The RSA Trapdoor Permutation

Dan Boneh
Stanford University

Review: arithmetic mod composites

Let N=pq where p,g areprime
Notation: Zy =1{0,1,2,...,N-1}

(Z\)" = {invertible elements in Z}
Facts:

- Xe Zy isin (Z,) < gcd(x,N) = 1
« Number of elementsin (Z\)" is o(N) = (p-1)(g-1)

Euler’s thm: vV xe (Zy) :

Review: tfrapdoor permutations

Three algorithms: (G, F, F)

> G: outputs pk, sk
pk defines a function F(pk, -): X —> X

> F(pk, x): evaluates the function at x

» F'(sk, y): inverts the function at y using sk

Secure trapdoor permutation (review):

the func. F(pk, -) is one-way without the trapdoor sk.

The RSA ftrapdoor permutation

> First published:

- Scientific American, Aug. 1977.
(after some censorship entanglements)

> Currently the "work horse" of Internet security:
* Most Public Key Infrastructure (PKI) products.
+ SSL/TLS: Certificates and key-exchange.
- Secure e-mail and file systems.

The RSA ftrapdoor permutation

> alg G: N=pq. | N =1024 bits. p,q =512 bits.
e - encryption exponent. gcd(e, o(N))=1.

> alg F: RSAM) = M®cZ" where MeZy

> Trapdoor: d - decryption exponent.
Where ed=1 (mod(N))

- alg F1: RSAM)® = med = MHOMFL = (potiy = @

> (n,e,t,e)-RSA Assumption: For all t-time algs. A:

~ p,q & n-bit primes,

<
N«—pg, x&Z\" - €

Prl A(N,ex) = x¢ (N)

Textbook RSA is insecure

> Textbook RSA encryption:
- public key: (N,e) Encrypt: € = M® (mod N)
+ private key: d Decrypt: € = M (mod N)
M e Zy)

» Completely insecure cryptosystem:
* Does not satisfy basic definitions of security.
* Many attacks exist.

> The RSA trapdoor permutation is not a cryptosystem |

A simple attack on textbook RSA

Random CLIENT HELLO

session-
kev K SERVER HELLO
y Oo

C=RSA (K)

> Session-key Kis 64 bits. View Ke {0,..,20%}
Eavesdropper sees: € = K* (mod N) .

> Suppose K = K;-K, where K, K, < 23% | (prob. =20%)
Then: C/K:® = K,* (mod N)
> Build table: c/1e, ¢/2e, /3¢, .., C/23% . time: 234
For K,=0,.., 23 testif K,° isin table. time: 234.34

> Attack time: =210 <« 264

Page 7

RSA pub-key encryption (150 std)

> (E., Dg): symmetric encryption scheme, AE-secure
H: Z, > K where K is key space of (E,,D,)

» G: generate RSA params: pk=(N,e), sk=(N,d)

> E(pk, m): (1) choose random x in Z
(2) u« RSA(x)=xe , k<« H(x)
(3) output (u, Ekm))

> D(sk, (u,c)): output D H(RSA1(u)), c)

RSA encryption in practice

> Never use textbook RSA.

> RSA in practice (since ISO standard is not often used) :

MSY| Preprocessing
key g

xauaydid

> Main question:
* How should the preprocessing be done?
- Can we argue about security of resulting system?

PKCS1 V1.5

> PKCS1 mode 2: (encryption)

16 bits

N I
—

1024 bits

> Resulting value is RSA encrypted.

> Widely deployed in web servers and browsers.
> No security analysis

Attack on PKCS1

> Bleichenbacher 98. Chosen-ciphertext attack.
> PKCS1 used in SSL:

. C
Oo Yes: continue

(o] No: error

= attacker can test if 16 MSBs of plaintext = ‘02",

» Attack: to decrypt a given ciphertext C do:
- Pick re Z,. Compute C'=reC =(r- PKCS1(N\))e.
- Send C' to web server and use response.

Review: chosen CT security (cs)

> No efficient attacker can win the following game:
(with non-negligible advantage)

MOI Ml

C=E(M,) beg{0,1} -
Challenge ®

b'e {0,1}

Attacker wins if b=b’

PKCS1 V2.0 - OAEP

> New preprocessing function: OAEP [Bro4]

Check pad
on decryption.
Reject CT if invalid.

,, 1
| Plaintext to encrypt with RSA = (0,1}

> Thm [Fopso1]: RSA is trap-door permutation =
RSA-OAEP is CCS when H,G are "random oracles”

> In practice: use SHA-256 for H and G.

OAEP Improvements

> OAEP+: [ShoupO1] oM Jwmp | R

V trap-door permutation F 5‘_-:

F-OAEP+ is CCS when

H G W are “random oracles” -_':

> SAEP+: [Ro1]

M Jwmp) [R
RSA frap-door perm = - —
RSA-SAEP+ is CCS when ;'_-'7
H W are "random oracle”. * !

Page 14

Subtleties in implementing OAEP m 0o

OAEP-decrypt(C) {

error = 0;

if (RSA(C)>2"")
{ error =1; goto exit; }

if (pad(OAEP'(RSA™(C))) |=“01000")
} { error = 1; goto exit; }

> Problem: timing information leaks type of error.
— Attacker can decrypt any ciphertext C.

> Lesson: Don't implement RSA-OAEP yourself ...

Part II.
Is RSA a One-Way Function?

Is RSA a one-way permutation?

> To invert the RSA one-way function (without d) attacker
must compute:

M from C=M* (modN).

> How hard is computing e'th roots modulo N ??

> Best known algorithm:
+ Step 1: factor N. (hard)
- Step 2: Find e'th roots modulo p and q. (easy)

Shortcuts?

> Must one factor N in order to compute e'th roots?
Exists shortcut for breaking RSA without factoring?

> To prove no shortcut exists show a reduction:

- Efficient algorithm for e'th roots mod N
— efficient algorithm for factoring N.
» Oldest problem in public key cryptography.

> Evidence no reduction exists: (BV'98)
- "Algebraic” reduction = factoring is easy.
 Unlike Diffie-Hellman (Maurer'94).

Improving RSA’'s performance

> To speed up RSA decryption use
small private key d. C®=M (mod N)

- Wiener87: if d<NO9%22 then RSA is insecure.
- BD'98: if d<NO%292 then RSA is insecure
(open: d<N%°)

» Insecure: priv. key d can be found from (N,e).

- Small d should never be used.

Wiener's attack

> Recall: ed=1 (mod ¢(N))
= dkeZ: ed-= k-(p(N)+1

HE
B d(P(N)
o(N) = N-p-g+1 = [N- o(N)] < P+q <3N
HE

FOR

dsnes o | & - K[< oL

Continued fraction expansion of e/N gives k/d.

e-d=1(mod k) = gcd(d,k)=1

RSA With Low public exponent

To speed up RSA encryption (and sig. verify)
use a small e. C = Me (mod N)

Minimal value: e=3 (gcd(e, o(N))=1)
Recommended value: e=65537=216+1

Encryption: 17 mod. multiplies.

Several weak attacks. Non known on RSA-OAEP.

Asymmetry of RSA: fast enc. / slow dec.
» ElGamal: approx. same time for both.

Implementation attacks

Attack the implementation of RSA.

Timing attack: (Kocher 97)
The time it takes o compute ¢® (mod N)
can expose d.

Power attack: (Kocher 99)
The power consumption of a smartcard while
it is computing C* (mod N) can expose d.

Faults attack: (BDL 97)
A computer error during ¢® (mod N)
can expose d.

OpenSSL defense: check output. 5% slowdown.

Key lengths

> Security of public key system should be
comparable to security of block cipher.

NIRRE

Cipher key-size Modulus size

< 64 bits 512 bits.
80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits

> High security = very large moduli.
Not necessary with Elliptic Curve Cryptography.

