CS255: Introduction to Cryptography Winter 2009

Programming Project #1

Milestone #1 Due Date: Friday, January 21st, 2009.
Milestone #2 Due Date: Wednesday, February 11th, 2009.

1 Overview

For the first programming assignment you will be implementing a password manager, similar (but
inferior in many ways) to your operating system’s keychain software. The password manager must
be able to operate securely either locally or over a network. It must be protected against both an
adversary who takes over the network, and to a lesser degree against one who takes over the server.

The project is divided into two milestones in order to encourage you to start early and work out
some of the more difficult parts before starting on your implementation. Significant parts of the
implementation are provided to you, so that you can focus on a small number of essential aspects
of the problem.

The first milestone requires you to design the secure protocol between the client and the
server. Your deliverable is a short (e.g. one or two page) specification of the protocol you are
planning to use in your implementation. The specification should be concise, clear, and sufficiently
detailed. The deliverable includes both diagrams of the allowed message exchanges in the system,
and textual description of how the protocol works, and why it is secure.

The second (and final) milestone requires you to employ your existing protocol design and
complete the implementation of the password manager. Similar to your protocol specification, your
implementation should be as concise and clear as possible, and you have to follow some more specific
conventions outlined in this text in order to enable us to grade your implementation efficiently.

2 Features

Any password manager’s essential function is a secure map from the names of resources to their
passwords, protected by a highly secret master password. For simplicity, we will assume that these
are all strings. In particular, there are no additional data such as user name, site URL or notes.
The software is divided up into a client, which manages the user interface, and a remote server,
which stores the database of passwords. For simplicity, our server only supports a single user.

e The user must be able to add, remove and change (resource name, password) pairs. These
pairs should be stored on the server, and should persist across restarts of both the client and
server.

e The user must be able to change the master password at any time, without re-encrypting all
of his stored passwords.

e The client software should not need to save any state between sessions. That way, it can be
used on multiple machines at the same time without synchronizing state between the clients.



3 Threat Model
The password manager should be secure against the following attackers:

e Attackers who connect to the server as password manager clients should only be able to
mount an online attack against the user’s master password. That is, they shouldn’t be able
to retrieve anything useful for an offline dictionary attack. For example, this means the server
must not blindly send password-encrypted known text that can be analyzed by the attacker
offline by trying different, plausible master passwords. On the other hand, your key exchange
protocol could involve messages that contain password-encrypted random bits, since those bits
can not be analyzed by the attacker without successfully completing the secure handshake.
In other words, encryption of random bits with a relatively weak password-derived key still
satisfies the perfect secrecy criterion mentioned in class.

e Active network attackers should not be able to read any of the user’s passwords. Nor should
they be able to tamper with either the client or the server: they should’t be able to convince
the client to accept the wrong password (even an old one for the same resource), or to convince
the server to change or delete a password. Of course, a network attacker can deny service;
you do not need to make any effort to prevent this.

e Attackers who break into the server by some external means should not be able to read any
of the passwords stored there, though they might tamper with them or delete them.

You are not required to protect the secrecy of the user’s resource names or operations; that is,
an eavesdropper may be able to determine whether the user is adding a new password, modifying
one, or looking one up, and for what site. Nor are you required to protect the length of the stored
passwords.

4 Cryptographic Requirements
4.1 Counter Mode (CTR)

You should use AES encryption in counter mode to protect the secrecy of the stored passwords
(and, if you're doing the extra credit, the resource names).

Counter mode encryption generates a pseudorandom sequence by encrypting successive values of
a counter. Formally, encryption of a message (mqg, m1,...,my)is (IV, E(k, IV )®mg, E(k, IV +1)®
mi,...,E(k, IV +n)®m,). As in other modes of encryption, new IV should be chosen randomly
each time. Unlike most other modes of operation, counter mode does not require padding: the
ciphertext length can be truncated to the length of the actual message without losing information.

4.2 Integrity Check using MACs

You will need to protect the integrity of messages on the network in order to prevent an attacker
from modifying them while in transit. To prevent replay attacks without storing persistent state on
the client, you should use a different MAC key in each session. You will still need a unique nonce
on each message, but because of the per-session MAC, they can be unique-per-session instead of
globally unique.



5 Protocol Specification

The protocol specification for all message exchanges between the client and server is your first
deliverable. One good example of a security protocol description is given in RFC 4763, available
on the Internet. Note the protocol description in section 3.2, and figures 1, 2, and 3.

For an example of another, somewhat informal and less relevant for now security protocol
specification, you can look at the TLS protocol page in Wikipedia:

http://en.wikipedia.org/wiki/Secure_Sockets_Layer

Note again the structure of the diagram, showing the different message exchanges between a
client and a server, the payload of the messages, and the local processing that occurs on the client
and server. Also note the specific, unambiguous format defined for each message.

Before starting on the protocol design, please proceed through the end of this text.
The supplied code dictates some of the protocol format and semantics. You will save
time by adhering to the choices that have already been made in the code provided,
and focusing on the parts of the implementation that are actually missing.

6 Components

6.1 Big Picture

On the client, EncryptedMap provides to the Client class the interface to the password map,
making sure to encrypt values before sending them to the server via NetworkedMap (and con-
versely, decrypt them after retrieval). NetworkedMap uses SecureBlobIO to communicate with
the server.

On the server, NetworkedMapServer acts as glue between SecureBlobIO and FileMap.

Not all (but certainly some) traffic over the network needs to be encrypted, while all of it will
likely have to be authenticated: this is relevant when you consider the network protocol design, and
the SecureBlobIO implementation. Additionally, the structure of the provided code implies that
password value encryption and decryption happens at the client only (in other words, Encrypt-
edMap is only used on the client). This has implications both for what traffic you can afford not
to encrypt, and for what information you need (and don’t need) to store persistently at the server.

Also note that the steady-state protocol between the client and the server is largely defined
(look at NetworkMapServerThread’s run() method). In essence, the important protocol piece
you are defining is the session setup, during which the client and server agree on a key they are
going to use while the connection lasts.

6.2 Map

The primary functionality of the password manager is a secure, persistent, networked map from
strings to strings. This functionality is developed in layers: FileMap provides a persistent map;
NetworkedMap (along with NetworkedMapServer and NetworkedMapServerThread) ex-
ports it over the network; EncryptedMap provides secrecy and authentication; and StringMap
translates to and from Strings using the UTF-8 character set.

You don’t need to implement any of these maps: the only security-related one is EncryptedMap,
and it’s fairly trivial.



The maps included in this package do not quite conform to the Java map specifications in that
they treat byte arrays as immutable objects. It is important to realize that because arrays are ac-
tually mutable, two arrays with the same elements are not considered equal by the Java standard li-
braries. As aresult, FileMap and the like behave differently from, say, a HashMap<byte[],byte[]>.

6.3 Aes and Hmac

Aes and Hmac provide convenience classes over the Java cryptographic library. Hmac wraps the
system implementation of HMAC/SHA1, and Aes uses HMAC and the system implementation of
AES to implement authenticated AES counter-mode encryption.

You need to implement the Aes class; the Hmac class is provided for you.

6.4 BloblIO

BlobIO handles input and output using arrays of bytes (blobs), and, for convenience, arrays of
arrays of bytes. Its instance FileBlobIO implements atomic file operations using temporary files
and renaming semanatics. Its instance IOBloblO uses the standard input/output libraries to send
over pipes and network sockets.

You need to implement the SecureBloblO instance, which will provide a channel whose integrity
is protected from network attackers.

6.5 Client

The Client class implements the password manager’s GUIL. The current client is fairly limited; for
instance, it cannot connect to any server other than localhost. You're welcome to improve this
class, but it’s not really the point of the project.

6.6 NetworkedMapServer

This class implements the network server, saving files in a directory called net_test. You don’t need
to modify it.

6.7 Test

The test class will conduct a simple series of tests over a virtualized network. It won’t involve the
GUI, and it can be built and run even if you don’t have SWT installed.

7 Implementation

You will be using the JCE (Java Cryptographic Extensions) while programming for this assignment.
You should spend some time getting familiar with the provided framework.
7.1 Getting the code

Download the pp1.tar.gz file linked on site to a directory in your account. Untar and unzip using
the following command:

tar xvzf ppl.tar.gz



This should create the source tree for the project under the pp1/ directory.

7.2 Description of the code

Here is a brief description of the files we provide. The files you need to change are in bold

Makefile

Makefile for the project

pwman/Aes.java

The implementation of AES modes

pwman/SecureBloblO.java

Cryptographic network protocol

pwman/Hmac.java

Wrapper class around HMAC/SHA1

pwman/BlobIO.java

Binary Input/Output module

pwman/Client.java

GUI client

pwman /NetworkedMapServer.java

Main server

pwman /Test.java

Test harness

pwman/EncryptedMap.java

Encrypted implementation of binary map

pwman /NetworkedMap.java

7.3 Running the code

Network map protocol

To build the project, enter the pp! directory and type make. To test the system, type make run-
test. To use the client and server, type make all run-server & followed by make run-client. The
client will only compile and run on a machine which has the SWT graphics library installed; this
can be obtained on Ubuntu by typing sudo apt-get install libswt3. 2-gtk-java. To erase created class
files along with cores, emacs temporary files and the test and net_test directories, type make clean.

Note: Your solution will be tested on the myth machines. So, please test your code on one of



the myths before submitting. Note that SWT may not be directly available on the cluster work-
stations, in which case the client GUI will neither compile nor run.

7.4 Crypto Libraries and Documentation

Java’s security and cryptography classes are divided into two main packages: java.security.® and
javax.crypto.*. They have been integrated into Java 2 Platform Standard Edition v 1.5. Classes for
cryptographic hashing and digital signatures (not required for project 1) can be found in security,
whereas ciphers and MACs are located in the JCE.

The following are some links to useful documentation :

e Java API
http://java.sun.com/j2se/1.5.0/docs/api

e JCE Reference Guide
http://java.sun.com/j2se/1.5.0/docs/quide/security/jce/JCERefGuide.html

e Java Tutorial
http://java.sun.com/docs/books/tutorial/

e Chapter 6 from Java Cryptography by Jonathon Knudsen
http://www.oreilly.com/catalog/javacrypt/chapter/ch06.html

Some classes/interfaces you may want to take a look at:
- javax.crypto.KeyGenerator
- javax.crypto.SecretKey

- javax.crypto.Mac

javax.crypto.Cipher

javax.crypto.SecretKeyFactory

java.security.SecureRandom

8 Deliverables and Grading

8.1 Milestone #1

In your specification, you have to:

e describe (using high-level pseudocode) how each side (client, server) of the SecureBlobIO
connection behaves upon connection establishment;

e describe (using struct-like statements and pseudocode) what each subsequent message ex-
change looks like (including on-the-wire format); what behavior is triggered at the recipient;
and how the response eventually gets processed at the origin;



e include a diagram for the above items.

Your write-up will be graded as follows: correctness, security, and completeness (about 70%);
conciseness and clarity (about 30%). This milestone is worth 5 points (meaning, 5% of your final
grade for the course).

8.2 Milestone #2 (Final Submission)

In addition to your well-commented solution to the assignment, you should submit a README
containing the names, leland usernames and SUIDs of the people in your group, a description of the
design choices you made in implementing each of the required security features, and the protocol
specification as submitted for the first milestone (with any corrections you have made during your
implementation).

When you are ready to submit, make sure you are in your pp! directory and type:

make clean; /usr/class/cs255/bin/submit

Your submission will be graded as follows: correctness, security, and completeness of the imple-
mentation (about 70%); clean and well-documented code (about 30%). This milestone is worth 10
points (meaning, 10% of your final grade for the course). Note that an insecure protocol from the
first milestone, used as-is for the second milestone will automatically yield an insecure implemen-
tation which can not receive maximum credit (this is why you should analyze and fix any problems
from your milestone #1 write-up for your milestone #2 work).

9 Miscellaneous

e We strongly encourage you to use the class newsgroup (su.class.cs255) as your first line of
defense for the programming projects. TAs will be monitoring the newsgroup daily and, who
knows, maybe someone else has already answered your question.

e You can also email the staff at ¢s255ta@cs.stanford.edu



