The RSA Trapdoor Permutation

Dan Boneh
Stanford University

Review: arithmetic mod composites

- > Let $N = p \cdot q$ where p,q are prime
- Notation: $Z_N = \{0,1,2,...,N-1\}$ $(Z_N)^* = \{\text{invertible elements in } Z_N \}$
- Facts:
 - $x \in Z_N$ is in $(Z_N)^* \Leftrightarrow gcd(x,N) = 1$
 - Number of elements in $(Z_N)^*$ is $\varphi(N) = (p-1)(q-1)$
- Euler's thm: $\forall x \in (Z_N)^* : x^{\phi(N)} = 1$

The RSA trapdoor permutation

- First published:
 - Scientific American, Aug. 1977.
 (after some censorship entanglements)

- Currently the "work horse" of Internet security:
 - Most Public Key Infrastructure (PKI) products.
 - SSL/TLS: Certificates and key-exchange.
 - Secure e-mail: PGP, Outlook, ...

The RSA trapdoor permutation

> Parameters: N=pq. $N\approx 1024$ bits. $p,q\approx 512$ bits. $e-encryption\ exponent. <math>gcd(e,\phi(N))=1$.

- > 1-to-1 function: RSA(M) = $M^e \in Z_N^*$ where $M \in Z_N^*$
- Trapdoor: d decryption exponent.

 Where $e \cdot d = 1 \pmod{\varphi(N)}$
- > Inversion: $RSA(M)^d = M^{ed} = M^{k\phi(N)+1} = (M^{\phi(N)})^k \cdot M = M$
 - \rightarrow (n,e,t, ε)-RSA Assumption: For all t-time algs. A:

$$\text{Pr} \Big[\ A(N_{,}e,x) = x^{1/e} \ (N) \ : \ \ \ \, \begin{array}{c} p_{,}q \xleftarrow{R} n\text{-bit primes,} \\ N \leftarrow pq_{,} \ x \xleftarrow{R} Z_{N}^{\ *} \end{array} \Big] < \epsilon$$

Textbook RSA enc. is insecure

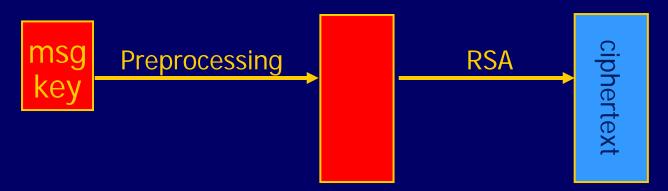
- > Textbook RSA encryption:
 - public key: (N,e) Encrypt: C = M^e (mod N)
 - private key: d Decrypt: $C^d = M \pmod{N}$ $(M \in Z_N^*)$
- > Completely insecure cryptosystem:
 - Does not satisfy basic definitions of security.
 - Many attacks exist.
- > The RSA trapdoor permutation is not an enc. scheme!

A simple attack on textbook RSA

- > Session-key K is 64 bits. View $K \in \{0,...,2^{64}\}$ Eavesdropper sees: $C = K^e \pmod{N}$.
- > Suppose $K = K_1 \cdot K_2$ where $K_1, K_2 \cdot 2^{34}$. (prob. ≈20%) Then: $C/K_1^e = K_2^e$ (mod N)
- ▶ Build table: $C/1^e$, $C/2^e$, $C/3^e$, ..., $C/2^{34e}$. time: 2^{34} For $K_2 = 0$,..., 2^{34} test if K_2^e is in table. time: $2^{34} \cdot 34$
- Attack time: ≈2⁴⁰ << 2⁶⁴

RSA enc. in practice

- > Never use textbook RSA.
- > RSA in practice (generic enc. with trapdoor func. is not often used):



- > Main question:
 - How should the preprocessing be done?
 - Can we argue about security of resulting system?

PKCS1 V1.5

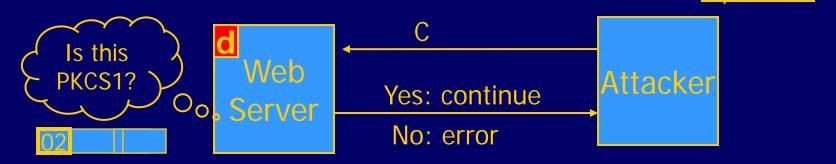
PKCS1 mode 2: (encryption)



- > Resulting value is RSA encrypted.
- > Widely deployed in web servers and browsers.
- No security analysis!!

Attack on PKCS1

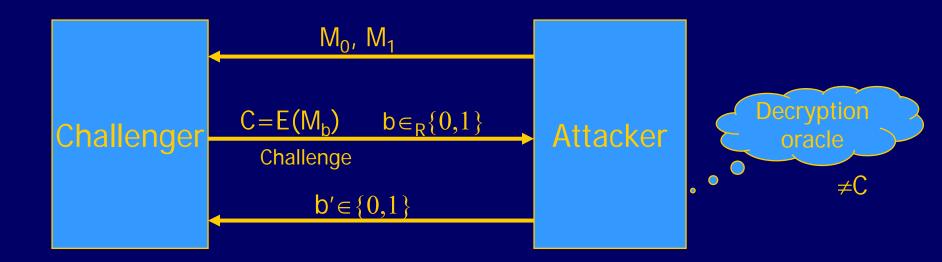
- Bleichenbacher 98. Chosen-ciphertext attack.
- PKCS1 used in SSL:



- \Rightarrow attacker can test if 16 MSBs of plaintext = '02'.
- > Attack: to decrypt a given ciphertext C do:
 - Pick $r \in Z_N$. Compute $C' = r^{e_i}C = (r \cdot PKCS1(M))^{e_i}$.
 - Send C' to web server and use response.

Review: chosen CT security (ccs)

No efficient attacker can win the following game: (with non-negligible advantage)

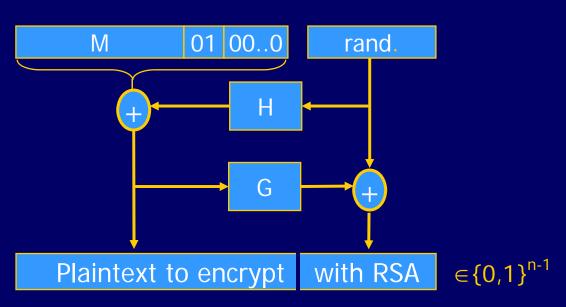


Attacker wins if b=b'

PKCS1 V2.0 - OAEP

> New preprocessing function: OAEP [BR94]

Check pad on decryption.
Reject CT if invalid.

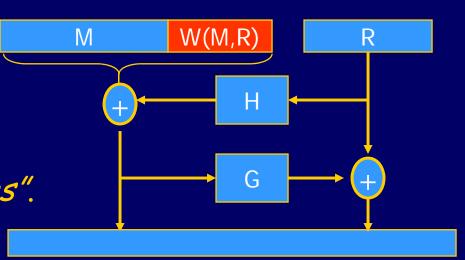


- ➤ Thm [FOPS'01]: RSA is trap-door permutation ⇒
 RSA-OAEP is CCS when H,G are "random oracles".
- > In practice: use SHA-256 for H and G.

OAEP Improvements

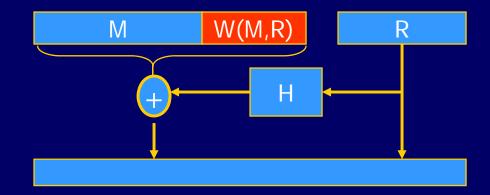
> OAEP+: [Shoup'01]

∀ trap-door permutation F F-OAEP+ is CCS when H,G,W are "random oracles".



> SAEP+: [B'01]

RSA trap-door perm ⇒
RSA-SAEP+ is CCS when
H,W are "random oracle".



Subtleties in implementing OAEP

[M '00]

```
OAEP-decrypt(C) {
    error = 0;
    ......

if (RSA<sup>-1</sup>(C) > 2<sup>n-1</sup>)
    { error = 1; goto exit; }
    ......

if (pad(OAEP<sup>-1</sup>(RSA<sup>-1</sup>(C))) != "01000")
    { error = 1; goto exit; }
```

- Problem: timing information leaks type of error.
 - \Rightarrow Attacker can decrypt any ciphertext C.
- > Lesson: Don't implement RSA-OAEP yourself ...

Part II: Is RSA a One-Way Function?

Is RSA a one-way function?

To invert the RSA one-way function (without d) attacker must compute:

```
M from C = M^e \pmod{N}.
```

- > How hard is computing e'th roots modulo N??
- Best known algorithm:
 - Step 1: factor N. (hard)
 - Step 2: Find e'th roots modulo p and q. (easy)

Shortcuts?

- Must one factor N in order to compute e'th roots? Exists shortcut for breaking RSA without factoring?
- To prove no shortcut exists show a reduction:
 - Efficient algorithm for e'th roots mod N
 - \Rightarrow efficient algorithm for factoring N.
 - Oldest problem in public key cryptography.
- Evidence no reduction exists: (BV'98)
 - "Algebraic" reduction \Rightarrow factoring is easy.
 - Unlike Diffie-Hellman (Maurer'94).

Improving RSA's performance

To speed up RSA decryption use small private key d. $C^d = M \pmod{N}$

- Wiener87: if $d < N^{0.25}$ then RSA is insecure.
- BD'98: if $d < N^{0.292}$ then RSA is insecure (open: $d < N^{0.5}$)
- Insecure: priv. key d can be found from (N,e).
- Small d should <u>never</u> be used.

Wiener's attack

$$\phi(N) = N-p-q+1 \quad \Rightarrow \quad |N-\phi(N)| \le p+q \le 3\sqrt{N}$$

$$d \le N^{0.25}/3 \quad \Rightarrow \quad \left|\frac{e}{N} - \frac{k}{d}\right| \le \frac{1}{2d^2}$$

Continued fraction expansion of e/N gives k/d.

$$e \cdot d = 1 \pmod{k} \implies \gcd(d,k)=1$$

RSA With Low public exponent

- To speed up RSA encryption (and sig. verify) use a small e. $C = M^e \pmod{N}$
- > Minimal value: e=3 (gcd(e, $\varphi(N)$) = 1)
- Recommended value: e=65537=2¹⁶+1
 Encryption: 17 mod. multiplies.
- > Several weak attacks. Non known on RSA-OAEP.
- Asymmetry of RSA: fast enc. / slow dec.
 - ElGamal: approx. same time for both.

Implementation attacks

- Attack the implementation of RSA.
- Timing attack: (Kocher 97)
 The time it takes to compute C^d (mod N)
 can expose d.
- Power attack: (Kocher 99)
 The power consumption of a smartcard while it is computing C^d (mod N) can expose d.
- Faults attack: (BDL 97)
 A computer error during C^d (mod N)
 can expose d.
 OpenSSL defense: check output. 5% slowdown.

Key lengths

Security of public key system should be comparable to security of block cipher.

NIST:

<u>Cipher key-size</u>	<u>Modulus size</u>
≤ 64 bits	512 bits.
80 bits	1024 bits
128 bits	3072 bits.
256 bits (AES)	<u>15360</u> bits

➤ High security ⇒ very large moduli.
Not necessary with Elliptic Curve Cryptography.