Assignment #3

Due: Wednesday, Mar. 4, 2009. In class.

Problem 1 Let's explore why in the RSA public key system each person has to be assigned a different modulus N = pq. Suppose we try to use the same modulus N = pq for everyone. Each person is assigned a public exponent e_i and a private exponent d_i such that $e_i \cdot d_i = 1 \mod \varphi(N)$. At first this appears to work fine: to encrypt a message to Bob, Alice computes $C = M^{e_{bob}}$ and sends C to Bob. An eavesdropper Eve, not knowing d_{bob} appears to be unable to decrypt C. Let's show that using e_{eve} and d_{eve} Eve can very easily decrypt C.

- **a.** Show that given e_{eve} and d_{eve} Eve can obtain a multiple of $\varphi(N)$.
- **b.** Show that given an integer K which is a multiple of $\varphi(N)$ Eve can factor the modulus N. Deduce that Eve can decrypt any RSA ciphertext encrypted using the modulus N intended for Alice or Bob.

Hint: Consider the sequence $g^K, g^{K/2}, g^{K/4}, \dots g^{K/\tau(K)} \mod N$ where g is random in \mathbb{Z}_N and $\tau(N)$ is the largest power of 2 dividing K. Use the the left most element in this sequence which is not equal to $\pm 1 \mod N$.

Problem 2. Time-space tradeoff. Let $f: X \to X$ be a one-way permutation. Show that one can build a table T of size B bytes $(B \ll |X|)$ that enables an attacker to invert f in time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm \mathcal{A} that takes as input the table T and a $y \in X$, and outputs an $x \in X$ satisfying f(x) = y. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.

Hint: Pick a random point $z \in X$ and compute the sequence

$$z_0 := z$$
, $z_1 := f(z)$, $z_2 := f(f(z))$, $z_3 := f(f(f(z)))$, ...

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists some j > 0 such that $z_j = z$). We call the resulting sequence (z_0, z_1, \ldots, z_j) an f-cycle. Let $t := \lceil |X|/B \rceil$. Try storing $(z_0, z_t, z_{2t}, z_{3t}, \ldots)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time O(t).

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value x to Bob. The scheme is *secure* if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may *open* the commitment and convince Bob that the committed value is x. The commitment is *binding* if Alice cannot convince Bob that the committed value is some $x' \neq x$. Here is an example commitment scheme:

- **Public values:** (1) a 1024 bit prime p, and (2) two elements g and h of \mathbb{Z}_p^* of prime order q.
- **Commitment:** To commit to an integer $x \in [0, q 1]$ Alice does the following: (1) she picks a random $r \in [0, q 1]$, (2) she computes $b = g^x \cdot h^r \mod p$, and (3) she sends b to Bob as her commitment to x.
- **Open:** To open the commitment Alice sends (x, r) to Bob. Bob verifies that $b = g^x \cdot h^r \mod p$.

Show that this scheme is secure and binding.

- **a.** To prove security show that b does not reveal any information to Bob about x. In other words, show that given b, the committed value can be any integer x' in [0, q-1].
 - Hint: show that for any x' there exists a unique $r' \in [0, q-1]$ so that $b = g^{x'}h^{r'}$.
- **b.** To prove the binding property show that if Alice can open the commitment as (x', r') where $x \neq x'$ then Alice can compute the discrete log of h base g. In other words, show that if Alice can find an (x', r') such that $b = g^{x'}h^{r'}$ mod p then she can find the discrete log of h base g. Recall that Alice also knows the (x, r) used to create b.
- **Problem 4** Access control and file sharing using RSA. In this problem N = pq is some RSA modulus. All arithmetic operations are done modulo N.
 - **a.** Suppose we have a file system containing n files. Let e_1, \ldots, e_n be relatively prime integers that are also relatively prime to $\varphi(N)$, i.e. $\gcd(e_i, e_j) = \gcd(e_i, \varphi(N)) = 1$ for all $i \neq j$. The integers e_1, \ldots, e_n are public. Let $R \in \mathbb{Z}_N^*$ and suppose each file F_i is encrypted using the key $key_i = R^{1/e_i}$.
 - Now, let $S \subseteq \{1, ..., n\}$ and set $b = \prod_{i \in S} e_i$. Suppose user u is given $K_u = R^{1/b}$. Show that user u can decrypt any file $i \in S$. That is, show how user u using K_u can compute any key key_i for $i \in S$.
 - This way, each user u_j can be given a key K_{u_j} enabling it to access those files to which it has access permission.
 - b. Next we need to show that using K_u user u cannot compute any key key_i for $i \notin S$. To do so we first consider a simpler problem. Let d_1, d_2 be two integers relatively prime to $\varphi(N)$ and relatively prime to each other. Suppose there is an efficient algorithm \mathcal{A} such that $\mathcal{A}(R, R^{1/d_1}) = R^{1/d_2}$ for all $R \in \mathbb{Z}_N^*$. In other words, given the d_1 'th root of $R \in \mathbb{Z}_N^*$ algorithm \mathcal{A} is able to compute the d_2 'th root of R. Show that there is an efficient algorithm \mathcal{B} to compute d_2 'th roots in \mathbb{Z}_N^* . That is, $\mathcal{B}(X) = X^{1/d_2}$ for all $X \in \mathbb{Z}_N^*$. Algorithm \mathcal{B} uses \mathcal{A} as a subroutine.
 - c. Show using part (b) that user u cannot obtain the key key_i for any $i \notin S$ assuming that computing e'th roots modulo N is hard for any e such that $gcd(e, \varphi(N)) = 1$. (the contra-positive of this statement should follow from (b) directly).

Problem 5 In class we briefly noted that a one-time signature scheme can be converted into a many-time signature scheme. Let's explore how to do it. The signer in our many-time scheme will maintain internal state and update it every time he signs a message. Let (G, S, V) be a one-time signature scheme (i.e. a scheme secure as long as a public/secret pair is used to sign at most one message). To build a signature scheme for signing 2^n messages (say n=32) visualize a complete binary tree with 2^n leaves. Every node in this tree stores a different public/secret key pair for the one-time system. The public key for our many-time scheme is the public key stored at the root of the tree. To sign message number i the signer uses the ith leaf in the tree (for $1 \le i \le 2^n$). Let u_0, \ldots, u_n be the n nodes on the path from the root to the ith leaf (u_0) is the root of the tree, u_n is the leaf). To sign the message m, first use the secret key in the leaf node u_n to sign m. Let s_n be the resulting signature. Then for $i=0,\ldots,n-1$ use the secret key in node u_i to sign the pair of public keys stored in its two children. Let (s_0,\ldots,s_{n-1}) be the resulting n one-time signatures. For $1 \leq i \leq n$ let pk_i be the public key stored is node u_i and let pk'_i be the public key stored in the sibling of node u_i . The many-time scheme outputs $(i, (s_0, pk_1, pk'_1), \ldots, (s_{n-1}, pk_n, pk'_n), s_n)$ as the signature on m.

- a. Write (short) pseudo-code to implement the signing and verification algorithms for the many-time scheme. Your signing code should maintain state containing at most 2n one-time public/private key pairs at any given time. Your verification code should be stateless.
- **b.** Briefly explain why your implementation is secure. In other words, explain why your signing code never uses a one-time public-key to sign two distinct messages.
- c. What is the size of the resulting signatures when using the Lamport one-time signature scheme discussed in class? How many applications of the one-way function are needed (on average) to generate a signature?