CS255: Introduction to Cryptography Winter 2009

Programming Project #2

Due: Wednesday, March 11th, 2009, 11:59 pm

1 Overview

1.1 Introduction

For programming project 2, you will implement a man-in-the-middle (MITM) attack on SSL*, using
an SSL proxy server. You will also implement a simple (command-line) administrative interface for
the proxy that will make use of password authentication.

1.2 Background

Recall that an eavesdropper on an SSL connection has little power because of the encryption being
used, but if an attacker is able to trick the user into using the attacker’s public key rather than
the intended receipient’s, this security is lost. While a real attacker would likely intercept and
manipulate the network packets direcly to implement this attack, you will have to make use of an
SSL proxy. After a client (i.e. a web browser) is configured to make use of an SSL proxy, all client
SSL requests are intercepted by the proxy and relayed to the intended remote webserver.

After an initial plaintext proxy CONNECT request by the client, normally the proxy just for-
wards the encrypted data to the server. However, instead of forwarding the initial request to the
remote server, your proxy will setup its own connection with the remote server and setup a con-
nection to the client using its own certificate. Then all traffic between the client « proxy and
the proxy < web-server is SSL encrypted, but with different keys. This means that the proxy has
access to the plaintext data sent and received by the client. Having the proxy use a single, fixed
SSL server certificate is not ideal, though, because modern web browsers check the common name
(CN) field of the certificate against the domain name of the remote server. So, to mount a more
transparent MITM attack, the proxy will have to generate new server certificates on the fly, for
each new client request. Web browsers will still complain once that the certificate is not trusted,
but if the user clicks past this warning, then the attacker wins.

You will be learning :

e keytool (command line utility) to generate and manage keys and certificates.
e TATK-JCE APIs to create and sign certificates programmatically.

e JSSE (Java Secure Socket Extension) to do secure networking.

"We emphasize that this project is for educational purposes only, and should never be used outside of this class.



1.3 Requirements

We will provide you with code for a basic SSL proxy, and you will need to do the following :

e Build and use a public key infrastructure using X509 certificates.

e Modify the SSL proxy to dynamically generate new SSL server certificates, based on the
domain name of the requested remote web server.

e Implement password authentication, over an SSL connection, for a simple administrative
interface.

e Implement a challenge/response based user authentication scheme. (Extra Credit)

We will examine each of these features in detail below. Since we have not yet covered in the
lectures all of the topics explored by this project, you may wish to start first on those aspects of
the project that you can do immediately and save the other parts for later.

2 Description

2.1 Secure communication

You will be working with network sockets. The JCE provides an abstraction for secure sockets in the
javax.net.ssl package and this relieves us from explicitly performing the key exchange, encryption
and integrity of the messages transferred over these sockets.

2.2 Public Key Infrastructure
2.2.1 Offline Key Generation

The SSL proxy has a public/private key pair which is generated offline using keytool. The keytool
is used to generate a keystore for each entity in the system. Before the system is bootstrapped,
you will have to generate a public/private key pair for the SSL proxy. The public key of the proxy
is self-signed.

2.2.2 Generating new server certificates

After connecting to a remote webserver, the proxy will have to create a new server certificate which
has the same common name (CN) field as the remote webserver’s certificate. This new certificate
will then be presented to the client, for use in an SSL session. You will use classes from the TAIK
library to create and sign these new server certificates.

2.3 Password Authentication

In addition to implementing the MITM attack with the proxy server, you will implement a simple
remote administrative interface for the proxy server, which uses password authentication. This will
allow the hacker to remotely log into the server and issue commands. In order to ensure only those
users the attacker has authorized can log in, the interface will use password authentication. To
connect to the proxy server, the administrative program will setup an SSL connection to the proxy



server and transmit the hacker’s username, password, and command. The proxy server maintains an
encrypted password file, which contains a list of authorized usernames and passwords, stored salted
and hashed. When the proxy receives a log in request, it should compare the hash of the received
password with the stored hash from the appropriate user, allowing the user to proceed if they
match, otherwise closing the connection. Once the admin client is authenticated, the appropriate
command should be executed.

You will need to implement the following commands:

e shutdown: shutdown the MITM proxy server

e stats: List how many requests were proxied

2.4 Challenge/Response Authentication (Extra Credit)

For extra credit you may implement a more sophistated challenge/response authentication method
along with the password authentication described above. In this the proxy server will issue a
challenge to the user, which they must then answer with a response that proves their identity.
Several such methods exist, and we leave it to you to decide on the precise details of the method.
If you do choose to implement such a system, you should provide a brief explanation of it, and why
it provides a secure authentication mechanism.

2.5 System setup

There are four main types of entities in our system: the user’s web browser, the remote webserver
the user is attempting to connect to, the proxy server intercepting the connection, and the ad-
ministrative client to the proxy server. Once the proxy server is started and begins listening for
connections, the user’s web browser should be configured to use an SSL proxy with the hostname
and port used by the MITMProxyServer. All SSL connections by the web browser will then be
routed through the proxy server.

When the browser attempts to make an SSL connection, the proxy will parse the CONNECT
request and make its own SSL connection to the requested server. The proxy will use the connection
to obtain the remote server’s certificate. The proxy will then create a forged certificate which copies
the entries in the remote server’s certificate (e.g. its Common Name). The proxy then signs this
generated certificate with its self signed CA certificate (loaded from a keystore specified at startup).
It then passes this generated certificate back to the web browser, setting up an SSL connection
between itself and the browser. The proxy then passes data, which it of course sees in the clear,
between the two connections.

In addition to listening for connections from web browsers, the proxy server listens for con-
nections from the admin client on a separate port. When the admin client wants to connect to
the proxy server, it opens an SSL connection to the proxy on its hostname and admin port and
transmits a username and password. The proxy server then consults its password file (specified at
startup and stored on disk using authenticated encryption) and authenticates the user.

3 Implementation

As with the first programming project, we have provided you with starter code. The starter code
illustrates the basic socket and thread programming. See the following section for links of tutorials



on socket and thread programming. In addition to Sun Java JCE library, you need IAIK JCE
extension library to create and sign X509 certificates. The library is included in the starter code.



3.1 Description of the code

Here is a brief description of some of the starter code. The files you need to modify are in bold :

Makefile Makefile for the project; modify this file to compile
new classes that you add.

MITMProxyServer.java Starts up the SSL proxy server.

HTTPSProxyEngine.java The core SSL proxy code.

MITMSSLSocketFactory.java Used in the creation of new SSL sockets.

MITMAdminClient.java Command line tool for remotely accessing the
proxy server.

MITMAdminServer.java Creates connections with authorized admin clients.

ProxyDataFilter.java Logs the (plaintext) data exchanged between the
client and remote webserver.

ConnectionDetails.java Holds information about the two endpoints of a
TCP connection.

CopyStreamRunnable.java Blindly copies data from an InputStream to an
OutputStream.

MITMPlainSocketFactory.java Used to create unencrypted sockets, to handle the
initial browser proxy CONNECT request.

ProxyEngine.java Abstract parent class of HTTPSProxyEngine.

StreamThread.java Copies data from an InputStream to an Output-
Stream, using a ProxyDataFilter to record the data
that’s being streamed through.




Over and above modifying the above files, you will need to add a class which reads a file of
admin-client usernames and passwords, and generates an encrypted file using a key generated from
the proxy key store password. This class is run separately from the above framework and is needed
to pre-compute the encrypted file which has a list of usernames and the corresponding authentica-
tion information.

3.2 Running the code

You should spend some time getting familiar with the provided framework and reading the com-
ments in the starter code. You will need to copy the pp2.zip file to your account. If using cluster
machines you will also need to source setup.csh to set your path and classpath correctly. In Eclipse,
you can instead add iaik_jce.jar as a library.

1. Change your browser settings to make use of an SSL proxy

2. Start the SSL Proxy:
~/pp2> java mitm.MITMProxyServer -keyStore <yourkeystore> -keyStorePassword
<kspwd> -outputFile <logfile> &

3. Run an admin client:
~/pp2> java mitm.MITMAdminClient -userName <user> -userPassword <pwd>
-cmd <cmd>&

3.3 Crypto Libraries and Documentation

In addition to java.security and javax.crypto, some classes in iaik.x509 and iaik.asnl.structures are
also needed to do certificate management.

NOTE: We require that your submission work with the Java API version on the myth machines.
Also, use the version of the IAIK library provided by us.

The following are some links to useful documentation :

e Java API
http://java.sun.com/j2se/1.5.0/docs/api

e TATK-JCE API
http://javadoc.iaik.tugraz.at /iaik _jce/current/index.html

e Java Keytool Manual
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris /keytool.html

e JCE Reference Guide
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/ JCERefGuide.html

e JSSE Reference Guide
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/ JSSERefGuide.html



e Sun Tutorial on Socket Programming
http://java.sun.com/docs/books/tutorial /networking /sockets/

e Sun Tutorial on Thread Programming
http://java.sun.com/docs/books/tutorial /essential /threads/

e IBM Tutorial on JSSE (Introductory)
http://www-106.ibm.com/developerworks/java/edu/j-dw-javajsse-i.html

e IBM Tutorial on JSSE (Advanced)
http://www-106.ibm.com/developerworks/java/library/j-customssl/

Some classes/interfaces you may want to take a look at:

e java.security.SecureRandom

e java.security.KeyStore

e java.security.PublicKey

e java.security.PrivateKey

e javax.net.ssl. KeyManagerFactory
e javax.net.ssl. KeyManager

e javax.net.ssl. TrustManagerFactory

e javax.net.ssl. TrustManager

e java.net.ServerSocket

e java.net.Socket

e javax.net.ssl.SSLSocket

e javax.net.ssl.SSLServerSocket
e javax.net.ssl.SSLSocketFactory
e javax.net.ssl.SSLContext

e javax.net.ssl.SSLSessionContext

e java.security.cert.Certificate

e java.security.cert.X509Certificate
e iaik.x509.X509Certificate

e iaik.asn1.ASN1Object

e iaik.asnl.structures.AlgorithmID

e jaik.asnl.structures.Name



4 Miscellaneous

4.1 Questions

e We strongly encourage you to use the class newsgroup (su.class.cs255) as your first line of
defense for the programming projects. TAs will be monitoring the newsgroup daily and, who
knows, maybe someone else has already answered your question.

e You can also email the staff at ¢s255ta@cs.stanford.edu

4.2 Deliverables

In addition to your well-decomposed, well-commented solution to the assignment and your keystore
file, you should submit a README containing;:

e the names, leland usernames and SUIDs of the people in your group

e a description of the design choices you made in implementing each of the required security
features (illustrate with diagrams as needed; be concise and clear)

e a sequence of steps which will be required to run your system (this should be as simple as
possible)

e the name and password for the keystore you have created

e a copy of a proxy log file from your tests (take care not to leave any passwords or credit card
numbers in it!)

e a short answer to the following question: How would you change a web browser to make it
less likely that a user would be fooled by an attack like the one you implemented? This is an
important question to ask because when dealing with security, we never just build attacks:
we also need to think of ways to prevent them.

To submit, clean up your project2 directory from binaries, prepare a zip or tar archive, and
e-mail it to cs255ta@cs.stanford.edu.

4.3 Grading

This project is worth 20 points (20% of your final grade). The breakdown will be approximately
as follows:

e working SSL proxy implementation (10 points)
e working SSL admin interface (5 points)
e quality of documentation—design, instructions, etc. (5 points)

e challenge-based admin authentication—working implementation and good design descrip-
tion/justification (2 points) NOTE: These extra credit points can only be used to supplement
your score from the first two lines above. For example, if your documentation for the manda-
tory parts of the assignment receives 3 points, then the maximum grade you get for the project
including extra credit will be 18.



