Programming Assignment 1 Winter 2014

CS 255: Intro to Cryptography

Prof. Dan Boneh Due Jan. 27 11:59pm

1 Introduction

In this assignment, you will be writing code that implements efficient [S/KEY| authentication in Javascript,
as discussed in the lecture. We will give you starter code with a naive example and some test code, but the
implementation will be largely up to you.

2 S/KEY

You can review S/KEY by watching the video from the first day of class. Discussion of S/KEY starts at
1:09:27, and the videos are available athttps://mvideox.stanford.edu/Graduate/Course/Details/
86/ . Wikipedia also has a good discussion athttps://en.wikipedia.org/wiki/S/KEY .

For this assignment, you must find an algorithm that can implement S/KEY for hash chains of length n
using client-side storage space O(logn) and amortized O(logn) time per authenticatio Try solving this
on your own, but you may come to office hours if you’d like to discuss the problem. If you get stuck you
may also try reading Markus Jakobsson’s paper referenced below.

Hint: suppose the current hash chain has length k. The hash value at the end of the chain (i.e. at position k)
is the next one-time password to use for authentication. Try storing the hash values of [log, k] 4 1 positions
(called pebbles) along the chain so that one of the pebbles is at position k. Once this one-time password
is used for authentication show how to update the position of the pebbles so that one of the pebbles will
be at position £ — 1 and therefore holds the next one-time password to use. The update should be done by
computing at most an O(log n) number of hashes (amortized). Next, update the pebbles so that one of them
is at position k& — 2, and so on. To get you started, when the length of the chain is & = 220 the 21 pebbles
should be placed at positions k 4+ 1 — 2° along the chain fori = 0,1, ..., 20.

For a challenge (no extra credit), you may simultaneously like to attempt guaranteed logarithmic time
per authentication (i.e. no amortization). For this, you may consult the paper “Fractal Hash Sequence
Representation and Traversal” by Markus Jakobsson.

3 Requirements

The starter code provides a naive_chain implementation of S/KEY. This naive implementation has the
correct functionality, but authentication is very slow.

! Amortized O(log n) time means that the average time per authentication is O(log n). Some (few) authentications may require
O(n) time, but the average time over all n authentications should be O(logn).


https://en.wikipedia.org/wiki/S/KEY
https://mvideox.stanford.edu/Graduate/Course/Details/86
https://mvideox.stanford.edu/Graduate/Course/Details/86
https://en.wikipedia.org/wiki/S/KEY

Your task is to program an alternative pebble_chain that:

e implements S/KEY using the functions initialize () and, advance (),
e can save its state to and from a string using save () and load (), and

e uses logarithmic storage space and (amortized) logarithmic time per call to advance ().
You should also respond to the following questions at the top of skey. js:

e Briefly describe your implementation and its design choices. (e.g. What algorithm did you use? How
did you structure your code? Did you do something interesting in save/load? If it’s not obvious,
justify the space/time used by your implementation.)

e If you were designing an authentication mechanism for a hot new startup that wants to protect its
users, how would you decide whether/where to use S/KEY?

o (Will not affect your grade:) How long did you spend on this project?

e (Optional:) Do you have any comments or suggestions for improving the assignment?
All deliverables are due in skey . js, although you may include additional files. Do not modify 1ib/sjcl. js,
and make sure that the version of test. js from the starter code runs successfully on your submission.

Here are descriptions of the functions. See section 4. I|for information about hash () and bitArray.

3.1 pebble chain(num_iterations)
e Returns: Javascript object
This is essentially a constructor. It returns a Javascript object that has at least four callable functions:

initialize(), advance(), save(), and load ().

You should not need to modify the main structure of pebble_chain, but you may add more functions or
restructure it as long as the four required functions work correctly.

3.2 pebble chain.initialize(num iterations, seed)

e num_iterations: integer (must be a positive power of 2)
e seed: string or bitArray
e Returns: bitArray

This takes in a given value seed and hashes it once to produce the start of the chain (which will eventually
be the last non-null value that advance () will output).

Then, it prepares an authentication chain of length num_iterations. It returns the initial value, which is
the result of hashing seed successively (1 + num_iterations times).

This function should ”walk the chain” only once, i.e. it should only make about num_iterations calls to
hash().



3.3 pebble _chain.advance()

e Returns: bitArray or null

The first time, this returns the value that hashes to the output from initialize (). After that, each output
is the value that hashes to the previous output. After this function has been called num_iterations times,
the output should be null every time.

The function must take amortized logarithmic time in the number of iterations. To explain this, suppose
that an implementation of advance () calls hash() a total of A[i] times on iteration ¢. Then the amortized
running time is defined as:

num_iterations

1
i
num_iterations ; M

For the naive implementation, h[i] = num_iterations — ¢ from which it follows that the amortized run-
ning time is (num_iterations + 1)/2, which increases linearly with the length of the chain. For your
implementation, the amortized running time must be no more than O(logy(num_iterations)).

3.4 pebble_chain.save()

e Returns: string

Serializes the state of the chain into a string. It should be possible to shut down the program and load the
stat using load using just the data saved by this string.

Additionally, the string should be reasonably short (linear in log_ num_iterations).
3.5 pebble chain.load(str_data)

e str_data: string
e (No return value.)

Loads a chain from the serialized string. Note that is an alternative to initialize(), i.e. you can assume
that only one of initialize () or load () will be called.

This process should be very fast — it should not compute any hashes, and it definitely should not compute
the chain from scratch.

3.6 Example Usage

To give you an idea of how the functions work, here is how a typical use would look:

var chain = pebble_chain();



var initial = chain.initialize(log_num_iterations, some_bit_array);

var next = chain.advance();
next = chain.advance();

//

var saved_string = chain.save()
var new_chain = pebble_chain();
new_chain.load(saved_string)

next = chain.advance();
next = chain.advance();
//. ..

4 Running and Writing the Code

The easiest way to run the project on the commandline is using node. js. Node.js is available on the corn
clusters. You may also visithttp://nodejs.organd install node.js on your computer locally, and you can
ask on Piazza if you’re having trouble installing it.

On a computer with node . js installed, run the following from the project directory:
node test.js

This will run a basic set of tests on naive_chain and pebble_chain with log_ num_iterations ==
The pebble_chain tests will crash or fail until your implementation is correct. You’ll probably want to
start by copying code from naive_chain to pebble_chain and adjusting it to your needs.

Note that we may run more exacting tests than those in test. js. If you took a reasonable approach, your
submission should be able to pass these easily. As a rule of thumb, your submitted code for pebble_chain
should be able to traverse the entire chain for log_ num_iterations == 16 in at most a few seconds.

4.1 The hash function and bitArray

The starter code is plain Javascript, but it uses a custom hash () function provided at the top of the file. Its
output is a bitArray. You should only make the following assumptions about it:

The output of hash () is a bitArray.

A bitArray can be passed in to hash () again.

A bitArray can be printed using the hex () convenience function.

Two bitArrays can be compared using the is_equal () convenience function.


http://nodejs.org

In actuality, the hash function taken from the Stanford Javascript Crypto Library (SJCL), and you may
read up on the documentation for bitArray at http://bitwiseshiftleft.github.io/sjcl/doc/
symbols/sjcl.bitArray.html|. However, your code should continue to work even if we replace hash (),
hex (), and is_equal () with a new set of compatible functions.

5 Questions?

If you have general questions, please post on them on Piazza athttps://piazza.com/class/hou9vrkx5lsbrw
so that all students can benefit from the answer. If you have a problem with your specific implementation,
come to office hours or ask a private Piazza question.


http://bitwiseshiftleft.github.io/sjcl/doc/symbols/sjcl.bitArray.html
http://bitwiseshiftleft.github.io/sjcl/doc/symbols/sjcl.bitArray.html
https://piazza.com/class/hou9vrkx5ls5rw

	Introduction
	S/KEY
	Requirements
	pebble_chain(num_iterations)
	pebble_chain.initialize(num_iterations, seed)
	pebble_chain.advance()
	pebble_chain.save()
	pebble_chain.load(str_data)
	Example Usage

	Running and Writing the Code
	The hash function and bitArray

	Questions?

