
CS255: Cryptography and Computer Security Winter 2009

Assignment #3
Due: Wednesday, Mar. 4, 2009. In class.

Problem 1 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt a message
to Bob, Alice computes C = M ebob and sends C to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to decrypt C. Let’s show that using eeve and deve

Eve can very easily decrypt C.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N).

b. Show that given an integer K which is a multiple of ϕ(N) Eve can factor the
modulus N . Deduce that Eve can decrypt any RSA ciphertext encrypted using
the modulus N intended for Alice or Bob.
Hint: Consider the sequence gK , gK/2, gK/4, . . . gK/τ(K) mod N where g is random
in ZN and τ(N) is the largest power of 2 dividing K. Use the the left most element
in this sequence which is not equal to ±1 mod N .

Problem 2. Time-space tradeoff. Let f : X → X be a one-way permutation. Show that
one can build a table T of size B bytes (B � |X|) that enables an attacker to invert f in
time O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm
A that takes as input the table T and a y ∈ X, and outputs an x ∈ X satisfying
f(x) = y. This result suggests that the more memory the attacker has, the easier it
becomes to invert functions.
Hint: Pick a random point z ∈ X and compute the sequence

z0 := z, z1 := f(z), z2 := f(f(z)), z3 := f(f(f(z))), . . .

Since f is a permutation, this sequence must come back to z at some point (i.e. there
exists some j > 0 such that zj = z). We call the resulting sequence (z0, z1, . . . , zj) an
f -cycle. Let t := d|X|/Be. Try storing (z0, zt, z2t, z3t, . . .) in memory. Use this table
(or perhaps, several such tables) to invert an input y ∈ X in time O(t).

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any infor-
mation about the committed value x. At a later time Alice may open the commitment
and convince Bob that the committed value is x. The commitment is binding if Alice
cannot convince Bob that the committed value is some x′ 6= x. Here is an example
commitment scheme:

1

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of Z∗
p of prime

order q.

Commitment: To commit to an integer x ∈ [0, q − 1] Alice does the following: (1)
she picks a random r ∈ [0, q− 1], (2) she computes b = gx · hr mod p, and (3) she
sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that
b = gx · hr mod p.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In
other words, show that given b, the committed value can be any integer x′ in
[0, q − 1].
Hint: show that for any x′ there exists a unique r′ ∈ [0, q − 1] so that b = gx′

hr′
.

b. To prove the binding property show that if Alice can open the commitment as
(x′, r′) where x 6= x′ then Alice can compute the discrete log of h base g. In other
words, show that if Alice can find an (x′, r′) such that b = gx′

hr′
mod p then she

can find the discrete log of h base g. Recall that Alice also knows the (x, r) used
to create b.

Problem 4 Access control and file sharing using RSA. In this problem N = pq is some RSA
modulus. All arithmetic operations are done modulo N .

a. Suppose we have a file system containing n files. Let e1, . . . , en be relatively prime
integers that are also relatively prime to ϕ(N), i.e. gcd(ei, ej) = gcd(ei, ϕ(N)) = 1
for all i 6= j. The integers e1, . . . , en are public. Let R ∈ Z∗

N and suppose each
file Fi is encrypted using the key keyi = R1/ei .

Now, let S ⊆ {1, . . . , n} and set b =
∏

i∈S ei. Suppose user u is given Ku = R1/b.
Show that user u can decrypt any file i ∈ S. That is, show how user u using Ku

can compute any key keyi for i ∈ S.

This way, each user uj can be given a key Kuj
enabling it to access those files to

which it has access permission.

b. Next we need to show that using Ku user u cannot compute any key keyi for i 6∈ S.
To do so we first consider a simpler problem. Let d1, d2 be two integers relatively
prime to ϕ(N) and relatively prime to each other. Suppose there is an efficient
algorithm A such that A(R,R1/d1) = R1/d2 for all R ∈ Z∗

N . In other words, given
the d1’th root of R ∈ Z∗

N algorithm A is able to compute the d2’th root of R.
Show that there is an efficient algorithm B to compute d2’th roots in Z∗

N . That
is, B(X) = X1/d2 for all X ∈ Z∗

N . Algorithm B uses A as a subroutine.

c. Show using part (b) that user u cannot obtain the key keyi for any i 6∈ S assuming
that computing e’th roots modulo N is hard for any e such that gcd(e, ϕ(N)) = 1.
(the contra-positive of this statement should follow from (b) directly).

2

Problem 5 In class we briefly noted that a one-time signature scheme can be converted
into a many-time signature scheme. Let’s explore how to do it. The signer in our
many-time scheme will maintain internal state and update it every time he signs a
message. Let (G, S, V) be a one-time signature scheme (i.e. a scheme secure as long as
a public/secret pair is used to sign at most one message). To build a signature scheme
for signing 2n messages (say n = 32) visualize a complete binary tree with 2n leaves.
Every node in this tree stores a different public/secret key pair for the one-time system.
The public key for our many-time scheme is the public key stored at the root of the
tree. To sign message number i the signer uses the ith leaf in the tree (for 1 ≤ i ≤ 2n).
Let u0, . . . , un be the n nodes on the path from the root to the ith leaf (u0 is the root
of the tree, un is the leaf). To sign the message m, first use the secret key in the leaf
node un to sign m. Let sn be the resulting signature. Then for i = 0, . . . , n − 1 use
the secret key in node ui to sign the pair of public keys stored in its two children.
Let (s0, . . . , sn−1) be the resulting n one-time signatures. For 1 ≤ i ≤ n let pk i be
the public key stored is node ui and let pk ′i be the public key stored in the sibling of
node ui. The many-time scheme outputs (i, (s0, pk 1, pk

′
1), . . . , (sn−1, pkn, pk

′
n), sn) as

the signature on m.

a. Write (short) pseudo-code to implement the signing and verification algorithms for
the many-time scheme. Your signing code should maintain state containing at
most 2n one-time public/private key pairs at any given time. Your verification
code should be stateless.

b. Briefly explain why your implementation is secure. In other words, explain why
your signing code never uses a one-time public-key to sign two distinct messages.

c. What is the size of the resulting signatures when using the Lamport one-time signa-
ture scheme discussed in class? How many applications of the one-way function
are needed (on average) to generate a signature?

3

