
CS255: Cryptography and Computer Security Winter 2010

Assignment #3
Due: Friday, Mar. 5, 2010 by 5pm. (in Hart’s office)

Problem 1 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt a message
to Bob, Alice computes C = M ebob and sends C to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to decrypt C. Let’s show that using eeve and deve
Eve can very easily decrypt C.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N).

b. Show that given an integer K which is a multiple of ϕ(N) Eve can factor the
modulus N . Deduce that Eve can decrypt any RSA ciphertext encrypted using
the modulus N intended for Alice or Bob.
Hint: Consider the sequence gK , gK/2, gK/4, . . . gK/τ(K) mod N where g is random
in ZN and τ(N) is the largest power of 2 dividing K. Use the the left most element
in this sequence which is not equal to ±1 mod N .

Problem 2. Time-space tradeoff. Let f : X → X be a one-way permutation. Show that
one can build a table T of size B bytes (B � |X|) that enables an attacker to invert f in
time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm
A that takes as input the table T and a y ∈ X, and outputs an x ∈ X satisfying
f(x) = y. This result suggests that the more memory the attacker has, the easier it
becomes to invert functions.
Hint: Pick a random point z ∈ X and compute the sequence

z0 := z, z1 := f(z), z2 := f(f(z)), z3 := f(f(f(z))), . . .

Since f is a permutation, this sequence must come back to z at some point (i.e. there
exists some j > 0 such that zj = z). We call the resulting sequence (z0, z1, . . . , zj) an
f -cycle. Let t := d|X|/Be. Try storing (z0, zt, z2t, z3t, . . .) in memory. Use this table
(or perhaps, several such tables) to invert an input y ∈ X in time O(t).

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any infor-
mation about the committed value x. At a later time Alice may open the commitment
and convince Bob that the committed value is x. The commitment is binding if Alice
cannot convince Bob that the committed value is some x′ 6= x. Here is an example
commitment scheme:

1

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of Z∗p of prime
order q.

Commitment: To commit to an integer x ∈ [0, q − 1] Alice does the following: (1)
she picks a random r ∈ [0, q− 1], (2) she computes b = gx · hr mod p, and (3) she
sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that
b = gx · hr mod p.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In
other words, show that given b, the committed value can be any integer x′ in
[0, q − 1].
Hint: show that for any x′ there exists a unique r′ ∈ [0, q − 1] so that b = gx

′
hr

′
.

b. To prove the binding property show that if Alice can open the commitment as
(x′, r′) where x 6= x′ then Alice can compute the discrete log of h base g. In other
words, show that if Alice can find an (x′, r′) such that b = gx

′
hr

′
mod p then she

can find the discrete log of h base g. Recall that Alice also knows the (x, r) used
to create b.

Problem 4 Threshold signatures. A company wants to institute a policy that two execu-
tives are needed to sign a contract. The process is as follows: a secretary sends the
contract to both execs, they each sign and send their signature back to the secretary.
The secretary then assembles the two signatures into a valid signature on the contract.
Note that the two execs communicate with the secretary, but are not allowed to com-
municate with each other. One option is to give each exec a signature key and say
that a signature is valid only if it contains valid signatures from both execs. In this
question we develop a method that results in a shorter signature. Let (N, e) be the
company’s RSA public key and let d be the corresponding signing key.

a. Let d1 be a random integer in [1, . . . , N] and let d2 = d − d1. Suppose we give
d1 to one exec and d2 to the other. Explain how the secretary can interact with
the execs to generate a signature under the company’s RSA public key (N, e).
The execs cannot communicate with one another and should keep their secrets to
themselves.

b. Are both execs needed to generate a signature under (N, e), or is one execs suffi-
cient? Briefly explain your answer.

c. Generalize the mechanism from part (a) so that any 2 out of 3 execs can generate
a signature under (N, e), but no single exec can do it.

Problem 5 In class we briefly noted that a one-time signature scheme can be converted into
a many-time signature scheme. Let’s explore how to do it in more detail. The signer in
our many-time scheme will maintain internal state and update it every time he signs a

2

message. Let (G,S, V) be a one-time signature scheme (i.e. a scheme secure as long as
a public/secret pair is used to sign at most one message). To build a signature scheme
for signing 2n messages (say n = 32) visualize a complete binary tree with 2n leaves.
Every node in this tree stores a different public/secret key pair for the one-time system.
The public key for our many-time scheme is the public key stored at the root of the
tree. To sign message number i the signer uses the ith leaf in the tree (for 1 ≤ i ≤ 2n).
Let u0, . . . , un be the n nodes on the path from the root to the ith leaf (u0 is the root
of the tree, un is the leaf). To sign the message m, first use the secret key in the leaf
node un to sign m. Let sn be the resulting signature. Then for i = 0, . . . , n − 1 use
the secret key in node ui to sign the pair of public keys stored in its two children.
Let (s0, . . . , sn−1) be the resulting n one-time signatures. For 1 ≤ i ≤ n let pk i be
the public key stored is node ui and let pk ′i be the public key stored in the sibling of
node ui. The many-time scheme outputs

(
i, (s0, pk 1, pk

′
1), . . . , (sn−1, pkn, pk

′
n), sn

)
as

the signature on m.

a. Write (short) pseudo-code to implement the signing and verification algorithms for
the many-time scheme. Your signing code should maintain state containing at
most 2n one-time public/private key pairs at any given time. Your verification
code should be stateless.

b. Briefly explain why your implementation is secure. In other words, explain why
your signing code never uses a one-time public-key to sign two distinct messages.

c. What is the size of the resulting signatures when using the Lamport one-time signa-
ture scheme discussed in class? How many applications of the one-way function
are needed (on average) to generate a signature?

Problem 6. Homomorphic encryption. Let G be a group of prime order q and g a generator
of G.

a. Consider a variant of ElGamal encryption where the encryption of a message m ∈ Zq

using public key (G, g, h) is defined as c ← (gr, gmhr) where r
R← Zq. Suppose

1 ≤ m ≤ B. Write pseudo-code to decrypt the ciphertext c (i.e. recover the
message m) using the secret key x := Dlogg(h) with one exponentiation and
O(B) additional group operations.

b. For i = 1, 2 let ci be the encryption of message mi. Show that there is a simple
algorithmA that takes the public key (G, g, h) and the two ciphertexts c1 and c2 as
input, and outputs a random encryption of m1+m2. The output ciphertext should
be distributed as if the message m1 + m2 was encrypted with fresh randomness.
Note that A does not know either m1 or m2.

c. Suppose n people wish to compute the average of their salaries. Let xi be the salary
of person number i, where xi is an integer in [1, B] for all i. Our goal is to compute
A := (x1 + . . .+ xn)/n without revealing any other information about individual
salaries. Note that A need not be an integer.

3

Design an n step protocol where in step i (for i = 1, . . . , n − 1) user number i
sends a message to user number i + 1. In step n user number n sends a message
to user 1. User 1 then publishes A for all n people to see.

You may assume user 1 does not collude with any other user. All user 1 sees is
the message he sends to user 2 and the message he receives from user n. Some
remaining users may share information with one another to try and learn more
information about individual salaries (information beyond what is revealed by A).
Hint: User 1 generates a public/private ElGamal key. The remaining users use
your mechanism from part (b).

4

