal.
- (c) if all the checks above pass, accept the signature

While this procedure appears to correctly verify the signature it ignores one very important step: it does not check that B contains nothing right of the hash. In particular, this procedure will accept a 256 bytes (2048 bits) block B that looks as follows:

$$B^* = \boxed{01} \quad 0 \text{xFF} \dots 0 \text{xFF} \quad \boxed{0 \text{x} 00} \quad \text{ASN1} \quad \text{hash} \quad \text{more bits } J$$

where J is chosen arbitrarily by the attacker. Here the attacker shortened the variable length block of 0xFF to make room for the value J so that the total length of B^* is still 256 bytes (2048 bits).

Your goal is to show that this leads to a complete break of the signature scheme. In particular, show that just given the public-key (N,3), an attacker can forge the signature σ on any message m of its choice.

Hint: To forge the signature on some message m, first compute SHA256(m) and then construct the block B (without your appended J) so that the length of B is less than 1/3 the length of the modulus N. Say B is only 80 bytes (640 bits). To do so, simply make the variable length padding block sufficiently short.

Next, your goal is to construct a 256-byte (2048 bits) integer B^* such that:

- (1) the first 80 bytes of B^* are equal to B (the remaining bits of B^* are arbitrary), and
- (2) B^* is a perfect cube (i.e. is the cube of some smaller integer).

Since B^* is a perfect cube you can easily compute its real cube root σ . Then $B^* = \sigma^3$ holds over the integers and therefore the same also holds modulo N. Since the first 80 bytes of σ^3 are equal to B the signature σ will be accepted as a valid signature on m.

Show how to construct the required 256-byte B^* : it must be a perfect cube and its top 80 bytes must be equal to B. Explain how to construct this B^* and prove that your construction produces a B^* with the required properties.

History: This vulnerability was discovered by Daniel Bleichenbacher in 2006. In 2014 it was discovered that all earlier versions of Mozilla's crypto library, NSS, were vulnerable to a variant of this attack.