Assignment #3

Due: Friday, Mar. 13, 2015, by 5pm.

Problem 1. Let's explore why in the RSA public key system each person has to be assigned a different modulus N=pq. Suppose we try to use the same modulus N=pq for everyone. Each person is assigned a public exponent e_i and a private exponent d_i such that $e_i \cdot d_i = 1 \mod \varphi(N)$. At first this appears to work fine: to encrypt to Bob, Alice computes $c = x^{e_{\text{bob}}}$ for some value x and sends c to Bob. An eavesdropper Eve, not knowing d_{bob} appears to be unable to invert Bob's RSA function to decrypt c. Let's show that using e_{eve} and d_{eve} Eve can very easily decrypt c.

- **a.** Show that given e_{eve} and d_{eve} Eve can obtain a multiple of $\varphi(N)$. Let us denote that integer by V.
- **b.** Suppose Eve intercepts a ciphertext $c = x^{e_{\text{bob}}} \mod N$. Show that Eve can use V to efficiently obtain x from c. In other words, Eve can invert Bob's RSA function. **Hint:** First, suppose e_{bob} is relatively prime to V. Then Eve can find an integer d such that $d \cdot e_{\text{bob}} = 1 \mod V$. Show that d can be used to efficiently compute x from c. Next, show how to make your algorithm work even if e_{bob} is not relatively prime to V.

Note: In fact, one can show that Eve can completely factor the global modulus N.

Problem 2. Time-space tradeoff. Let $f: X \to X$ be a one-way permutation. Show that one can build a table T of size B bytes $(B \ll |X|)$ that enables an attacker to invert f in time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm A that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying f(x) = y. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point $z \in X$ and compute the sequence

$$z_0 := z$$
, $z_1 := f(z)$, $z_2 := f(f(z))$, $z_3 := f(f(f(z)))$, ...

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some j > 0 such that $z_j = z$). We call the resulting sequence (z_0, z_1, \ldots, z_j) an f-cycle. Let $t := \lceil |X|/B \rceil$. Try storing $(z_0, z_t, z_{2t}, z_{3t}, \ldots)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time O(t).

Problem 3. Commitment schemes. A commitment scheme enables Alice to commit a value x to Bob. The scheme is *secure* if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may *open* the commitment and convince Bob that the committed value is x. The commitment is *binding* if Alice cannot

convince Bob that the committed value is some $x' \neq x$. Here is an example commitment scheme:

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of \mathbb{Z}_p^* of prime order q.

Commitment: To commit to an integer $x \in [0, q-1]$ Alice does the following: (1) she picks a random $r \in [0, q-1]$, (2) she computes $b = g^x \cdot h^r \mod p$, and (3) she sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that $b = g^x \cdot h^r \mod p$.

Show that this scheme is secure and binding.

- **a.** To prove security show that b does not reveal any information to Bob about x. In other words, show that given b, the committed value can be any integer x' in [0, q-1]. Hint: show that for any x' there exists a unique $r' \in [0, q-1]$ so that $b = g^x h^{r'}$.
- **b.** To prove the binding property show that if Alice can open the commitment as (x', r') where $x \neq x'$ then Alice can compute the discrete log of h base g. In other words, show that if Alice can find an (x', r') such that $b = g^{x'}h^{r'}$ mod p then she can find the discrete log of h base g. Recall that Alice also knows the (x, r) used to create b.

Problem 4. Let's build a collision resistant hash function from the RSA problem. Let n be a random RSA modulus, e a prime relatively prime to $\varphi(n)$, and u random in \mathbb{Z}_n^* . Show that the function

$$H_{n,u,e}: \mathbb{Z}_n^* \times \{0,\dots,e-1\} \to \mathbb{Z}_n^*$$
 defined by $H_{n,u,e}(x,y) := x^e u^y \in \mathbb{Z}_n$

is collision resistant assuming that taking e'th roots modulo n is hard.

Suppose \mathcal{A} is an algorithm that takes n, u as input and outputs a collision for $H_{n,u,e}(\cdot,\cdot)$. Your goal is to construct an algorithm \mathcal{B} for computing e'th roots modulo n.

- **a.** Your algorithm \mathcal{B} takes random n, u as input and should output $u^{1/e}$. First, show how to use \mathcal{A} to construct $a \in \mathbb{Z}_n$ and $b \in \mathbb{Z}$ such that $a^e = u^b$ and $0 \neq |b| < e$.
- **b.** Clearly $a^{1/b}$ is an e'th root of u (since $(a^{1/b})^e = u$), but unfortunately for \mathcal{B} , it cannot compute roots in \mathbb{Z}_n . Nevertheless, show how \mathcal{B} can compute $a^{1/b}$. This will complete your description of algorithm \mathcal{B} and prove that a collision finder can be used to compute e'th roots in \mathbb{Z}_n^* .

Hint: since e is prime and $0 \neq |b| < e$ we know that b and e are relatively prime. Hence, there are integers s, t so that bs + et = 1. Use a, u, s, t to find the e'th root of u.

c. Show that if we extend the domain of the function to $\mathbb{Z}_n^* \times \{0, \dots, e\}$ then the function is no longer collision resistant.

Problem 5. One-time signatures from discrete-log. Let \mathbb{G} be a cyclic group of prime order q with generator g. Consider the following signature system for signing messages m in \mathbb{Z}_q :

KeyGen: choose
$$x, y \overset{R}{\leftarrow} \mathbb{Z}_q$$
, set $h := g^x$ and $u := g^y$. output sk := (x, y) and $pk := (g, h, u) \in \mathbb{G}^3$. Sign(sk, m): output s such that $u = g^m h^s$. Verify(pk, m, s): output '1' if $u = g^m h^s$ and '0' otherwise.

- **a.** Explain how the signing algorithm works. That is, show how to find s using sk.
- **b.** Show that the signature scheme is weakly one-time secure assuming the discrete-log problem in \mathbb{G} is hard. The weak one-time security game is defined as follows:

the adversary \mathcal{A} first outputs a message $m \in \mathbb{Z}_q$ and in response is given the public key pk and a valid signature s on m relative to pk. The adversary's goal is to output a signature forgery (m^*, s^*) where $m \neq m^*$.

Show how to use \mathcal{A} to compute discrete-log in \mathbb{G} . This will prove that the signature is secure in this weak sense as long as the adversary sees at most one signature.

[Recall that in the standard game defined in class the adversary is first given the public-key and only then outputs a message m. In the weak game above the adversary is forced to choose the message m before seeing the public-key. The standard game from class gives the adversary more power and more accurately models the real world.]

Hint: Your goal is to construct an algorithm \mathcal{B} that given a random $h \in \mathbb{G}$ outputs an $x \in \mathbb{Z}_q$ such that $h = g^x$. Your algorithm \mathcal{B} runs adversary \mathcal{A} and receives a message m from \mathcal{A} . Show how \mathcal{B} can generate a public key pk = (g, h, u) so that it has a signature s for m. Your algorithm \mathcal{B} then sends pk and s to \mathcal{A} and receives from \mathcal{A} a signature forgery (m^*, s^*) . Show how to use the signatures on m^* and m to compute the discrete-log of h base g.

c. Show that this signature scheme is not 2-time secure. Given the signature on two distinct messages $m_0, m_1 \in \mathbb{Z}_q$ show how to forge a signature for any other message $m \in \mathbb{Z}_q$.

It is worth noting that a tweak of this signature scheme can be proven one-time secure in the standard sense of a chosen message attack. Consider the following scheme:

KeyGen: choose
$$x_0, x_1, y \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q$$
, set $h_0 := g^{x_0}$ and $h_1 := g^{x_1}$ and $u := g^y$. output sk := (x_0, x_1, y) and $pk := (g, h_0, h_1, u) \in \mathbb{G}^3$.

Sign(sk, m): choose a random $s_0 \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and output (s_0, s_1) such that $u = g^m h_0^{s_0} h_1^{s_1}$. Verify $(pk, m, (s_0, s_1))$: output '1' if $u = g^m h_0^{s_0} h_1^{s_1}$ and '0' otherwise.

For extra credit, try to prove that this signature scheme is existentially unforgeable under a one-time chosen message attack assuming the discrete-log problem in \mathbb{G} is hard. Recall that now the adversary submits his signature query *after* seeing pk.

Hint: Given some $h = g^x$ your goal is to compute x. Try defining the public key pk as $(g, h_0 = g^{a_0}h^{a_1}, h_1 = g^{b_0}h^{b_1}, u = g^{c_0}h^{c_1})$ for random $a_0, a_1, b_0, b_1, c_0, c_1$ in \mathbb{Z}_q .

Problem 6. In this problem we explore a vulnerability in RSA-PKCS1 v1.5 signatures that illustrates the fragility of the scheme. Let (N,3) be an RSA public-key: N is the RSA modulus and the signature verification exponent is 3. Recall that when signing a message m using PKCS1 v1.5 one first forms the block

$$B = \boxed{01}$$
 0xFF ... 0xFF $\boxed{0x00}$ ASN1 hash

where hash = SHA256(m). The fields are:

- 01 is a two bytes (16 bits) field set to the value 01 (for PKCS1 mode 1),
- 0xFF...0xFF is a variable length padding block where each byte is set to 0xFF (i.e. the number 255),
- the 0x00 field is 1 byte (8 bits) set to 0 indicating the end of the padding block,
- The ASN1 field encodes the type of hash function used to hash the message. For SHA256 this field holds a fixed 15 byte value.
- hash is the hash of the message m: for SHA256 this field is 32 bytes (256 bits).

The purpose of the variable length padding block is to ensure that B is about the size of N. In our case B will be padded to 256 bytes (2048 bits). Note that the ASN1 field was omitted in the lecture for simplicity.

When signing the message m the signer constructs B and then outputs ($B^{1/3} \mod N$) as the signature σ . Recall that the signer computes the cube root of B using his secret RSA signing key.

To verify a message/signature pair (m, σ) using the public-key (N, 3) one would naively carry out the following steps:

- (a) set $B \leftarrow \sigma^3 \mod N$
- (b) parse B from left to right and do:
 - i. if the top most 2 bytes are not 01 reject
 - ii. skip over all 0xFF bytes until reaching a 0x00 byte and skip over it too
 - iii. if the next 15 bytes are not the ASN1 identifier for SHA256 reject
 - iv. read the following 32 bytes (256 bits) and compare them to SHA256(m). Reject if not equal.
- (c) if all the checks above pass, accept the signature

While this procedure appears to correctly verify the signature it ignores one very crucial step: it does not check that B contains nothing right of the hash. In particular, this procedure will accept a 256 bytes (2048 bits) block B that looks as follows:

$B^* = \boxed{01} 0xFF \dots 0xFF$	0x00 ASN1	hash	more bits J
-------------------------------------	-----------	------	---------------

where J is chosen arbitrarily by the attacker. Here the attacker shortened the variable length block of 0xFF to make room for the value J so that the total length of B^* is still 256 bytes (2048 bits).

Your goal is to show that this leads to a complete break of the signature scheme. In particular, show that just given the public-key (N,3), an attacker can forge the signature σ on any message m of its choice.

Hint: To forge the signature on some message m, first compute SHA256(m) and then construct the block B (without your appended J) so that the length of B is less than 1/3 the length of the modulus N. Say B is only 80 bytes (640 bits). To do so, simply make the variable length padding block sufficiently short.

Next, your goal is to construct a 256-byte (2048 bits) integer B^* such that:

- (1) the first 80 bytes of B^* are equal to B (the remaining bits of B^* are arbitrary), and
- (2) B^* is a perfect cube (i.e. is the cube of some smaller integer).

Since B^* is a perfect cube you can easily compute its real cube root σ . Then $B^* = \sigma^3$ holds over the integers and therefore the same also holds modulo N. Since the first 80 bytes of σ^3 are equal to B the signature σ will be accepted as a valid signature on m.

Show how to construct the required 256-byte B^* : it must be a perfect cube and its top 80 bytes must be equal to B. Explain how to construct this B^* and prove that your construction produces a B^* with the required properties.

History: This vulnerability was discovered by Daniel Bleichenbacher in 2006. In 2014 it was discovered that all earlier versions of Mozilla's crypto library, NSS, were vulnerable to a variant of this attack.