CS255: Cryptography and Computer Security Winter 2015

Assignment #2

Due: Monday, Feb. 23, 2015, in class.

Problem 1. Merkle hash trees.
Merkle suggested a parallelizable method for constructing hash functions out of com-
pression functions. Let f be a compression function that takes two 512 bit blocks
and outputs one 512 bit block. To hash a message m one uses the following tree

construction:
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For simplicity, let’s assume that the number of blocks in m is always a power of 2.

a. Prove that if one can find a collision for the resulting hash function then one can
find collisions for the compression function.

b. Show that if the msg-len block is eliminated (e.g. the contents of that block is
always set to 0) then the construction is not collision resistant.

Problem 2. In the lecture we saw that Davies-Meyer is used to convert an ideal block
cipher into a collision resistant compression function. Let E(k,m) be a block cipher
where the message space is the same as the key space (e.g. 128-bit AES). Show that
the following methods do not work:

filz,y) = E(y,x)®y and fo(z,y) = E(x, 2D y)



That is, show an efficient algorithm for constructing collisions for f; and f;. Recall
that the block cipher E and the corresponding decryption algorithm D are both known

to you.
Problem 3. Suppose user A is broadcasting packets to n recipients By, ..., B,. Privacy is
not important but integrity is. In other words, each of By,..., B, should be assured

that the packets he is receiving were sent by A. User A decides to use a MAC.

a. Suppose user A and By, ..., B, all share a secret key k. User A MACs every packet
she sends using k. Each user B; can then verify the MAC. Using at most two
sentences explain why this scheme is insecure, namely, show that user Bj is not
assured that packets he is receiving are from A.

b. Suppose user A has a set S = {ki, ..., ky} of m secret keys. Each user B; has some
subset S; C S of the keys. When A transmits a packet she appends m MACs
to it by MACing the packet with each of her m keys. When user B; receives a
packet he accepts it as valid only if all MAC’s corresponding to keys in S; are
valid. What property should the sets 51, ..., S, satisfy so that the attack from
part (a) does not apply? We are assuming all users By, ..., B, are sufficiently far
apart so that they cannot collude.

c. Show that when n = 10 (i.e. ten recipients) the broadcaster A need only append
5 MAC’s to every packet to satisfy the condition of part (b). Describe the sets
S1,y...,510 C {ki,...,ks} you would use.

Problem 4. CBC padding attack. Recall that when using CBC mode, TLS pads messages
to a multiple of the block length by appending a t byte pad for a suitable value of
t and all bytes of the pad are set to t — 1. For example, if a 2 byte pad is needed,
TLS appends (1,1) to the plaintext prior to CBC encryption. The recipient, after
decrypting the CBC chain, checks that the pad has the correct format and if not
rejects the ciphertext. A bug in older versions of OpenSSL lets the attacker learn if
ciphertext rejection happened due to a bad pad.

Now, suppose an attacker intercepts a target ciphertext cg,y. The attacker deletes the
last block of ¢, thereby deleting any padding blocks. Let ¢ be the resulting truncated
ciphertext and let m be the result of decrypting this ¢ using CBC decryption. Your
goal is to show that this OpenSSL bug can let the attacker test if the last of byte of m
is equal to some byte g of the attacker’s choosing. Using ¢, construct a ciphertext ¢
that has the following property: when ¢’ is sent to the server, the decryption of ¢ will
end with a valid pad if the last byte of m is equal to ¢ and will end with an invalid
pad (with high probability) otherwise. By sending ¢’ to the server, the attacker can
therefore learn if m ends with g.

note: In principle, the attacker can repeat this experiment for all 256 values of g
until a match is found. He then learns the last byte of m. However, TLS tears down
the connection and renegotiates a new key when a pad error occurs and therefore
this typically cannot be applied to TLS. Nevertheless, by injecting Javascript into an



insecure connection the attacker can cause the message m to be sent over and over on
new TLS connections. Each such transmission gives the attacker an opportunity to
test one value of g. This clever attack lets an attacker learn the value of a user’s secret
session cookie one byte at a time even if the cookie is only transmitted over HTTPS.

Problem 5. Authenticated encryption. Let (E, D) be an encryption system that provides
authenticated encryption. Here E¥ does not take a nonce as input and therefore must
be a randomized encryption algorithm. Which of the following systems provide au-
thenticated encryption? For those that do, give a short proof. For those that do not,
present an attack that either breaks CPA security or ciphertext integrity.

a. Ey(k,m) = [c +— E(k,m), output (c,c) ] and Dy (k, (c1,¢2) ) = D(k,c1)
D(k:,cl) if C1 = C2

b. Es(k,m) = [c +— E(k,m), output (c,c) ] and Dao(k, (c1,c2) ) = ) )
fail otherwise

c.  Es(k,m) = ( E(k,m), E(k,m)) and Ds(k, (c1,¢2) ) = DUk, e1) it D(k, 1) = D(k, )
fail otherwise
To clarify: E(k,m) is randomized so that running it twice on the same input will
result in different outputs with high probability.
d.  Ey(k,m)=( E(k,m), Hm)) and Dy(k, (c1,c5) ) = Dk, er) i H(D(k; 1)) = ez
fail otherwise
where H is a collision resistant hash function.

Problem 6. Computing on ciphertexts. Let N = pg be an RSA modulus. Let g € [0, N?]
be an integer satisfying g = 1 mod N. Consider the following encryption scheme. The
public key is (N, g). To encrypt a message m € Zy do: (1) choose a random h in Z 2,
and (2) compute ¢ := g™ - bV in Zy2. Our goal is to develop a decryption algorithm.

a. Show that the discrete log problem base g is easy. That is, show that given g and
g® in Zy= there is an efficient algorithm to compute x. Recall that ¢ = aN + 1
for some integer a and you may assume that a is in Z}.
Hint: use the binomial theorem.

b. Show that given g and the factorization of N, decrypting ¢ = ¢ - h"¥ in Zy2 can
be done efficiently.
Hint: consider ¢*™) in Zy2. Use the fact that by Euler’s theorem z#WV) =
1 mod N? for all x € Z},. Recall that p(N?) = Ny(N). You may assume that
©(N) is relatively prime to V.

c. Show that this system supports linear computations on ciphertexts. That is, show
that given E(pk,mg) and FE(pk,m;) it is easy to construct E(pk, mg+ mq).

Problem 7. Let G be a finite cyclic group. Suppose the order of G is 2¢ for some odd
integer g. Show that the Decision Diffie-Hellman problem does not hold in the group G.
Hint: given a tuple (g, h, u,v) try raising g, h, u,v to the power of q.



