
CS255: Cryptography and Computer Security Winter 2009

Assignment #2
Due: Wednesday, Feb. 18, 2009.

Problem 1 Merkle hash trees.
Merkle suggested a parallelizable method for constructing hash functions out of com-
pression functions. Let f be a compression function that takes two 512 bit blocks
and outputs one 512 bit block. To hash a message M one uses the following tree
construction:

Block 1 Block 2 Block 3 Block 4 Block 15Message Block 16

msg-len

Hash

f f f

ff

f

f

Prove that if one can find a collision for the resulting hash function then one can find
collisions for the compression function.

Problem 2 In the lecture we saw that Davies-Meyer is often used to convert an ideal block
cipher into a collision resistant compression function. Let E(k,m) be a block cipher
where the message space is the same as the key space (e.g. 128-bit AES). Show that
the following methods do not work:

f1(x, y) = E(y, x)⊕ y and f2(x, y) = E(x, x)⊕ y

That is, show an efficient algorithm for constructing collisions for f1 and f2. Recall
that the block cipher E and the corresponding decryption algorithm D are both known
to you.

1

Problem 3 Suppose one implements CBC mode encryption with a random IV, but instead
of picking the IVs at random, the IV is implemented as a counter. That is, message
number i is encrypted using i as the IV. Is the resulting system semantically secure
under CPA attacks (i.e. when the secret key is used to encrypt multiple messages)? If
so explain why; if not, explain why not.

Problem 4 Suppose user A is broadcasting packets to n recipients B1, . . . , Bn. Privacy is
not important but integrity is. In other words, each of B1, . . . , Bn should be assured
that the packets he is receiving were sent by A. User A decides to use a MAC.

a. Suppose user A and B1, . . . , Bn all share a secret key k. User A MACs every packet
she sends using k. Each user Bi can then verify the MAC. Using at most two
sentences explain why this scheme is insecure, namely, show that user B1 is not
assured that packets he is receiving are from A.

b. Suppose user A has a set S = {k1, . . . , km} of m secret keys. Each user Bi has some
subset Si ⊆ S of the keys. When A transmits a packet she appends m MACs
to it by MACing the packet with each of her m keys. When user Bi receives a
packet he accepts it as valid only if all MAC’s corresponding to keys in Si are
valid. What property should the sets S1, . . . , Sn satisfy so that the attack from
part (a) does not apply? We are assuming all users B1, . . . , Bn are sufficiently far
apart so that they cannot collude.

c. Show that when n = 10 (i.e. ten recipients) the broadcaster A need only append
5 MAC’s to every packet to satisfy the condition of part (b). Describe the sets
S1, . . . , S10 ⊆ {k1, . . . , k5} you would use.

Problem 5 Strengthening hashes and MACs.

a. Suppose we are given two hash functions H1, H2 : {0, 1}∗ → {0, 1}n (for example
SHA1 and MD5) and are told that both hash functions are collision resistant.
We, however, do not quite trust these claims. Our goal is to build a hash function
H12 : {0, 1}∗ → {0, 1}m that is collision resistant assuming at least one of H1, H2

are collision resistant. Give the best construction you can for H12 and prove that
a collision finder for your H12 can be used to find collisions for both H1 and H2

(this will prove collision resistance of H12 assuming one of H1 or H2 is collision
resistant). Note that a straight forward construction for H12 is fine, as long as
you prove security in the sense above.

b. Same questions as part (a) for Message Authentication Codes (MACs). Prove
that an existential forger under a chosen message attack on your MAC12 gives
an existential forger under a chosen message attack for both MAC1 and MAC2.
Again, a straight forward construction is acceptable, as long as you prove security.
The proof of security here is a bit more involved than in part (a). Make sure your
proof defines explicitely how the MAC1 forger works given the MAC12 forger.

Problem 6 In this problem, we see why it is a really bad idea to choose a prime p = 2k + 1
for discrete-log based protocols: the discrete logarithm can be efficiently computed for
such p. Let g be a generator of Z

∗

p.

2

a. Show how one can compute the least significant bit of the discrete log. That is,
given y = gx (with x unknown), show how to determine whether x is even or odd
by computing y(p−1)/2 mod p.

b. If x is even, show how to compute the 2nd least significant bit of x.
Hint: consider y(p−1)/4 mod p.

c. Generalize part (b) and show how to compute all of x.
Hint: let b ∈ {0, 1} be the LSB of x obtained using part (a). Try setting y1 ← y/gb

and observe that y1 is an even power of g. Then use part (b) to deduce the second
least significant bit of x. Show how to iterate this procedure to recover all of x.

d. Briefly explain why your algorithm does not work for a random prime p.

3

