
CS255: Cryptography and Computer Security Winter 2011

Assignment #3
Due: Monday, Mar. 7, 2011. (in class)

Problem 1 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt a message to
Bob, Alice computes c = mebob and sends c to Bob. An eavesdropper Eve, not knowing
dbob appears to be unable to decrypt c. Let’s show that using eeve and deve Eve can
very easily decrypt c.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N).

b. Show that given an integer k which is a multiple of ϕ(N) Eve can factor the mod-
ulus N . Deduce that Eve can decrypt any RSA ciphertext encrypted using the
modulus N intended for Alice or Bob.
Hint: Consider the sequence gk, gk/2, gk/4, . . . gk/τ(K) ∈ ZN where g is random in
ZN and τ(k) is the largest power of 2 dividing k. Use the the left most element
in this sequence which is not equal to ±1 in ZN .

Problem 2. Time-space tradeoff. Let f : X → X be a one-way permutation. Show that
one can build a table T of size B bytes (B � |X|) that enables an attacker to invert f in
time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm
A that takes as input the table T and a y ∈ X, and outputs an x ∈ X satisfying
f(x) = y. This result suggests that the more memory the attacker has, the easier it
becomes to invert functions.
Hint: Pick a random point z ∈ X and compute the sequence

z0 := z, z1 := f(z), z2 := f(f(z)), z3 := f(f(f(z))), . . .

Since f is a permutation, this sequence must come back to z at some point (i.e. there
exists some j > 0 such that zj = z). We call the resulting sequence (z0, z1, . . . , zj) an
f -cycle. Let t := d|X|/Be. Try storing (z0, zt, z2t, z3t, . . .) in memory. Use this table
(or perhaps, several such tables) to invert an input y ∈ X in time O(t).

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any infor-
mation about the committed value x. At a later time Alice may open the commitment
and convince Bob that the committed value is x. The commitment is binding if Alice
cannot convince Bob that the committed value is some x′ 6= x. Here is an example
commitment scheme:

1

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of Z∗p of prime
order q.

Commitment: To commit to an integer x ∈ [0, q − 1] Alice does the following: (1)
she picks a random r ∈ [0, q− 1], (2) she computes b = gx · hr mod p, and (3) she
sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that
b = gx · hr mod p.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In
other words, show that given b, the committed value can be any integer x′ in
[0, q − 1].
Hint: show that for any x′ there exists a unique r′ ∈ [0, q − 1] so that b = gx

′
hr

′
.

b. To prove the binding property show that if Alice can open the commitment as
(x′, r′) where x 6= x′ then Alice can compute the discrete log of h base g. In other
words, show that if Alice can find an (x′, r′) such that b = gx

′
hr

′
mod p then she

can find the discrete log of h base g. Recall that Alice also knows the (x, r) used
to create b.

Problem 4 Threshold signatures. A company wants to institute a policy that two execu-
tives are needed to sign a contract. The process is as follows: a secretary sends the
contract to both execs, they each sign and send their signature back to the secretary.
The secretary then assembles the two signatures into a valid signature on the contract.
Note that the two execs communicate with the secretary, but are not allowed to com-
municate with each other. One option is to give each exec a signature key and say
that a signature is valid only if it contains valid signatures from both execs. In this
question we develop a method that results in a shorter signature. Let (N, e) be the
company’s RSA public key and let d be the corresponding signing key.

a. Let d1 be a random integer in [1, . . . , N] and let d2 = d − d1. Suppose we give
d1 to one exec and d2 to the other. Explain how the secretary can interact with
the execs to generate a signature under the company’s RSA public key (N, e).
The execs cannot communicate with one another and should keep their secrets to
themselves.

b. Are both execs needed to generate a signature under (N, e), or is one execs suffi-
cient? Briefly explain your answer.

c. Generalize the mechanism from part (a) so that any 2 out of 3 execs can generate
a signature under (N, e), but no single exec can do it.

2

Problem 5. Access control and file sharing using RSA. In this problem N = pq is some
RSA modulus. All arithmetic operations are done modulo N .

a. Suppose we have a file system containing n files. Let e1, . . . , en be relatively prime
integers that are also relatively prime to ϕ(N), i.e. gcd(ei, ej) = gcd(ei, ϕ(N)) = 1
for all i 6= j. The integers e1, . . . , en are public. Choose a random r ∈ Z∗N and
suppose each file Fi is encrypted using the key keyi := r1/ei .

Now, let Su ⊆ {1, . . . , n} and set b =
∏

i∈Su
ei. Suppose user u is given Ku = r1/b.

Show that user u can decrypt any file i ∈ Su. That is, show how user u using Ku

can compute any key keyi for i ∈ Su.
With this mechanisn, every user uj can be given a key Kuj enabling it to access
exactly those files to which it has access permission.

b. Next we need to show that user u, who has Ku, cannot construct a key keyi for
i 6∈ Su. To do so we first consider a simpler problem. Let d1, d2 be two integers
relatively prime to ϕ(N) and relatively prime to each other. Suppose there is an
efficient algorithm A such that A(r, r1/d1) = r1/d2 for all r ∈ Z∗N . In other words,
given the d1’th root of r ∈ Z∗N algorithm A is able to compute the d2’th root of r.
Show that there is an efficient algorithm B to compute d2’th roots in Z∗N . That
is, B(x) = x1/d2 for all x ∈ Z∗N . Algorithm B uses A as a subroutine.

c. Show using part (b) that user u cannot obtain the key keyi for any i 6∈ Su assuming
that computing e’th roots modulo N is hard for any e such that gcd(e, ϕ(N)) = 1.
(the contra-positive of this statement should follow from (b) directly).

Problem 6. Time lock. Our goal in this question is to build a mechanism by which Alice
can encrypt a secret S that can be decrypted only after a certain amount of time has
passed (e.g. a week, a year, a 100 years).

a. Alice’s first solution is as follows. Let (E,D) be a symmetric cipher built from AES.
Alice chooses a random AES key k and publishes (C, T) where C ← E(k, S) and
T contains all but t bits of k. Then by exhaustive search the attacker can decrypt
C and recover S in time 2t. By tuning t Alice can choose the time it will take for
S to be revealed.

Unfortunately, this approach does not work. Briefly explain how an attacker can
recover S in time 2t/L for some L of the attacker’s choosing.
Hint: think parallel processing.

b. Alice then remembers that she read somewhere that the best algorithm for com-
puting gx requires O(log x) sequential multiplications and that parallel processing
cannot speed this up much. She decides to use the following approach. First, she
generates two primes p and q and sets n← pq. Next, she chooses a random g in
Z∗n. Finally, she publishes (n, g, C, t) where

C ← S + g(2
(2t)) ∈ Zn

3

Describe an algorithm that enables anyone to recover S from (n, g, C) using 2t

modular multiplications. Hence, by tuning t Alice can make the puzzle take as
long as she wants, even if the attacker mounts your attack from part (a).

c. Finally, show that Alice need not spend time 2t herself to prepare the puzzle. Show
that Alice can use her knowledge of ϕ(n) to construct C using only O(t) modular
multiplications.

d. After setting this up Alice wondered if she could use a prime p in place of the RSA
modulus n in the system above. Will the resulting time-lock system remain secure
if n is replaced by p? If so, explain why. If not, describe an attack.

4

