
CS255: Cryptography and Computer Security Winter 2011

Assignment #2
Due: Wednesday, Feb. 16, 2011.

Problem 1. Merkle hash trees.
Merkle suggested a parallelizable method for constructing hash functions out of com-
pression functions. Let f be a compression function that takes two 512 bit blocks
and outputs one 512 bit block. To hash a message M one uses the following tree
construction:

Block 1 Block 2 Block 3 Block 4 Block 15Message Block 16

msg-len

Hash

f f f

ff

f

f

Prove that if one can find a collision for the resulting hash function then one can find
collisions for the compression function.

Problem 2. In the lecture we saw that Davies-Meyer is often used to convert an ideal block
cipher into a collision resistant compression function. Let E(k,m) be a block cipher
where the message space is the same as the key space (e.g. 128-bit AES). Show that
the following methods do not work:

f1(x, y) = E(y, x)⊕ y and f2(x, y) = E(x, x)⊕ y

That is, show an efficient algorithm for constructing collisions for f1 and f2. Recall
that the block cipher E and the corresponding decryption algorithm D are both known
to you.

1

Problem 3. Suppose user A is broadcasting packets to n recipients B1, . . . , Bn. Privacy is
not important but integrity is. In other words, each of B1, . . . , Bn should be assured
that the packets he is receiving were sent by A. User A decides to use a MAC.

a. Suppose user A and B1, . . . , Bn all share a secret key k. User A MACs every packet
she sends using k. Each user Bi can then verify the MAC. Using at most two
sentences explain why this scheme is insecure, namely, show that user B1 is not
assured that packets he is receiving are from A.

b. Suppose user A has a set S = {k1, . . . , km} of m secret keys. Each user Bi has some
subset Si ⊆ S of the keys. When A transmits a packet she appends m MACs
to it by MACing the packet with each of her m keys. When user Bi receives a
packet he accepts it as valid only if all MAC’s corresponding to keys in Si are
valid. What property should the sets S1, . . . , Sn satisfy so that the attack from
part (a) does not apply? We are assuming all users B1, . . . , Bn are sufficiently far
apart so that they cannot collude.

c. Show that when n = 10 (i.e. ten recipients) the broadcaster A need only append
5 MAC’s to every packet to satisfy the condition of part (b). Describe the sets
S1, . . . , S10 ⊆ {k1, . . . , k5} you would use.

Problem 4. Conference key setup.
Parties A1, . . . , An and B wish to generate a secret conference key. All parties should
know the conference key, but an eavesdropper should not be able to obtain any in-
formation about the key. They decide to use the following variant of Diffie-Hellman:
there is a public prime p and a public element g ∈ Z∗

p of order q for some large prime q
dividing p− 1. User B picks a secret random b ∈ [1, q − 1] and computes y = gb ∈ Z∗

p.
Each party Ai picks a secret random ai ∈ [1, q − 1] and computes xi = gai ∈ Z∗

p. User
Ai sends xi to B. User B responds to party i by sending zi = xb

i ∈ Z∗
p.

a. Show that party i given zi (and ai) can determine y.

b. Explain why (a hash of) y can be securely used as the conference key. Namely,
explain why at the end of the protocol all parties A1, . . . , An and B know y and
give a brief informal explanation why an eavesdropper cannot determine y.

c. Prove part (b). Namely, show that if there exists an efficient algorithm A that
given the public values in the above protocol, outputs y, then there also exists an
efficient algorithm B that breaks the Computational Diffie-Hellman assumption
in the subgroup of Z∗

p generated by g. Use algorithm A as a subroutine in your
algorithm B. Note that algorithm A takes as input a triple (g, gx, gy) and outputs
gx/y while algorithm B takes as input a triple (g, gx, gy) and outputs gxy

2

Problem 5. Computing on ciphertexts. Let G be a group of prime order q with generator g.

a. Consider a variant of ElGamal encryption where the encryption of a message m ∈ Zq

using public key (G, g, h) is defined as c ← (gr, gmhr) where r
R← Zq. Suppose

1 ≤ m ≤ B. Write pseudo-code to decrypt the ciphertext c (i.e. recover the
message m) using the secret key x := Dlogg(h) with one exponentiation and
O(B) additional group operations.

b. Let c1, c2 be encryptions of message m1,m2 respectively. Show that there is a
simple algorithm A that takes the public key (G, g, h) and the two ciphertexts
c1 and c2 as input, and outputs a random encryption of m1 + m2. The output
ciphertext should be distributed as if the message m1 + m2 was encrypted with
fresh randomness. Note that A does not know either m1 or m2.

c. Suppose n people wish to compute the average of their salaries. Let xi be the salary
of person number i, where xi is an integer in [1, B] for all i. Our goal is to compute
A := (x1 + . . . + xn)/n without revealing any other information about individual
salaries. Note that A need not be an integer.

Design an n step protocol where in step i (for i = 1, . . . , n − 1) user number i
sends a message to user number i + 1. In step n user number n sends a message
to user 1. User 1 then publishes A for all n people to see.

You may assume user 1 does not collude with any other user. All user 1 sees is
the message he sends to user 2 and the message he receives from user n. Some
remaining users may share information with one another to try and learn more
information about individual salaries (information beyond what is revealed by A).
Hint: User 1 generates a public/private ElGamal key. The remaining users use
your mechanism from part (b).

Problem 6. In this problem, we see why it is a really bad idea to choose a prime p = 2k +1
for discrete-log based protocols: the discrete logarithm can be efficiently computed for
such p. Let g be a generator of Z∗

p.

a. Show how one can compute the least significant bit of the discrete log. That is,
given y = gx (with x unknown), show how to determine whether x is even or odd
by computing y(p−1)/2 mod p.

b. If x is even, show how to compute the 2nd least significant bit of x.
Hint: consider y(p−1)/4 mod p.

c. Generalize part (b) and show how to compute all of x.
Hint: let b ∈ {0, 1} be the LSB of x obtained using part (a). Try setting y1 ← y/gb

and observe that y1 is an even power of g. Then use part (b) to deduce the second
least significant bit of x. Show how to iterate this procedure to recover all of x.

d. Briefly explain why your algorithm does not work for a random prime p.

3

